Estimating aboveground biomass using Pleiades satellite image in a karst watershed of Guizhou Province, Southwestern China | |
Yin-ming Guo; Jian Ni; Li-bin Liu; Yang-yang Wu; Chun-zi Guo; Xin Xu; Qiao-lian Zhong | |
2018 | |
发表期刊 | Journal of Mountain Science
![]() |
卷号 | 15期号:5页码:1020-1034 |
摘要 | Biomass in karst terrain has rarely been measured because the steep mountainous limestone terrain has limited the ability to sample woody plants. Satellite observation, especially at high spatial resolution, is an important surrogate for the quantification of the biomass of karst forests and shrublands. In this study, an artificial neural network (ANN) model was built using Pleiades satellite imagery and field biomass measurements to estimate the aboveground biomass (AGB) in the Houzhai River Watershed, which is a typical plateau karst basin in Central Guizhou Province, Southwestern China. A back-propagation ANN model was also developed. Seven vegetation indices, two spectral bands of Pleiades imagery, one geomorphological parameter, and land use/land cover were selected as model inputs. AGB was chosen as an output. The AGB estimated by the allometric functions in 78 quadrats was utilized as training data (54 quadrats, 70%), validation data (12 quadrats, 15%), and testing data (12 quadrats, 15%). Data-model comparison showed that the ANN model performed well with an absolute root mean square error of 11.85 t/ha, which was 9.88% of the average AGB. Based on the newly developed ANN model, an AGB map of the Houzhai River Watershed was produced. The average predicted AGB of the secondary evergreen and deciduous broadleaved mixed forest, which is the dominant forest type in the watershed, was 120.57 t/ha. The average AGBs of the large distributed shrubland, tussock, and farmland were 38.27, 9.76, and 11.69 t/ha, respectively. The spatial distribution pattern of the AGB estimated by the new ANN model in the karst basin was consistent with that of the field investigation. The model can be used to estimate the regional AGB of karst landscapes that are distributed widely over the Yun-Gui Plateau. |
关键词 | Aboveground Biomass Secondary Karst Forest Artificial Neural Network Vegetation Indices Very High Resolution Satellite Image |
收录类别 | SCI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.gyig.ac.cn/handle/42920512-1/8755 |
专题 | 环境地球化学国家重点实验室 |
作者单位 | 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2.Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China 3.University of Chinese Academy of Sciences, Beijing 100049, China 4.College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China |
推荐引用方式 GB/T 7714 | Yin-ming Guo;Jian Ni;Li-bin Liu;Yang-yang Wu;Chun-zi Guo;Xin Xu;Qiao-lian Zhong. Estimating aboveground biomass using Pleiades satellite image in a karst watershed of Guizhou Province, Southwestern China[J]. Journal of Mountain Science,2018,15(5):1020-1034. |
APA | Yin-ming Guo;Jian Ni;Li-bin Liu;Yang-yang Wu;Chun-zi Guo;Xin Xu;Qiao-lian Zhong.(2018).Estimating aboveground biomass using Pleiades satellite image in a karst watershed of Guizhou Province, Southwestern China.Journal of Mountain Science,15(5),1020-1034. |
MLA | Yin-ming Guo;Jian Ni;Li-bin Liu;Yang-yang Wu;Chun-zi Guo;Xin Xu;Qiao-lian Zhong."Estimating aboveground biomass using Pleiades satellite image in a karst watershed of Guizhou Province, Southwestern China".Journal of Mountain Science 15.5(2018):1020-1034. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Estimating abovegrou(5268KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论