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Abstract: Biomass in karst terrain has rarely been 
measured because the steep mountainous limestone 
terrain has limited the ability to sample woody plants. 
Satellite observation, especially at high spatial 
resolution, is an important surrogate for the 
quantification of the biomass of karst forests and 
shrublands. In this study, an artificial neural network 
(ANN) model was built using Pléiades satellite 
imagery and field biomass measurements to estimate 
the aboveground biomass (AGB) in the Houzhai River 
Watershed, which is a typical plateau karst basin in 
Central Guizhou Province, Southwestern China. A 
back-propagation ANN model was also developed. 
Seven vegetation indices, two spectral bands of 
Pléiades imagery, one geomorphological parameter, 

and land use/land cover were selected as model 
inputs. AGB was chosen as an output. The AGB 
estimated by the allometric functions in 78 quadrats 
was utilized as training data (54 quadrats, 70%), 
validation data (12 quadrats, 15%), and testing data 
(12 quadrats, 15%). Data-model comparison showed 
that the ANN model performed well with an absolute 
root mean square error of 11.85 t/ha, which was 9.88% 
of the average AGB. Based on the newly developed 
ANN model, an AGB map of the Houzhai River 
Watershed was produced. The average predicted AGB 
of the secondary evergreen and deciduous 
broadleaved mixed forest, which is the dominant 
forest type in the watershed, was 120.57 t/ha. The 
average AGBs of the large distributed shrubland, 
tussock, and farmland were 38.27, 9.76, and 11.69 
t/ha, respectively. The spatial distribution pattern of 
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the AGB estimated by the new ANN model in the 
karst basin was consistent with that of the field 
investigation. The model can be used to estimate the 
regional AGB of karst landscapes that are distributed 
widely over the Yun-Gui Plateau. 
 
Keywords: Aboveground biomass; Secondary karst 
forest; Artificial neural network; Vegetation indices; 
Very high resolution satellite image  

Introduction  

Forests store large amounts of carbon and thus 
estimates of forest biomass are essential for 
investigating the carbon storage and cycle in 
terrestrial ecosystems at local, regional, and global 
scales (Drake et al. 2003; Main-Knorn et al. 2013). 
Estimates are also required for quantifying the 
carbon sequestration in forests (Temesgen et al. 
2015). Traditional methods, which are based on 
field measurements, and new techniques, which 
are based on various remote sensing products 
(Anaya et al. 2009; Zhang et al. 2011; Fassnacht et 
al. 2014; Quan et al. 2017), are two common 
approaches to estimating aboveground biomass 
(AGB) quantitatively. The former cannot be applied 
to large spatial or multiple temporal scales because 
they are time consuming and costly. The latter can 
provide an effective means of achieving precise 
multi-temporal and multi-spatial estimates of AGB 
(Anaya et al. 2009; Shu et al. 2014). 

Moderate- or low-resolution satellite images 
with low or no acquisition cost (Powell et al. 2010; 
Tian et al. 2012; Zolkos et al. 2013) are the most 
widely used and available sensor products. Radio 
detection and ranging (RADAR), light detection 
and ranging (LiDAR), hyperspectral imagery, and 
multiangular remote sensing data have also been 
successfully applied to AGB estimation, forest 
canopy cover and height, tree density, and land-
cover studies (Sedano et al. 2008; Chopping et al. 
2009, 2012; Stagakis et al. 2010; Laurin et al. 2014, 
2016; Arrogante-Funes et al. 2017). Various kinds 
of vegetation indices (VIs) (Tian et al. 2012) can be 
calculated from plant reflectance and are related to 
AGB. The predictor data (sensor) type is the most 
important factor of accuracy of AGB estimates 
(Fassnacht et al. 2014). Numerous commercial 
satellites with very high resolution, such as 
IKONOS, QuickBird, WorldView-1, WorldView-2, 

and Pléiades satellite imagery, have been 
successfully used to determine forest AGBs (Deng 
et al. 2014; Maack et al. 2015). Artificial neural 
networks (ANNs) can achieve a more accurate 
estimation of forest biomass than the commonly 
used methods of regression models (Xie et al. 2009; 
Pradhan et al. 2010; Vahedi et al. 2016).  

Forests in mountainous areas are a key 
terrestrial ecosystem, but forest biomass is difficult 
to measure directly, even by using a remote-
sensing approach. Relevant biomass estimates are 
therefore of great scientific significance in remote 
sensing data applications. Mountainous forests 
account for ca. 2/3 of the territorial area of China 
and approximately 90% of the total area (2.08 × 
106 ha) of Chinese forests (Zhou et al. 2015), which 
influence the regional carbon budget considerably. 
The mountainous area of Southwestern China is 
one of the largest areas for forest growth and 
characterized by its unique geomorphology. This 
landform, which is typical of a carbonate bedrock, 
is characterized by an extremely slow soil 
formation from the underlying limestone and 
dolomite, with shallow, patchy soil and low water 
retention capacity (Liu et al. 2016a). Karst 
landscapes are continuously and broadly 
distributed in subtropical Guizhou. Quantifying 
AGB in this unique karst region is important for 
improving the accuracy of estimating Chinese AGB 
and for evaluating the role of karst ecosystems in 
the global carbon cycle. Numerous studies have 
been conducted on estimating forest AGB using all 
kinds of remote sensing data in other mountain 
forest ecosystems (Soenen et al. 2010; Clark et al. 
2011; Brovkina et al. 2016; Ma et al. 2017). 
However, high habitat heterogeneity, high 
vegetation fragmentation, complex and irregular 
plant growth forms, and the steep and rocky karst 
mountains have limited our ability to sample 
woody plants. The AGBs of different vegetation 
types in such soluble, harsh, and fragile habitats 
are difficult to measure and have seldom been 
studied (Zhu et al. 1995; Yu et al. 2010; Du et al. 
2010; Liu et al. 2013). Most of the studies were 
conducted in few forest quadrats and a small area 
of quadrats (Liu et al. 2009; Fan et al. 2015; Liu et 
al 2016a). Although field observation can reach 
acceptable levels of accuracy, they are inadequate 
for mapping the AGB distribution on a regional 
scale. Only a handful of studies on AGB mapping 
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have used moderate- or low-resolution satellite 
images (Caldwell et al. 2007; Zeng et al. 2007; Gao 
et al. 2013; Zhang et al. 2013, 2015), which cannot 
precisely estimate the forest biomass in 
mountainous and karst landscapes. 

Therefore, the AGB in this special karst region, 
especially in secondary forests and degraded 
shrubland from human-induced rocky 
desertification (Jiang et al. 2014), should be 
accurately determined through very high-
resolution (VHR) satellite imagery. Mountains in a 
karst region are tapered, which is unusual 
compared to the mountains in a non-karst region. 
This observation indicates that the slope of a karst 
tapered mountain is deep, typically between 20° 
and 40°. However, we have yet to determine 
whether VHR satellite images can reflect such a 
deep slope or whether the ANN method can 
precisely estimate karst forest and shrubland 
biomasses. In this study, a karst ANN model was 
built using a VHR Pléiades satellite imagery and by 
conducting field biomass measurements to 
estimate the AGB for all vegetation types in the 
Houzhai River Watershed, a typical plateau karst 
basin in Central Guizhou Province, Southwestern 
China. The amount and spatial distribution pattern 
of the AGB of karst forest and shrubland are 
further analyzed. 

1   Study Area  

The Houzhai River Watershed (26° 12′-26° 18′ 
N, 105° 40′-105° 49′ E; Figure 1) in Puding County, 
a typical and representative basin in the plateau-
surface karst morphological region with an area of 
ca. 75 km2, is located in Central Guizhou plateau, 
Southwestern China. Puding County has a 
subtropical humid monsoon climate, with mild 
summers and no chilly winters. The moderate 
climate and plentiful rainfall favor the growth of 
plants. The mean annual temperature in Puding 
weather station (26° 19′ N, 105° 45′ E, 1250 m, 
averaged between 1961 and 2013) is 15.2 °C, with 
temperatures of 5.2 °C and 23 °C in January and 
July, respectively. The mean annual precipitation is 
1340.9 mm, with ca. 85% of rain falls in May to 
October. However, the mean annual sunshine is 
only 1189 h, and the sunshine percentage for the 
entire year is 26.3%. 

The watershed is high in the southeast, with 
many cone peaks, depressions, and running 
underground rivers. By comparison, the watershed 
is low in the northwest and featured with plains, 
hills, and flowing ground rivers (Figures 1a, 1b). 
The elevation ranges from 1220 m to 1563 m with 
an average of 1312 m (Figure 1b), and the slope 
angle varies from 0° to 75° with an average of 11° 
(Figure 1c). A total of 142 visible peaks are found in 
the watershed. The bedrock is limestone and 
dolomite with thin gyp layers. 

Black limestone soil in the hilly upper reaches, 
paddy soil in the middle plains and depressions, 
and yellow soil in the lowland lower reaches are the 
main soil types of this region (Figure 1d). The soils 
are shallow and have low total storage, but they are 
rich in organic carbon. The vegetation in this area 
is different from that of the typical evergreen 
broadleaved forest in non-karst subtropical regions 
(Wu 1980). The primary mixed evergreen and 
deciduous broad-leaved forest in the karst terrain 
was subjected to clearcutting in the 1950s. 
Secondary forests, including the mixed forest, 
evergreen broadleaved forest, deciduous 
broadleaved forest, and coniferous forest 
plantation, are common in hills, accounting for ca. 
30% of the total watershed area. The forests on hill 
tops have few incidences of human disturbances. 
Degraded evergreen and deciduous shrublands and 
tussocks are found in middle parts and foothills. 
Rape-rice rotation is the main land use in the basin 
and depression, and maize is cultivated in middle 
parts and foothills (Liu et al. 2016a). The dominant 
tree species of the forests include Platycarya 
strobilacea, Machilus cavaleriei, Quercus spp., 
Lithocarpus spp., and Itea spp. Shrubs, such as 
Pyracantha fortuneana, Coriaria sinica, Rosa 
cymosa, Rhamnus parvifolia, and Zanthoxylum 
planispinum, are also widely distributed. 

2    Materials and Methods 

2.1 Remote-sensing Data 

VHR Pléiades satellite image data were 
acquired on 19 March 2013 under clear weather 
conditions. A panchromatic (pan) image at a 
geometric resolution of 0.5 m and a multispectral 
four-band (blue, green, red, and near-infrared 
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bands) image at a geometric resolution of 2 m were 
acquired. A digital elevation model (DEM) was 
created on the basis of SPOT-5 images at a 
geometric resolution of 10 m. The coordinate 
system of all image data was converted to Universal 
Transverse Mercator Zone 48N, World Geodetic 
System 1984. 

Data pre-processing for the Pléiades imagery 
included several steps. First, we performed 
standard radiometric conversion from digital 

numbers to radiance using the sensor specific 
calibration coefficients provided in the images’ 
metadata. Second, meaningful spectral reflectance 
signatures of the tree species’ atmospheric 
correction was derived using the fast line-of-sight 
atmospheric analysis of the spectral hypercubes 
model. Finally, we applied geometric correction to 
minimize topographic and sensor geometry image 
distortions. All pre-processing activities were 
completed under the Environment for Visualizing 

   
Figure 1 Location and field quadrat sites (green dot) (a), elevation (b), slope (c), spatial distribution of major soil types 
(d), physiognomy (e), and the general map (f) of the Houzhai River Watershed, Guizhou, China. 
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Images 5.3 and Geographical Information Systems 
10.2. Details on data pre-processing can be found 
in other reports (Zhu et al. 2015; Clerici et al. 2016). 

2.2 Land use/Land cover classification  

The land use/land cover (LULC) of the 
Houzhai River Watershed was mapped from the 
satellite image by using object-based classification 
and the nearest neighbor classifier method in 
eCognition Developer 8.7 (Definiens Imaging). The 
segmentation in eCognition is a bottom-up region 
merging technique that involves the merging of 
small image objects into large ones with the scale 
parameter controlling the growth in heterogeneity 
between adjacent image objects. The input features 
of the training samples consist of a multi-
dimensional feature space, and each sample has a 
class label (Zhu et al. 2015). Merging is stopped 
when the growth of an image object exceeds the 
threshold defined by the scale parameter (Laliberte 
et al. 2007). In our study, the segmentation 
parameters were continuously adjusted through 
repeated experiments and the comparison of the 
segmentation results. Parameter values 0.7, 0.3, 
0.3, 0.7, and 30 were selected for the color index, 
shape index, smoothness index, compactness index, 
and scale parameter, respectively, because they 
produced the best visual effect, with singular 
entities outlining the objects of homogeneous 
appearance (Peña-Barragán et al. 2011). The 

following 13 image attributes were used as input 
variables to train and construct the classifier: (1) 4 
spectral attributes: mean values of 4 bands of 
Pléiades for each image object; (2) 2 vegetation 
attributes: Normalized Difference Vegetation Index 
(NDVI) and Enhanced Vegetation Index (EVI) for 
each image object; (3) 5 shape attributes: shape 
index, width, length/width, area, and density of 
each image object; and (4) 2 geomorphological 
attributes: DEM and slope angle for each image 
object. 

In this study, six categories of LULC (Figure 2a) 
were classified on the basis of the GlobeLand30 
classification system (Arsanjani et al. 2016) and the 
vegetation map of the Houzhai River Watershed 
(1:10,000) (Guo et al. 2013) (Figure 2b), including 
secondary forests (containing all forest types in the 
watershed), shrubland (containing all scrub types 
in the watershed), tussock (containing meadow and 
grass-forb community), farmland, construction 
land, and water. In addition, 380 GPS coordinates 
of the entire watershed were obtained for satellite 
data post-processing. Half of the collected GPS 
data points (190) was used in the classification 
process, whereas the other half was used for 
accuracy assessment by using the confusion matrix. 

2.3 Training and Testing Data 

Site-based biomass data include the training 
and testing data for remote sensing-based biomass 

Figure 2 Land use/land cover (LULC) map from the Pléiades image data (a) and vegetation map of the Houzhai 
River Watershed. 
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reconstruction. A total of 78 vegetation quadrats 
(Figure 1a) were collected from 2007 to 2013 (Liu 
et al. 2009; Liu et al. 2013; Liu et al. 2016a; 2016b), 
as follows: 54 quadrats of secondary forests (each 
at 600–900 m2), 12 quadrats (100–200 m2) of 
shrubland, and 12 quadrats (100–200 m2) of 
tussock. Considering the large size of the study area 
and the representativeness of various forest 
patches, we divided 2 ha (horizontally-projected 
area) of the permanent monitoring quadrat of 
secondary forests (Liu et al. 2016b) in the 
watershed into 20 small quadrats (600–900 m2). 
The species; height (length for lianas and vines); 
diameter at breast height (DBH) for trees; basal 
diameter (BD) for shrubs, lianas, and vines; 
coverage of herbs; longitude; latitude; elevation; 
and the habitat information of each quadrat were 
recorded. 

The AGBs of individual trees, shrubs, and 
lianas or vines in all the quadrats were estimated 
using species-specific and DBH- and BD-
differentiated allometric functions, which were 
obtained by the standard tree method based on 15 
dominant and common species in the watershed 
and surrounding regions (Zhu et al. 1995; Liu et al. 
2009). The aboveground carbon (AGC) storage was 
calculated using the carbon concentrations 
(48.05%) averaged from the foliage and wood of 15 
common species in the karst basin (Liu et al. 2013). 
The AGB and AGC of each quadrat were 
respectively summarized in terms of the AGB and 
AGC of all woody individuals, excluding herbs. 

2.4 Calculation of Vegetation Indices 

Vegetation indices (VIs) and spectral bands 
have been successfully used to estimate the AGB 
(Powell et al. 2010; Deng et al. 2014). Thirteen VIs 
were computed from the combinations of different 
spectral bands (Eckert et al. 2012; Clerici et al. 

2016); four spectral bands of Pléiades imagery and 
four geomorphological variables that were derived 
from the DEM were screened on the basis of their 
relationships with the site biomass measurements. 
The longitude and latitude recorded in the 
vegetation survey were considered as the central 
points for calculating the mean values of all 
variables mentioned above in a 3 × 3 grid (6 m × 6 
m) periphery. The variables without a significant 
correlation with AGB were removed for further 
analysis. Seven VIs, two spectral bands (blue band 
and red band), one geomorphological parameter 
(slope), and LULC were used as input parameters 
to build the ANN model. The vegetation index 
formulas (Wang et al. 2016) used in this study are 
listed in Table 1. 

2.5 Building ANN model 

Artificial intelligence modeling is a black box 
that consists of a series of complicated equations 
for calculating the outputs based on a given series 
of input values. ANNs can effectively deal with 
non-linear relationships (Menlik et al. 2010; 
Kumar et al. 2015) and learn from a sample set, 
which is called a training set, in a supervised or 
unsupervised learning process (Hassan et al. 2009). 
Each network consists of an input layer, an output 
layer, and one or more hidden layers that allow the 
network to learn relationships between input and 
output variables (Tiryaki et al. 2014).  

Eleven variables, including ARVI, EVI, NDVI, 
DVI, GNDVI, RVI, SAVI, blue band, red band, 
slope, and LULC, were selected as inputs, and the 
AGB was chosen as output. A feed forward neural 
network that includes a back-propagation artificial 
neural network (BPANN) was used in this study. In 
this learning algorithm, an iterative gradient 
descent training procedure was used. Initial ANN 
weights were assigned randomly and adjusted 

Table 1 Formulas of vegetation indices in this study

Index Abbr. Formula
Atmospherically Resistant Vegetation Index ARVI ARVI = (RNIR – (2 × RR – RB))/(RNIR + (2 × RR – RB))
Enhanced Vegetation Index EVI EVI = 2.5 × (RNIR – RR)/(1 + RNIR + 6 × RR – 7.5 × RB)
Normalized Difference Vegetation Index NDVI NDVI = (RNIR – RR)/(RNIR + RR) 
Difference Vegetation Index DVI DVI = RNIR – RR

Green Normalized Difference Vegetation Index GNDVI GNDVI = (RNIR – RG)/(RNIR + RG) 
Ratio Vegetation Index RVI RVI = RNIR/RR

Soil-Adjusted Vegetation Index SAVI SAVI = 1.5 × (RNIR – RR)/(RNIR + RR + 0.5) 

Note: RR, RG, RB, and RNIR represent the reflectance values of the red, green, blue, and near infrared bands of Pléiades 
imagery, respectively. 
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through a back-propagation mechanism. The 
weight adjustment process is repeated until the 
model output reaches an acceptable accuracy level 
(Zhu et al. 2015). 

The input data were normalized between 0 
and 1 because the 11 variables possessed different 
dimensions. The datasets were randomly 
partitioned into training data (70% of whole data), 
validation data (15%), and testing data (15%) 
during the BPANN development. The validation 
data were used to minimize overfitting, whereas 
the testing data were utilized to check the network 
performance and confirm its accuracy. The BPANN 
model was established with the MATLAB 2013a 
Neural Network Toolbox by using iterated cross-
validation (CV) and stratified random sampling. 
The main tuning parameters for the network were 
continuously adjusted by comparing the root mean 
square error (RMSE) between the predicted and 
measured AGBs to determine the optimal network 
model. The learning rate and training accuracy 
were set to 0.01 and 0.001, respectively. The 
number of epochs was set to 6000, and the defaults 
in the MATLAB Neural Network Toolbox were used 
for the other parameters (Laliberte et al. 2007; Zhu 
et al. 2015). The newly developed BPANN model was 
extended to estimate the AGB of the entire Houzhai 
River Watershed based on the 11 selected variables. A 
final AGB map was produced using the GIS. 

3   Results 

3.1 Accuracy assessment 

The accuracy of the LULC was evaluated using 
the confusion matrix based on the GPS coordinates 
and field dataset. The total accuracy of the LULC 
classification was 93.68%, and the kappa 
coefficient was 0.92, indicating that our 
interpretation and classification are adequate.  

The R values in the training, validation, and 
testing data and in the entire dataset are greater 
than 0.95 (Figure 3), thereby suggesting that the 
designed model can explain more than 95% of the 
measured data. The comparison of the measured 
and predicted AGBs of the testing data indicates a 
low absolute RMSE of 11.85 t/ha, which is only 
9.88% of the average AGB. The R and RMSE values 
imply that the established BPANN model exhibits 

high accuracy and is fit for the estimation of AGB 
in the Houzhai River Watershed. 

3.2 Vegetation Indices and measured AGB  

The spatial distribution patterns of the seven 
VIs in the Houzhai River Watershed follow the 
same trends (Figures 4a-g). High VI values were 
mainly found in the east, southeast, and a small 
part of the west. These values are highly related to 
the distribution of secondary forests, shrubland, 
and tussock. Medium values of VIs were mostly 
distributed in the central and western parts of the 
watershed where most of the farmland is 
widespread. Low VI values were found in the 
construction land. 

The 11 input variables and measured AGB in 
the field quadrats of the key vegetation types show 
that the highest VIs and AGB were found in 
secondary forests, whereas the lowest values were 
detected in tussock (Table 2). Results show that a 
positive correlation exists between AGB and the 
vegetation indices, but a negative correlation exists 
between AGB and the spectral bands. The slope 
angle of the secondary forest growth was steeper 
than those of shrubland and tussock growth 
because forests usually grow on hill tops, while the 
two other vegetation types thrive on foothills.  

Figure 3 Relationship between the measured and 
predicted aboveground biomass by the BPANN model. 
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Figure 4 Spatial distribution patterns of vegetation indices and AGB (aboveground biomass) (t/ha) in Houzhai River Watershed: (a) 
Normalized Difference Vegetation Index, (b) Enhanced Vegetation Index, (c) Green Normalized Difference Vegetation Index, (d) Ratio 
Vegetation Index, (e) Atmospherically Resistant Vegetation Index, (f) Soil-Adjusted Vegetation Index, (g) Difference Vegetation Index, and 
(h) Aboveground biomass (t/ha). 
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3.3 Spatial Distribution Patterns of the 
Predicted AGB  

The predicted AGB increases with the VIs. The 
spatial distribution of the predicted AGB (Figure 
4h) exhibits the same trend as the VIs, but high 
values become increasingly evident at high 
elevations (Figure 1b). This pattern (Figure 4h) is 
also highly correlated with the patterns of 
vegetation and the LULC (Figure 2). 

From each LULC type perspective, the spatial 
distribution patterns of the predicted AGB show 
the following: high AGB in secondary forests 
(Figure 5a) and shrubland (Figure 5b); and low 
AGB in the farmland and tussock (Figures 5c and 
5d). Low AGBs in large areas are mainly found in 
the farmland (Figure 5d). Such patterns coincide 
with the distributions of elevation and soil types 
(Figures 1b, 1d). Table 3 shows details of the 
predicted ranges and averages of AGB of these four 
LULC types. R2 is 0.9544 between the measured 
and predicted AGBs of the 78 quadrats (Figure 6). 
These findings indicate that the BPANN model 
exhibits high accuracy and is fit for estimating the 

AGB in the Houzhai River Watershed. 
The AGB pattern in the karst terrain is 

connected to the slope gradient (Figure 7). Low 
AGB is mainly found in a low slope angle of <15° 
(Figures 7a, 7b, with an average of 33.85 ± 13.21 
t/ha), in which the farmland (rice and maize) is 
mainly distributed in the basin depression. A high 
slope angle (15°–35°) on hill tops exhibits high 
AGB (Figures 7c and 7d, with an average of 103.63 
± 33.56 t/ha), in which a large amount of 
secondary forests, shrubland, and tussock can be 
found. Even at a steep slope angle (35°–45° and 
above) at the cone peak, a high AGB distribution is 
observed (Figures 7e and 7f, with an average of 
163.47 ± 16.26 t/ha). There, relatively well-
protected forests can also be found. The 
consistency between the predicted AGB and the 
LULC indicates that the BPANN model provides 
satisfactory results for the prediction of AGB in a 
typical plateau karst basin. 

In terms of model prediction, the total AGB in  
the Houzhai River Watershed is 0.215 Tg in a total 
area of 7500 ha, and the total AGC is 0.103 TgC. 
The AGBs of the secondary forests, shrubland, 
tussock, and farmland account for 59.00%, 11.79%, 
1.98%, and 24.57% of the total AGB of this 
watershed, respectively. 

4    Discussion 

Given the large and unique area of the karst 
landscape in Southwestern China, the AGB and 
carbon storage in karst terrains should be precisely 
estimated to evaluate the role of karst ecosystems 
in regional and global carbon cycles. Traditional 
field measurement methods are accurate, but the 
obtained information may change quickly and 
become outdated because of the dynamic nature of 
forest environments (Temesgen et al. 2015). 
However, remote sensing technology may provide a 
supplement or a substitute with the advantages, 
such as large scale, integration, and dynamic 
estimation of forest biomass. In addition, it does 
not disrupt the harsh and fragile karst forest 
ecosystems and habitats. 

Several remote sensing-based AGB or carbon 
storage studies have been conducted in these harsh 
and fragile habitats of Guizhou Province. Zheng et 
al. (2007) developed AGB estimation models for

Table 2 Input variables and measured AGB 
(aboveground biomass) (mean ± standard error) of key 
vegetation types 

Variable SF Shrubland Tussock
ARVI 0.60 ± 0.01 0.52 ± 0.03 0.37 ± 0.06
EVI 0.34 ± 0.01 0.30 ± 0.02 0.21 ± 0.02
NDVI 0.62 ± 0.01 0.56 ± 0.02 0.45 ± 0.04
GNDVI 0.54 ± 0.01 0.50 ± 0.02 0.42 ± 0.04
SAVI 0.31 ± 0.01 0.28 ± 0.02 0.20 ± 0.02
RVI 4.52 ± 0.15 3.73 ± 0.21 2.73 ± 0.23
DVI 0.16 ± 0.01 0.14 ± 0.01 0.10 ± 0.01
Red band 447.53 ± 9.92 541.13 ± 37.47 621.45 ± 44.11
Blue band 405.24 ± 6.02 467.35 ± 21.11 479.55± 30.45
Slope angle 37.78 ± 1.56 16.30 ± 2.99 20.25 ± 3.97
AGB (t/ha) 128.47 ± 3.91 35.06 ± 3.04 8.77 ± 0.46
AGB range 
(t/ha) 57.94-157.85 19.53-57.95 6.1-10.61 

Notes: SF = Secondary forests. 

 
Table 3 Predicted AGB (aboveground biomass) in 
different LULC types 

Vegetation 
types 

Secondary 
forests Shrubland Tussock Farmland

Biomass 
density (t/ha) 60 – 226 10 – 60 1 – 16 0 – 30 

Mean AGB 
(t/ha) 120.57 38.27 9.76 11.69 

Total AGB (t) 126760.60 25331.19 4252.08 52777.90
Area (ha) 1051.34 661.91 435.66 4514.79
Area ratio (%) 14.02 8.83 5.81 60.20
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 different forest types in Liping County, 
Southeastern Guizhou Province, which combine 
the LULC, ETM+ image (30 m × 30 m), and field 
forest inventory data. Their estimated forests AGB 
ranged from 40–200 t/ha, of which 64% have AGB 
levels between 90–180 t/ha. Zhang et al. (2015) 

studied the spatial distribution patterns and 
historical carbon storage in Qinglong County, a 
typical karst canyon area in the Southwest of 
Guizhou, using Landsat TM and ETM+ image data 
(30 m × 30 m) of 1988, 1999, and 2009. In 2009, 
based on the proportion of AGC in the total carbon 
storage, their simulated average forests AGB was 
133.31 t/ha, which is clearly higher than the 
average AGB of 87.62 ± 30.11 t/ha obtained from 
the field survey in the Qinglong Mengzhai 
Watershed from 2011 to 2013 (Fan et al. 2015) (a 
conversion factor of 48.05% was used to convert 
biomass to carbon content) (Liu et al. 2013). Gao et 
al. (2016) explored the effects of land use change 
on the carbon storage in Wujiang River in Guizhou 
from 2000 to 2010, using a model of integrated 
valuation of ecosystem services and trade-offs. 
They also analyzed the spatio-temporal variations 
of carbon storage based on the land use map from a 
Landsat TM/ETM image (30 m × 30 m). According 
to this research, the average AGBs of the forests 
(comprising evergreen coniferous forest, mixed 
coniferous and broad-leaved forest, and deciduous 

 
Figure 5 Spatial distribution patterns of AGB (aboveground biomass) in different LULC types in Houzhai River 
Watershed: (a) secondary forests, (b) shrubland, (c) tussock, and (d) farmland. 
 

Figure 6 Correlation between the measured and 
predicted AGB (aboveground biomass) of the 78 
quadrats in Houzhai River Watershed. 
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 broad-leaved forest) and shrubland were 126.3 and 
55.36 t/ha in 2010, respectively. Although regional 
variations exist in the AGB estimates, the estimates 
obtained in our study are lower than the previously 
mentioned data, especially the forest and 
shrubland biomass. 

However, these previous studies were based on 
moderate- or low-resolution satellite image data. 
On one hand, previous research suggested that 
moderate- or low-resolution remote sensing 

images, such as Landsat TM/ETM+ and MODIS 
dataset, cannot estimate AGBs in complex forests 
accurately because of the difficulty in linking coarse 
spatial-resolution data and field measurements or 
the failure to overcome problems associated with 
mixed pixels (Lu et al. 2006). Several studies also 
showed that Landsat TM satellite imagery can be 
beneficial for modeling the AGB in conifer forest 
areas, meadows, and pastures, but not for 
modeling the AGB in complex forest areas (Zheng 

 
Figure 7 Spatial distribution patterns of the predicted AGB (aboveground biomass) in different slope gradients in 
Houzhai River Watershed. 
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et al. 2004; Günlü et al. 2014; Barrachina et al. 
2015). In addition, the limited spatial detail misses 
small-scale biomass variability. Meanwhile, the 
Pléiades satellite imagery with a very high 
resolution from tens of centimeters to a few meters 
provides an approach to this problem (Deng et al. 
2014). Available literature has been systematically 
reviewed to identify the most common sensor types 
and prediction methods for biomass estimation, 
such as stepwise linear regression, support vector 
machines, random forest, Gaussian processes, and 
k-nearest neighbor. In addition, results have shown 
that a consensus on the best practices for biomass 
estimation has not been achieved yet, although the 
predictor data (sensor) type is the most important 
factor influencing the accuracy of biomass 
estimates (Fassnacht et al. 2014). Previous studies 
demonstrated that the mangrove forest 
information obtained from VHR images can 
improve the accuracy of AGB considerably (Zhu et 
al. 2015). These VHR satellite images, such as 
World View-1&2, Geo Eye-1, and Pléiades satellite 
imagery, coupled with the field quadrat dataset, 
provide a cost-effective framework for biomass and 
carbon stock estimation in complex secondary 
forest types at regional scales (Deng et al. 2014; 
Clerici et al. 2016). Consequently, moderate- or 
low-resolution satellite image data are not the best 
choice for estimating the AGB in mountainous and 
karst landscapes. 

On the other hand, ANN models have no 
mathematical scaling parameters, but the 
architecture of each model can be determined 
according to the biomass variations based on the 
range of input nodes; thus, the correlation between 
outputs and targets is well understood and 
automatically assimilated into the connection 
weights of a network (Ozçelik et al. 2010). Previous 
research revealed that ANN model can predict AGB 
more accurately in natural forests than site-specific 
allometric equations can (Vahedi et al. 2016). In 
the estimation of the AGB of a typical grassland in 
Xilingol River Basin, Inner Mongolia, China, the 
ANN model provides a more precise estimation 
than the multiple linear regression (MLR) model 
(Xie et al. 2009). If ASTER satellite data combined 
with standwise forest inventory data are used, a 
more precise estimation of the biomass of boreal 
forests than a non-linear regression model can be 
achieved (Muukkonen et al. 2005). Therefore, our 

study could provide an easy, quick and accurate 
estimation of the AGB in such mountainous and 
karst landscapes. 

Based on the newly developed BPANN model, 
the average AGB (120.57 t/ha) of secondary forests 
in this study is slightly lower than the AGB (137.7 
t/ha) calculated from the field research of a 2-ha 
quadrat in the Houzhai River Watershed (Liu et al. 
2016b). This is mainly because the 2-ha quadrat is 
located in the hill tops (1402-1512 m) with few 
incidences of human disturbances. Furthermore, 
the forest coverage and DBH and height of trees in 
the 2-ha quadrat were higher than other parts of 
the study area. Therefore, the average AGB from 
field survey should be higher than that obtained in 
our study. Meanwhile, the average AGB of 
secondary forests in this study was slightly higher 
than the AGB (65.4-115.2 t/ha, excluding the AGB 
of herbaceous layer) estimated by Liu et al. (2009) 
based on three small quadrats (each at 600 m2) in 
the surrounding area of the basin. This variation is 
mainly attributed to the differences in quadrat area 
calculation. The quadrat area in our study was 
calculated by horizontal projection according to the 
average slope of the quadrat. Liu et al. (2009) did 
not consider the horizontal projection and still 
used the small quadrat area of the original inclined 
hill slope; they only calculated the AGB of the tree 
layer and shrub layer, thereby resulting in a lower 
average AGB than that obtained in our study.  

However, the averaged predicted AGB of the 
secondary forest (120.57 t/ha) and shrubland 
(38.27 t/ha) in this study are higher than the AGBs 
obtained from the field quadrat survey in the 
typical trough valley karst basin in Northern 
Guizhou (Zhong et al. 2014) and the canyon karst 
basin in Southwestern Guizhou (Fan et al. 2015). 
With a conversion factor of 48.05%, which was 
previously used to convert biomass to carbon 
content (Liu et al. 2013), the calculated AGBs of the 
secondary forest and shrubland of Zhong et al 
(2014) were 99.35 t/ha and 24.88 t/ha, 
respectively. The values reported by Fan et al. 
(2015) were 87.62 t/ha and 13.09 t/ha, respectively. 
The differences could be linked to the growth ages 
of the forests. The growth ages of the secondary 
forest are in the range of 63 years old to 94 years 
old in this study area (Liu et al. 2016), whereas 
those of the secondary forests are less than 50 
years old, with lower DBH and trees in the latter 
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two areas (Zhong et al. 2014). Meanwhile, the 
average AGB of the secondary forest in our study is 
lower than that (168.02 t/ha) estimated by Zhu et 
al. (1995) in the peak-clump depression-type karst 
in Southern Guizhou. This result can be attributed 
to the fact that the cutting of the original karst 
forest in the former in the late 1950s completely 
modified the local habitat, thereby making the 
restoration of the original vegetation impossible for 
at least 50 years (Ni et al. 2015), while the latter 
was in the climax stage with higher DBH and tall 
trees. The results of our study are consistent with 
the previous studies. 

Therefore, the combination of VHR Pléiades 
satellite imagery and the ANN model is the best for 
estimating AGB precisely in mountainous and karst 
landscapes. On the basis of the newly developed 
BPANN model, VHR Pléiades imagery, and local 
observational data, we can satisfactorily predict the 
AGB and AGC of forests, shrubland, tussock, and 
farmland in a typical plateau karst basin. This 
approach can be extended to the AGB estimation of 
basins with similar morphological characteristics 
in the southwestern karst region of China. However, 
the accuracy of the BPANN model in this study 
may be affected by the asymptotic saturation 
problems associated with the use of VIs for AGB 
estimation (Mutanga et al. 2012; Wang et al. 2017). 
LiDAR data can provide detailed vegetation 
structure measurements at discrete locations that 
cover the circular or elliptical footprints from a few 
centimeters to tens of meters in diameter 
(Montesano et al. 2013). Therefore, combining 
VHR satellite and LiDAR data is necessary to 
improve the accuracy of the estimation of AGB in 
forests in future studies. 

5    Conclusion 

On the basis of the proposed karst BPANN 
model and VHR Pléiades satellite imagery, we 
obtained the total AGB and the AGC in the Houzhai 
River Watershed of 0.215 and 0.103 Tg in a total 
area of 7500 ha, respectively. The AGBs of the 
secondary forests, shrubland, tussock, and 
farmland were 0.127, 0.025, 0.004, and 0.053 Tg, 
which accounted for 59.00%, 11.79%, 1.98%, and 
24.57% of the total AGB of this watershed, 
respectively. The spatial distribution patterns and 
ranges of various vegetation AGBs predicted by the 
model were consistent with those obtained from 
field investigation. The biomass carbon of 
secondary forests is higher than those of shrubland, 
farmland, and tussock and often distributed in 
limestone soils at a high slope angle (>15°). Overall, 
the Pléiades image-based BPANN model provided 
satisfactory results for the prediction of AGB in the 
typical plateau karst basin. It can also be used to 
estimate the AGB of the karst landscapes 
distributed on the surface of the Yun-Gui Plateau 
on a regional scale. 
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