Warming inhibits HgII methylation but stimulates methylmercury demethylation in paddy soils | |
Qianshuo Zhang; Qiang Pu; Zhengdong Hao; Jiang Liu; Kun Zhang; Bo Meng; Xinbin Feng | |
2024 | |
Source Publication | Science of The Total Environment
![]() |
Volume | 930Pages:172832 |
Abstract | Inorganic mercury (HgII) can be transformed into neurotoxic methylmercury (MeHg) by microorganisms in paddy soils, and the subsequent accumulation in rice grains poses an exposure risk for human health. Warming as an important manifestation of climate change, changes the composition and structure of microbial communities, and regulates the biogeochemical cycles of Hg in natural environments. However, the response of specific HgII methylation/demethylation to the changes in microbial communities caused by warming remain unclear. Here, nationwide sampling of rice paddy soils and a temperature-adjusted incubation experiment coupled with isotope labeling technique (202HgII and Me198Hg) were conducted to investigate the effects of temperature on HgII methylation, MeHg demethylation, and microbial mechanisms in paddy soils along Hg gradients. We showed that increasing temperature significantly inhibited HgII methylation but promoted MeHg demethylation. The reduction in the relative abundance of Hg-methylating microorganisms and increase in the relative abundance of MeHg-demethylating microorganisms are the likely reasons. Consequently, the net Hg methylation production potential in rice paddy soils was largely inhibited under the increasing temperature. Collectively, our findings offer insights into the decrease in net MeHg production potential associated with increasing temperature and highlight the need for further evaluation of climate change for its potential effect on Hg transformation in Hg-sensitive ecosystems.
|
DOI | 10.1016/j.scitotenv.2024.172832 |
URL | 查看原文 |
Indexed By | SCI |
Language | 英语 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.gyig.ac.cn/handle/42920512-1/15588 |
Collection | 环境地球化学国家重点实验室 |
Affiliation | 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.College of Resources, Sichuan Agricultural University, Chengdu 611130, China |
Recommended Citation GB/T 7714 | Qianshuo Zhang,Qiang Pu,Zhengdong Hao,et al. Warming inhibits HgII methylation but stimulates methylmercury demethylation in paddy soils[J]. Science of The Total Environment,2024,930:172832. |
APA | Qianshuo Zhang.,Qiang Pu.,Zhengdong Hao.,Jiang Liu.,Kun Zhang.,...&Xinbin Feng.(2024).Warming inhibits HgII methylation but stimulates methylmercury demethylation in paddy soils.Science of The Total Environment,930,172832. |
MLA | Qianshuo Zhang,et al."Warming inhibits HgII methylation but stimulates methylmercury demethylation in paddy soils".Science of The Total Environment 930(2024):172832. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Warming inhibits HgI(5000KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment