Knowledge Management System Of Institute of Geochemistry,CAS
Pressure-temperature phase diagram and thermoelastic behavior of manganese fluoride up to 13.1 GPa and 700 K | |
Zhilin Ye; Bo Li; Wei Chen; Shijie Huang; Jingui Xu; Dawei Fan | |
2019 | |
发表期刊 | Materials Research Express |
页码 | 1-15 |
摘要 | Studying manganese fluoride (MnF2) under high-pressure and high-temperature (HP-HT) conditions is of great significance for understanding its important magnetic and piezomagnetic properties. The structural evolution and thermoelastic behavior of MnF2were studied at HP-HT conditions up to ∼13.1 GPa and∼700 K based on in situ synchrotron angle dispersive powder x-ray diffraction (XRD) combined with diamond anvil cell (DAC). Four phases of MnF2 are successfully observed through the pressure-temperature (P-T)range of the experiment. The structural phase transitions are with the following sequence: rutile-type (P42/mnm) → α-PbO2-type (Pbcn) → P42m → ZrO2-type (Pbcm) → SrI2-type (Pbca) at HP-HT conditions, where theα-PbO2-type (Pbcn) and the P42m structures are observed upon decompression. A phase diagram of MnF2 is presented in this study. In addition, the bulk modulus for the SrI2-type structure (Pbca) of MnF2 is 84 (3)GPa when fixed K0′ = 4. Moreover, we also obtain (∂K/∂T)P = −0.012 (7)GPaK−1 , and the volumetric thermal expansion coefficient α0 = 3.8 (7) × 10−5 K−1 at 300 K. Furthermore, the thermal expansion coefficients for the rutile-type structure (P42/mnm) of MnF2 by fitting the temperature-volume data to the Fei-type thermal equation of state (EoS) are also obtained. The volumetric thermal expansion coefficient of MnF2 is 0.87 × 10−5 K−1 , and its axial thermal expansivities are αa0 = 0.13 × 10−5 K−1 and αc0 = 0.64 × 10−5 K−1 along the a-axis and c-axis, respectively. |
关键词 | Manganese Fluoride (Mnf2) structural Phase Transition High Temperature And High Pressure synchrotron-based X-ray Diffraction equation Of State diamond Anvil Cell |
收录类别 | SCI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | http://ir.gyig.ac.cn/handle/42920512-1/10557 |
专题 | 地球内部物质高温高压实验室 |
作者单位 | 1.Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People’s Republic of China 2.University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 3.Guizhou Polytechnic of Construction, Guiyang 551400, People’s Republic of China |
推荐引用方式 GB/T 7714 | Zhilin Ye;Bo Li;Wei Chen;Shijie Huang;Jingui Xu;Dawei Fan. Pressure-temperature phase diagram and thermoelastic behavior of manganese fluoride up to 13.1 GPa and 700 K[J]. Materials Research Express,2019:1-15. |
APA | Zhilin Ye;Bo Li;Wei Chen;Shijie Huang;Jingui Xu;Dawei Fan.(2019).Pressure-temperature phase diagram and thermoelastic behavior of manganese fluoride up to 13.1 GPa and 700 K.Materials Research Express,1-15. |
MLA | Zhilin Ye;Bo Li;Wei Chen;Shijie Huang;Jingui Xu;Dawei Fan."Pressure-temperature phase diagram and thermoelastic behavior of manganese fluoride up to 13.1 GPa and 700 K".Materials Research Express (2019):1-15. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Pressure-temperature(1727KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论