GYIG OpenIR  > 环境地球化学国家重点实验室
Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China
Li Qiuhua;  Shang Lihai;  Gao Tingjing;  Zhang Lei;  Ou Teng;  Huang Guojia;  Chen Chuan;  Li Cunxiong
2014
发表期刊Acta Ecologica Sinica
卷号34期号:1页码:72-78
摘要

The relationships between chlorophyll-a, phytoplankton abundance and 20 chemical, physical and biological water quality variables were studied by using principal component scores (PCs) in stepwise linear regression analysis (SLR) to simulate chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China. Score values obtained by PC scores were used as independent variables in multiple linear regression models. The following models were used to simulate chlorophyll-a and abundance of CyanobacteriaChlorophytaBacillariophyta, and Pyrrophyta respectively: chlorophyll-a1 = 10.501 + 1.390 (score 1) (P < 0.01), chlorophyll-a 2 = 10.501 + 1.102 (score 1)−0.877 (score 2) (< 0.05), log10(Cyanobacteria) = 1.277−0.726 (score 2) (P < 0.05), log10 (Chlorophyta) = 3.927−0.150 (score 2) (P < 0.01), log10 (Bacillariophyta) = 4.872−0.131 (score 4) (P < 0.01) and log10(Pyrrophyta) = 2.463 + 0.578 (score 1) (P < 0.05). The models could be used to simulate chlorophyll-a and phytoplankton abundance levels successfully, and revealed that DO, WD, Tem, TD, pH, NH4–N and TSS were the most important factors regulating the composition of chlorophyll-a and Pyrrophyta abundance. ORP, Cl, SO42-, TN were the main factors affecting Chlorophyta and Cyanobacteria abundance. F and Ca2+ were the main factors influencing the Bacillariophyta abundance.

关键词Chlorophyll-a Phytoplankton Principal Component Scores Stepwise Linear Regression Analysis Reservoir
收录类别SCI
语种英语
文献类型期刊论文
条目标识符http://ir.gyig.ac.cn/handle/42920512-1/9378
专题环境地球化学国家重点实验室
作者单位1.Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, PR China
2.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
推荐引用方式
GB/T 7714
Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong. Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China[J]. Acta Ecologica Sinica,2014,34(1):72-78.
APA Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong.(2014).Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China.Acta Ecologica Sinica,34(1),72-78.
MLA Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong."Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China".Acta Ecologica Sinica 34.1(2014):72-78.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Use of principal com(1002KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong]的文章
百度学术
百度学术中相似的文章
[Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong]的文章
必应学术
必应学术中相似的文章
[Li Qiuhua;Shang Lihai;Gao Tingjing;Zhang Lei;Ou Teng;Huang Guojia;Chen Chuan;Li Cunxiong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。