GYIG OpenIR  > 研究生  > 学位论文
上芒岗金矿床成矿作用过程研究
李泽琴
2001
学位授予单位中国科学院地球化学研究所
学位授予地点中国科学院地球化学研究所
学位名称博士
学位专业矿床地球化学
关键词化学反应途径模拟 卡林型金矿床 矿床地球化学 矿床成因 云南
摘要上芒岗金矿床位于三江褶皱系怒江大断裂西南段,龙陵~瑞丽大断裂(F_1)南东盘,上芒岗次级断裂(F_4)之中。赋矿地层为下二叠统沙子坡组(P_(1s))和中侏罗统勐嘎组(J_(2m))。矿石主要有两种类型,硅质矿石和粘土质矿石;前者主要由石英和少量黄铁矿所组成,金品位平均为2 * 10~(-6);后者主要由伊利石、高岭石和黄铁矿所组成,金品位一般为2 * 10~(-6) ~ 4 * 10~(-6)。矿石中金星次显微状态,主要元素组合为Au、Ag、As、Sb、Hg、Ba。矿床以强烈的黄铁粘土岩化为特征,热液蚀变作用过程即是金矿化作用过程。根据热液蚀变的矿物共生组合及其生成序次,将金矿化作用过程分为五个阶段:黄铁矿-石英阶段(I);镁贝得-白云石阶段(II);辉锑矿-石英阶段(IlI):黄铁矿-高岭石-伊利石阶段(IV);网脉状石英阶段(V)。其中黄铁矿-高岭石-伊利石阶段(IV)是金矿化的主成矿阶段。该矿床属于卡林型金矿床。由石英流体包裹体获得不同成矿阶段的温度为,成矿阶段I:210~170 ℃、成矿阶段III:190~160 ℃、成矿阶段V:173~144 ℃。伊利石-水氢同位素温度计测得成矿阶段IV的温度为165 ℃。石英流体包裹体液相成分以K~+、Na~+和Cl~- (F~-)为主,其次为Ca~(2+)、Mg~(2+)和HC0_3~-,由早到晚K~+、Na~+和Cl~-降低,而Ca~(2+)、Mg~(2+)和HC0_3~-升高;气相组分以C0_2为主。石英流体包裹体成分富F,其含量高达8.03 * 10~(-3) mol/kg,正是由于成矿热液富含F,Al才可以与F形成络合物进入热液迁移,即Al成为活动组份,从而形成该矿床所独特的强烈粘土岩化蚀变。稀土元素特征方面,矿石和赋矿地层下二叠统沙子坡以及中侏罗统勐嘎组岩石的稀土配分曲线十分相似,均为右倾型,但是两者的稀土元素总量不同,前者的相对较高。矿石和蚀变岩具有相似的稀土元素配分曲线,但是矿石的稀土元素总量相对较高。与勐嘎组泥岩相比,粘土质蚀变岩和矿石更加富集轻稀土元素,并且更富Eu。这些特征表明,粘土质蚀变岩和矿石是由热液作用形成的,而不是风化作用的产物;矿石与赋矿地层在物质来源上有亲缘关系。不同矿段、不同阶段和不同类型矿石和蚀变岩的Au、Ag、As以及Sb的含量同步变化,这表明在整个成矿作用过程中,成矿流体来源统一,且在成矿体系起主导作用。不同类型的矿石及蚀变岩中Au与Al_20_3,和TFe的含量呈正相关,表明黄铁粘土岩化与成矿关系最为密切。矿石铅同位素~(208)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(206)Pb/~(204)Pb比值分别为39.12~39.54、15.85~15.95、19.75~20.33;沙子坡组(P_(1s))岩石铅同位素比值分别为:38.407~37.868、15.921~15.589、22.685~22.367;孟嘎组(J_(2m))岩石铅同位素比值分别为:39.499~39.222,15.821~15.772、19.207~18.709。在铅同位素组成相关图中矿石与地层铅的投影点分别集中成群分布。矿石铅与地层铅呈线性分布,而且矿石铅的集中区位于沙子坡组铅集中区和勐嘎组铅集中区之间。这些特征表明矿石铅系由沙子坡组铅和勐嘎组铅混合而成。成矿热液的δ~(18)O由早到晚逐渐升高,I、III、IV、V阶段流体的δ~(18)O值分别为-4.2‰,+0.59‰;+0.76‰,+1.98‰,表现出明显的漂移特征;而δD则表现出高度的一致性,变化范围为-82.5 ~ 79.48‰。由此认为成矿热液系大气降水起源。成矿热液氢、氧同位素组成的这种规律性变化还说明,成矿热液的演化具有继承性和连续性。应用CHILLERR软件包,对上芒岗金矿床的成矿作用过程进行化学反应途径数字模拟。所展示的成矿作用过程为:大气降水沿断裂带下渗,加热循环,获取成矿物质(但不排除有深源成矿物质加入的可能性);形成起始成矿热液:T = 200℃ P = 228.8bar;pH = 4.4;fs_2 = 10~(-9.89); fo_2 = 10~(-41.28);aAu(HS)_2~- = 10~(-9.64),aAuCl_2~- = 10~(-17.86);富含F、Al和Au,贫As、Hg、Zn、Cu和Pb。成矿热液在构造作用的驱动下,上升进入上芒岗断裂上部含水构造破碎带,并与下渗雨水混合而淬冷,形成沿上芒岗断裂呈线状分布的早期硅化石英岩(成矿阶段I),成矿热液与下渗雨水之比为16:l(成矿阶段I);继而热液扩散进入下盘破碎带,与白云岩反应,形成矿体下盘的白云石化,水:岩比为193:l(成矿阶段II)。此后成矿热液上升充填裂隙空间,由于热传导而缓慢冷却,成矿体系的温度由189 ℃降为165 ℃,形成含辉锑矿的梳状石英脉(成矿阶段1II)。成矿热液继续上升进入上盘碎屑岩破碎带,停积于构造揉皱的泥质岩,并与之反应,形成上芒岗矿床金矿化的主体—粘占土质矿石,水:岩比为29:1(成矿阶段IV)。最后成矿残液逐渐冷却, 同时伴随C0_2的起泡,形成晚期石英网脉(成矿阶段V),至此热液金矿化过程结束。由上述可见上芒岗金矿床的成矿作用过程经历了:(初始)成矿热液与下渗大气降水混合(I) → 成矿热液与沙子坡组白云岩反应(II) → 成矿热液缓慢冷却(III) → 成矿热液与勐嘎组泥质岩石反应(IV) → 成矿热液冷却沸腾(V)等5个演化阶段。模拟结果进一步证实了上芒岗金矿床的热液成因。上芒岗金矿床成作用过程化学反应途径数字模拟与地质事实高度吻合,与地球化学研究结果相互印证,再现了上芒岗金矿床的成矿作用过程。由矿床的地质地球化学特征及成矿作用过程化学反应途径模拟结果,归纳出上芒岗金矿床成矿作用过程模型。
其他摘要Shangmanggang gold deposits are located southwestern corner of Yunnan, China. The deposit occurs along the southwest-trending Shangmanggang Fault. Near tile surface, The hanging wall of the fault consists of sandstone and mudstone of the Middle Jurassic Mongga Formation (J_(2m)), and also severs as the hanging wall of the gold orebodies. The footwal1 of the fault is composed by dolomitite locally intercalated with medium-bedded limestone of Lower Permian Sazipo Formation (P_(1s)). In the deep, the fault cut into strata of Sazipo Formation (P_(1s)). The deposit is characterized by intense clay alteration, which is similar to the Mercur Gold Deposit, Utah of U.S.A., and by unique hydrothermal pinnacle karst, which serves as the footwall of the gold orebodies. The muinable ores are mainly earth-red clay ore in which the amotmt of illite reaches to ~70%. The main gold mineralization is associated with kaolinite-pyrite-alteration, illite-kaolinite-pyrite-alteration. Gold is disseminated in the ore with the element association of Au, Ag, Sb, As, Hg, and Cu. Five stages of alteration and gold mineralization are identified in Shangmanggang gold deposits. Stage VI is the most important to gold mineralization. Silicification, kaolinite-pyrite and kaolinite-illite-pyritealteration superimposed are favorable for ore. The program CHILLER was used both to calculate the speciation and concentration of metals in solution and to model ore-depositional processes. Thermodynamic data used are contained within the SOLTHERM database (Spycher and Reed, 1998, pers. com.). The deposition mechanisms considered were (1) isobaric cooling, (2) isothermal diiustion, (3) fluid mixing, and (4) isothermal reaction with host rocks and (5) combinations of wall-rock reaction and fluid mixing. Of these, only reaction path 1, 3, 4 accurately reproduce both the paragenetie sequence of synore alteration assemblages and the proportions of mineral assemblages. ore-deposifional processes in Shangmanggang gold deposits can be described as following: ① the starting ore-fluid (I) (200 ℃) ascended along Shangmanggang Fault to the shallower place (900 ~ 500m deep), and mixed with the cold water (25 ℃) in the fault braccia mainly in Sazipo Formation (P_(1s)), with quartz (>97%) + carbon (graphite) + pyrite assemblages precipitating, which occurred as jasperoid because of quenching. This is Stage I, silicification-jasperoid(I). Jasperoid(I) is characterized by containing carbon up to 2.75% so that the rock is black, and lower Au, As, Sb, Cu, Ph. ② The derived ore-fluid(II)(190 ℃) continued to interact with dolomitite of Sazipo Formation (P_(1s)). With calcite dissolving, dolomite + Mg-bearing clay (Beidellite) + pyrite + quartz + carbon (~0.24%) (+ stibnite) deposited. Comparing to the protolith, grey-dark dolomite, the altered rocks are gray ~ graylish as the carbon leached, and the rocks is sandy and loose as dolomite crystallized and calcite dissolved. This is stage II, dolomitization (decaleitization). ③ The altered ore-fluid(III) got cooling from 190 to 165 ℃ as it made its way to contact with rocks of Mongga Formation (J_(2m)) or in any favorable fissures and cavities. The products occurs as quartz stockwork or jasperoid(II) with the assemblage of quartz + carbon + pyrite + stibnite and trance of As-Sb-Cu-bearing sulfosalt This is stage III, quartz vein (II). ④ Now come to the main ore-forming stage, Stage IV, the ore-fluid(III) interacted isothermally with the sandy mudstone of Mongga Formation (J_(2m)). When the ratio of water/rock was less than 250, the mineral assemblage consists of quartz + kaolinite + pyrite + gold (± carbon ± stibnite ±As-Sb-Cu-bearing sulfosalt), which represents the early Stage IV, and as the ratio of water/rock reached to 250 ~ 25, the assemblage is quartz + kaolinite + illite + pyrite + siderite + dolomite + gold + barite, which is the later Stage 1V. ⑤ with the stockwork of crystalline quartz depositing mineralization is waning. This is stage V. The chemical-reaction-path of Shangmanggang gold deposit is obviously different from that of the Jerdtt Canyon gold deposits. It is inferred that there might be no identical mechanisms and chemical-reaction-path models of ore-depositional processes in the Carlin-type gold deposits. Also the Fig. 2 shows that gold (silver) always deposited later than Sb-As-bearing sulfosalt and sulfide in the Shangmanggang gold deposit. The relationship of Au (Ag) with Sb and As in the Carlin-type gold deposits is superimposition other than paragenesis. So Al usually did not get into these minerals, e.g. stibnite, but occurred in their fissures and their surface by adsorption.
页数102
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3566
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
李泽琴. 上芒岗金矿床成矿作用过程研究[D]. 中国科学院地球化学研究所. 中国科学院地球化学研究所,2001.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
LW006624.pdf(3151KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李泽琴]的文章
百度学术
百度学术中相似的文章
[李泽琴]的文章
必应学术
必应学术中相似的文章
[李泽琴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。