Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability | |
Changzhong Liao; Yuanyuan Tang; Chengshuai Liu; Kaimin Shih; Fangbai Li | |
2016 | |
Source Publication | Journal of Hazardous Materials
![]() |
Volume | 311Issue:2Pages:246-253 |
Abstract | Glass-ceramics are well known for the excellent combination properties provided by their components, a glassy matrix and crystalline phases, and have promising applications in the immobilization and detoxification of solid waste containing toxic metals. Glass-ceramic products were successfully synthesized in CaO-MgO-SiO2-Al2O3 -Cr2O3 system. Two key measures - partitioning ratio of Cr in the spinel and Cr leaching ratio - were used to investigate the mechanism of Cr immobilization in the glass-ceramic products. The results of powder X-ray diffraction revealed that both spinel and diopside were major crystalline phases in the products. The value of x in the MgCrxAl2-xO4 spinel was highly related to the amount of Cr2O3 added to the glass-ceramic system. As Cr2O3 content increased, the proportion of spinel phase increased, while that of glass phase decreased. The partitioning ratio of Cr in spinel phase was about 70% for 2 wt.% Cr2O3, and increased to 90% when loaded with 10 wt.% of Cr2O3. According to the results of the prolonged toxicity characteristic leaching procedure, the Cr leaching ratio decreased with the increase of Cr partitioning ratio into the spinel phase. The findings of this study clearly indicate that glass-ceramic formed by spinel structure and residual glass successfully immobilized Cr. |
Keyword | Glass-ceramic Spinel Chromium Immobilization Rietveld Quantitative Xrd Leaching Performance |
Subject Area | 环境地球化学 |
Indexed By | SCI |
Language | 英语 |
Document Type | 期刊论文 |
Identifier | http://ir.gyig.ac.cn/handle/352002/6491 |
Collection | 环境地球化学国家重点实验室_环境地球化学国家重点实验室_期刊论文 |
Recommended Citation GB/T 7714 | Changzhong Liao,Yuanyuan Tang,Chengshuai Liu,et al. Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability[J]. Journal of Hazardous Materials,2016,311(2):246-253. |
APA | Changzhong Liao,Yuanyuan Tang,Chengshuai Liu,Kaimin Shih,&Fangbai Li.(2016).Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability.Journal of Hazardous Materials,311(2),246-253. |
MLA | Changzhong Liao,et al."Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability".Journal of Hazardous Materials 311.2(2016):246-253. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Double-Barrier mecha(1911KB) | 开放获取 | License | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment