| |||||||
Knowledge Management System Of Institute of Geochemistry,CAS
Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications | |
Wenqing SUN; Lidong DAI; Heping LI; Haiying HU; Changcai LIU | |
2019 | |
Source Publication | Journal of Mineralogical and Petrological Sciences (IF:0.409[JCR-2016],0.673[5-Year]) |
Volume | 114Issue:6Pages:87–98 |
Abstract | Electrical conductivities of three granulite samples (main minerals: plagioclase, quartz, and biotite) with different chemical compositions (WB, the weight percent of Fe2O3 = 5.49, 8.75, and 14.79 wt%) were researched using a complex impedance spectroscopic technique at 1.0–3.0 GPa and 623–1073 K from 10−1 to 106 Hz. The experimental results indicated that the granulite conductivities markedly increased with temperature and slightly decreased with increasing pressure. Under the experimental conditions, the temperature dependence of the conductivities of granulite followed an Arrhenius relationship at certain temperatures. The electrical conductivities of granulite significantly increased with increasing biotite content and WB. According to the activation enthalpies and previous studies, the conduction mechanism of the granulite samples with WB = 8.75 and 14.79 wt% was small polaron conduction under the experimental conditions, and the conduction mechanisms of the granulite sample with WB = 5.49 wt% were small polaron conduction at high temperatures and impurity conduction at low temperatures. The high conductivity anomalies under the ductile shear zones in southern India can be interpreted by the conductivities of granulite with interconnected biotite and a high iron content (>14.79 wt%). |
Keyword | Electrical Conductivity granulite high Pressure conduction Mechanism high Conductivity Anomaly |
Indexed By | SCI |
Language | 英语 |
Document Type | 期刊论文 |
Identifier | http://ir.gyig.ac.cn/handle/42920512-1/10450 |
Collection | 地球内部物质高温高压实验室 |
Affiliation | 1.Key Laboratory of High–Temperature and High–Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2.University of Chinese Academy of Sciences, Beijing 100049, China |
Recommended Citation GB/T 7714 | Wenqing SUN; Lidong DAI;Heping LI;Haiying HU;Changcai LIU. Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications[J]. Journal of Mineralogical and Petrological Sciences,2019,114(6):87–98. |
APA | Wenqing SUN; Lidong DAI;Heping LI;Haiying HU;Changcai LIU.(2019).Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications.Journal of Mineralogical and Petrological Sciences,114(6),87–98. |
MLA | Wenqing SUN; Lidong DAI;Heping LI;Haiying HU;Changcai LIU."Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications".Journal of Mineralogical and Petrological Sciences 114.6(2019):87–98. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Effect of temperatur(2960KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment