Knowledge Management System Of Institute of Geochemistry,CAS
Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity | |
Meiling Hong; Lidong Dai![]() ![]() | |
2022 | |
Source Publication | American Mineralogist (IF:2.021[JCR-2016],2.004[5-Year]) |
Volume | 107Issue:3Pages:385–394 |
Abstract | We investigated the structural, vibrational, and electrical transport properties of natural kaolinite and its high-pressure polymorphs by Raman scattering and electrical conductivity measurements at 293–673 K and up to 10.0 GPa using diamond-anvil cell. Upon compression, kaolinite underwent two structural transitions from kaolinite I to kaolinite II to kaolinite III phases at pressures of 2.9 and 6.5 GPa, respectively, which was disclosed by the inflection point in the pressure-dependent Raman shifts and electrical conductivity. Upon decompression, kaolinite III directly transformed to kaolinite I at 0.8 GPa without the appearance of kaolinite II. Additionally, the influence of temperature on the structural transformation of natural kaolinite was explored by high-temperature and high-pressure electrical conductivity measurements and negative temperature-dependent transition pressure correlations were obtained. A phase diagram of natural kaolinite was established for the first time and the kaolinite I-kaolinite II and kaolinite II-kaolinite III phase transition boundaries were determined: P (GPa) = 4.298–0.00462 T (K) and P (GPa) = 8.895–0.00799 T (K), respectively. Furthermore, our acquired phase diagram can be applied to understand the stability field of high-pressure polymorphs of kaolinite in the Earth’s interior and may provide a phase transition model for other kaolin-group minerals. |
Keyword | Natural Kaolinite Raman Spectroscopy Electrical Conductivity Phase Diagram High Temperature High Pressure |
DOI | 10.2138/am-2021-7863 |
URL | 查看原文 |
Indexed By | SCI |
Language | 英语 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.gyig.ac.cn/handle/42920512-1/13672 |
Collection | 地球内部物质高温高压实验室 地球深部物质与流体作用地球化学研究室 |
Affiliation | 1.Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong 276000, China |
Recommended Citation GB/T 7714 | Meiling Hong,Lidong Dai,Haiying Hu,et al. Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity[J]. American Mineralogist,2022,107(3):385–394. |
APA | Meiling Hong,Lidong Dai,Haiying Hu,&Xinyu Zhang.(2022).Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity.American Mineralogist,107(3),385–394. |
MLA | Meiling Hong,et al."Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity".American Mineralogist 107.3(2022):385–394. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Pressure-induced str(3116KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment