GYIG OpenIR  > 月球与行星科学研究中心
A machine learning approach to crater classification from topographic data
Qiangyi Liu;  Weiming Cheng;  Guangjian Yan;  Yunliang Zhao;  Jianzhong Liu
2019
发表期刊Remote Sensing
卷号11期号:21页码:1-30
摘要

Craters contain important information on geological history and have been widely used for dating absolute age and reconstructing impact history. The impact process results in a lot of ejected fragments and these fragments may form secondary craters. Studies on distinguishing primary craters from secondary craters are helpful in improving the accuracy of crater dating. However, previous studies about distinguishing primary craters from secondary craters were either conducted by manual identification or used approaches mainly concerning crater spatial distribution, which are time-consuming or have low accuracy. This paper presents a machine learning approach to distinguish primary craters from secondary craters. First, samples used for training and testing were identified and unified. The whole dataset contained 1032 primary craters and 4041 secondary craters. Then, considering the differences between primary and secondary craters, features mainly related to crater shape, depth, and density were calculated. Finally, a random forest classifier was trained and tested. This approach showed a favorable performance. The accuracy and F1-score for fivefold cross-validation were 0.939 and 0.839, respectively. The proposed machine learning approach enables an automated method of distinguishing primary craters from secondary craters, which results in better performance. 

关键词Moon Distinguish Primary Craters From Secondary Craters Machine Learning Crater Characteristics
收录类别SCI
语种英语
文献类型期刊论文
条目标识符http://ir.gyig.ac.cn/handle/42920512-1/10826
专题月球与行星科学研究中心
作者单位1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
4.CAS Center for Excellence in Comparative Planetology, Hefei 230052, China
5.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100088, China
6.Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
7.School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China
8.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
推荐引用方式
GB/T 7714
Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu. A machine learning approach to crater classification from topographic data[J]. Remote Sensing,2019,11(21):1-30.
APA Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu.(2019).A machine learning approach to crater classification from topographic data.Remote Sensing,11(21),1-30.
MLA Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu."A machine learning approach to crater classification from topographic data".Remote Sensing 11.21(2019):1-30.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Machine Learning A(13418KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu]的文章
百度学术
百度学术中相似的文章
[Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu]的文章
必应学术
必应学术中相似的文章
[Qiangyi Liu;Weiming Cheng;Guangjian Yan;Yunliang Zhao;Jianzhong Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Machine Learning Approach to Crater Classification from Topographic Data.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。