GYIG OpenIR  > 研究生  > 学位论文
湖泊有机质的来源与生物地球化学循环:稳定氮同位素示踪技术
其他题名Sources and Biogeochemical Processes of Organic Matter in lacustrine environments: Stable Nitrogen Isotope Trace Technique
王静
2008-05-04
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词溶解有机氮 颗粒态有机氮 稳定氮同位素比值 生物地球化学循环作用 红枫湖 百花湖
摘要氮循环是水生生态系统中重要的营养循环,对它的研究能够为水环境评价以及解决日益严重的湖泊富营养化问题中的氮治理提供理论依据。水体中的有机质分为颗粒态有机质(POM)和溶解态有机质(DOM)两部分,它们在水体中与无机氮相互转化、相互作用,共同控制着整个水生生态系统内部的氮循环过程。稳定氮同位素技术作为有效的地球化学工具能够被用于追溯水生生态系统中的物质来源以及指示相关的生物地球化学循环作用。因此对有机质稳定氮同位素比值的测定有利用帮助我们了解它在水生生态系统中所扮演的角色,尤其是得到有机质参与的地球化学循环作用的直接证据,从而进一步完善对水生生态系统内部整个氮循环过程的研究。 本研究首先从根本上解决了限制溶解有机氮(dissolved organic nitrogen,DON)稳定氮同位素比值应用的测定技术上的难题。然后选择贵州高原湖泊―红枫湖和百花湖作为研究对象,测定了2003~2004年两湖水体中颗粒态有机氮同位素比值(δ15NPON)的季节及剖面变化,探讨了两湖季节性变化存在差异的原因以及红枫湖纵向水体剖面上δ15NPON的变化规律及影响因素。最后,在前人对红枫湖研究的基础上重点选择了2006~2007年间湖泊热分层不同时期具有代表性的几个月份进行了剖面采样。测定了不同月份纵向水体剖面上的DON、PON与NO3-三种氮形态的含量、δ15N值以及其它水化学参数,揭示了水体内部氮循环过程中的相关生物地球化学作用。同时,结合冬季湖泊枯水期外源输入河流以及湖泊水体横向剖面上的DON、PON与NO3-三种氮形态的含量及其δ15N值的变化,追溯了湖泊水体中各种氮形态的来源以及外源输入河流对湖泊水体的贡献。本研究得到以下几点结论: 1. δ15NPON值的季节性变化可以用于评价水生生态系统的营养状况,指示外源人为活动产生的工业废水和生活污水的影响。对2003~2004年间红枫湖和百花湖两湖表层湖泊水体中PON的δ15N季节性变化研究表明,红枫湖表层颗粒态有机质δ15NPON的变化范围为+3.7~+14.9‰;百花湖颗粒态有机质δ15NPON的变化范围为+1.3~+8.7‰。其季节性变化趋势不同。红枫湖表现为冬季(2月)和夏末秋初(9月)出现高值;冬季高值的出现主要受外源输入的工业废水中富含15N的无机氮源和有机颗粒的影响。百花湖在冬季(2月)出现最低值,夏末秋初(9月)出现高值;冬季最低值的出现则可能归功于生活污水中富含14N的有机颗粒的贡献。 2. 首次从整体角度得到了δ15NDON值变化区间的信息。红枫湖2006~2007年不同采样月份水体内部的δ15NDON测定结果显示,δ15NDON的变化范围为+1.0~+12.3‰,它与δ15NNO3-的变化范围:5.9~+22‰和δ15NPON变化范围:+2.8~+16.8‰接近。同时,研究还发现在浮游植物生长季节,表层水体不同形态氮的同位素比值普遍存在下述规律:δ15NNO3->δ15NPON>δ15NDON。原因是此时浮游植物是PON的主要组成部分,且吸收利用NO3-的过程是δ15NPON变化的主要控制因素,浮游植物通过分泌细胞外液等方式分解产生了的富含14N的DON,从而使得三种形态的氮同位素具有一定的继承关系。 3. 三种氮形态δ15N值的季节性变化趋势能够反映其来源的差异。纵向剖面水体中,2007年1月的δ15NNO3-最大,湖泊受外源河流携带的高δ15N及高含量NO3-的影响。2006年4月和2007年3月的δ15NNO3-较小,水体内部发生的强烈的硝化作用产生了大量富含14N的NO3-,是湖泊水体NO3-的重要内源。δ15NDON值表现为:除2007年3月表现异常外(出现异常高值),浮游植物生长季节(2006年4月和2006年7月)的 δ15NDON普遍小于其余月份,且纵向水体剖面上变化幅度均不太大,这与浮游植物生长季节DON主要来源于浮游植物分泌等作用产生的富含14N的组分有关。δ15NPON值表现为冬季(2007年1月)具有最高值,受外源输入河流中富含15N的有机颗粒的影响。 4. PON降解方式的不同可能引起生成的δ15NDON存在差异。PON在有氧条件下发生硝化降解时,由于富含14N的组分优先被释放,因此生成的DON组分的δ15N值较小,如2006年4月10m以上水体和2006年7月10m以上水体;而当PON在厌氧条件下发生反硝化降解时,富含15N的组分则优先被释放,从而使得生成的DON其δ15N较大,如2006年4月18m以下水体和2006年7月10m以下水体。 5. 纵向水体剖面上δ15NPON的显著变化来源于其组成的变化,并且不论是硝化细菌还是反硝化细菌,当它们作为PON的主要组分时均会造成δ15NPON的减小,如2006年7月和2007年3月中下部水体。 6. 三种氮形态同位素比值的结合能够更加有效地示踪有机质来源的变化。如2007年1月纵向水体剖面,整个水体剖面氮含量无明显变化,而氮同位素比值则有显著变化。20m处δ15NPON、δ15NNO3-和δ15NDON均在此发生转折,显示20m可能是外源输入与内部水体的分界层。此时,横向水体剖面上,采样点4处NO3-显著增加,而δ15NNO3-保持不变;δ15NDON显著减小。说明采样点4处可能有新的氮源出现。初步估计是由于先前网箱养鱼的积累影响还有高含量的NO3-,低δ15N值的DON输出。 以上的研究结果充分证实了有机质的稳定氮同位素比值的变化能够更加直接地用于追溯有机质的来源以及追踪有机质在湖泊水体中参与的生物地球化学循环作用。
其他摘要Nitrogen cycle is an important nutrient phenomenon in aquatic environment, which can provide a theoretical basis for evaluating natural waters as well as solving the problems related to nitrogen controlling in the restoration of eutrophic lakes. The organic substances in water can be divided into two major parts: particulate organic matter (POM) and dissolved organic matter (DOM). They interact and transform with inorganic nitrogen. These three species together control the nitrogen cycle in aquatic ecosystem. Stable nitrogen isotope measurements of the inorganic or organic materials have been proven to be a powerful tool to assess its sources and identify the biogeochemical process in aquatic ecosystems. Therefore variations in the isotopic composition of organic matter is helpful to understand the role of nitrogen thereby proving the direct proof for the existence of special organic matter-related biogeochemical process in aquatic ecosystems. Such a study may assist to further understanding of the nitrogen cycle in aquatic environments. At first, the present study solved some problems in the measuring technique which restricted the application of the nitrogen isotopic composition of DOM. Secondly, we measured the seasonal and profile variations of nitrogen isotopic ratios of particulate organic nitrogen (δ15NPON) values in surface water of Lake Hongfeng and Lake Baihua in Guizhou province from 2003 to 2004. It is also investigated the causes of the difference in seasonal variations between two lakes and the factors which control the changes of δ15NPON values in vertical profiles. Finally, several typical months were emphasized to represent the different thermal stratified period from 2006 to 2007 based on the former studies about Hongfeng Lake. The content of three nitrogen species in vertical profile waters combined with its δ15N values and other hydrochemistry parameters were used to demonstrate the existence of special biogeochemical processes in nitrogen cycle. There is a great difference on the content and the δ15N values of three nitrogen species between riverine inputs and the inner lake water, which were used to trace the sources as well as to understand the effect of allochthonous river input. The results obtained in this study can be summarized as follows: 1. The seasonal variations of δ15NPON values can be used to act as an indicator of the trophic state, reflecting the effect of allochthonous industrial wastewater and sewage. The δ15N values of surface PON were seasonally varied to a range from +3.7 to +14.9‰ in Lake Hongfeng and +1.3 to +8.7‰ in Lake Baihua during the study period from 2003 to 2004. It indicated that POM is greatly varied in these two lakes during the study period. In Lake Hongfeng, the higher δ15N PON values appeared in winter (February, 2004) and summer (September, 2003). The highest δ15N PON values in winter were attributed to the input of high contents and 15N-enriched inorganic nitrogen or POM released from various industries situated near the lakes. In Lake Baihua, the higher values of δ15NPON were appeared in summer (September, 2003) whilst the values were low during the winter season. These high and low values were possibly aroused by the growth of primary production and large 15N-depleted organic particles input from sewage respectively. 2. We gained the variation ranges of δ15NDON values in lacustrine environments at first time. The δ15N values of DON varied from +1.0 to +12.3‰, which were similar to the variation ranges of δ15NPON values (+2.8 to +16.8‰) and δ15NNO3- values (+5.9 to +22‰). During the growth of primary production, the δ15N values of these three nitrogen species followed the same results, showing the δ15NNO3- values were the maximum and the δ15NDON values were the minimum. Because the phytoplankton is the main component of POM and its δ15NPON values are controlled by the degree of nitrate utilization. Moreover, phytoplankton preferentially release 14N-enriched DON, so these three nitrogen species have the inheritance relationships with each other. 3. The seasonal variations of three nitrogen species will reflect the changes of its sources. In the different vertical profiles, the maximum values emerged in January 2007, which was influenced by the input of high contents and 15N-enriched nitrate. The smaller values appeared in April 2006 and March 2007 attributed to the strong nitrification which generated massive 14N-enriched nitrate at the inner water body. Except that the δ15NDON values were abnormally large in March 2007, the δ15NDON values in growth seasons were generally larger than that of other seasons in common. There were no obvious shifts in waters of the total vertical profile. The maximum δ15NPON values appeared in January 2007 which may affected by the input of 15N-enriched POM. 4. Different degradation pattern may lead to its products with different δ15NDON signals. Under the aerobic conditions, PON preferentially released 14N-enriched DON components during the processes of mineralization and nitrification, for example: the δ15NDON values decreased in the water above 10 m in April and July 2006. On the contrary, PON generated 14N-depleted DON components preferentially at anaerobic conditions, an increasing trend was found in the water below 18 m in April 2006 and the water below 10 m in July 2006. 5. The components of PON showed a markable variations in δ15NPON values. While the bacteria including the nitrobacteria and the denitrifying bacteria became the main component of PON, its δ15N values will decrease dramatically. For example, the δ15NPON values changed abruptly in the middle-bottom water in July 2006 and March 2007. 6. The combination of the δ15N compositions of three nitrogen species will effectively use to trace the sources of organic matter at further step. The nitrogen content vertically only changed a little on January 2007, but the δ15N values showed distinct variations. The δ15N compositions of three nitrogen species varied abruptly at 20 m which was the boundary of allochthonous inputs and inner water body. In the transverse sections, the concentration of nitrate increased unexpectedly but its δ15N values remained constant at one sample (the forth sampling site), meanwhile the δ15N values of DON decreased markedly. All these phenomena showed that there is possibly new sources of nitrogen at this site. It can be speculated that this new high content of nitrate and the low δ15N values of DON originated from the accumulation of fish farming. Therefore all of these results can conclude that the nitrogen isotopic composition of organic matter might be a direct tool for tracing the organic matter sources and identifying the organic matter-related biogeochemical processes in lacustrine environments.
页数116
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3392
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
王静. 湖泊有机质的来源与生物地球化学循环:稳定氮同位素示踪技术[D]. 地球化学研究所. 中国科学院地球化学研究所,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20051800651402(3534KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王静]的文章
百度学术
百度学术中相似的文章
[王静]的文章
必应学术
必应学术中相似的文章
[王静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。