GYIG OpenIR  > 研究生  > 学位论文
塔里木西南缘塔木铅锌矿矿床特征与成因
其他题名Characteristics and Genesis of Tamu Zinc-Lead Ore Deposit, Southwest Margin of Tarim, China
杨向荣
2009-05-25
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词赋存于碳酸盐岩的后生铅锌矿床 同生断裂 热化学硫酸盐还原 塔木铅锌矿 塔里木西南缘 中国
摘要作为铅锌金属的主要来源,赋存于沉积岩中的铅锌矿床吸引了全球范围的地质学家和矿床学家。在过去的50年内塔里木西南缘陆续发现了一批赋存于沉积岩中的铅锌矿,并开展相应的研究。但还是存在一些关键问题值得探讨,例如成矿时代、金属及硫的来源,以及成矿机制。 塔木铅锌矿床是塔里木西南缘最为重要的赋存于沉积岩中的铅锌矿床之一,其位于西昆仑和塔里木地块接触带北侧塔里木边缘,区域地层均变形或被错断。矿床赋存于下石炭统碳酸盐岩角砾岩带中,具有经济价值的矿体五个,铅锌资源量约0.2Mt。 自20世纪40年代塔木铅锌矿被发现以来,已陆续开展的研究工作有流体包裹体、铅同位素、硫同位素、碳同位素、氧同位素以及稀土元素等,但矿床成因依然困惑着众多的矿床学家。其中一部分认为矿床属密西西比河谷型,另一部分则认为应属沉积喷流型。但从前人发表的文献看,矿石结构构造、角砾和填隙物等基础研究被普遍忽视了。 在中国科学院知识创新项目(KZCX2-YW-107-6)和科技部国家科技支撑计划(2006BAB07B04-04)的资助下,本次研究以塔木铅锌矿为突破口,运用矿物学、岩石学、矿床学、地球化学方法和手段对其加以研究,以揭示成矿机制及矿床成因。以下就获得的一些新的数据、调查结论、观点作一概述: (1). 在分析矿体形态和与围岩接触关系基础上,提出塔木铅锌矿床为同生断层控制,角砾岩带为断层的组成部分;通过细致的镜下观察,深入探讨了角砾、填隙物及其结构构造,提出填隙物中沥青在成矿中的具有重要作用,并首次发现赋存于填隙物中的钡-钾长石。角砾可根据几何形态特征和角砾间接触关系分为五类:内碎屑角砾(IB)、成岩期角砾(DB)、后生角砾(EB)、崩塌角砾(FB)、断层角砾(DB),其中断层角砾可以分为矿化断层角砾(MFB)和无矿化断层角砾(WFB)。填隙物可以根据结构划分为三种类型:同沉积-成岩作用填隙物(纹层构造),溶蚀-交代填隙物(细粒,颗粒边缘具有溶蚀港湾结构),以及空洞充填填隙物(粗晶结构)。塔木铅锌矿演化具有三个清晰的期次:沉积期、成岩期和后生期。矿化是成岩期和后生期的产物,主要为后生期。矿化可分为两个主要阶段:溶蚀-交代阶段和空洞充填阶段,其中溶蚀-交代阶段是矿化的主要阶段。管/脉状构造是溶蚀-交代阶段最重要的特征,其多见于后生角砾的填隙物中。 (2). 在对角砾(白云石)和填隙物(白云石)的微量元素、稀土元素、C、O同位素以及填隙物白云石流体包裹体研究基础上提出水/岩作用和TSR过程控制着流体的演化。充填阶段流体为低温(119~191°C),盐度介于10.9~11.4wt% NaCl eq.,压强介于2~39MPa,含有少量H2S,缺乏SO42-的流体。Ca2+和HCO3-为流体主要的阳离子和阴离子。填隙物与角砾具有相似的稀土元素配分模式—海相碳酸盐岩。如果填隙物中混入钡-钾长石,其稀土元素配分模式则发生显著改变。氧同位素和碳同位素显示填隙物较角砾富集轻同位素。由于闪锌矿流体包裹体氧同位素值显著低于角砾,暗示存在大气降水的参与。根据氧同位素质量平衡方程可估计水/岩比值,封闭体系水/岩比值在0.16~0.67(119°C)或0.12~0.43(191°C),开放体系水/岩比值在0.13~0.37(119°C)或0.10~0.28(191°C)。热化学硫酸盐还原过程(TSR)可能对沥青和H2S的形成起了重要的作用,并影响碳同位素值变化。 (3). 塔木铅锌矿硫可能来自海水或蒸发盐,存在有机物硫的加入,并受TSR过程和硫储库效应的控制,铅可能为来自淋滤结晶基底的产物。 (4). 讨论了闪锌矿流体包裹体Rb-Sr法的理论基础和应用前提,指出对定年闪锌矿必须开展细致的矿物学研究,并进行了该矿床的定年尝试。 (5). 最终得出塔木铅锌矿为赋存于碳酸盐岩受同生断层和热化学硫酸盐还原过程控制的后生铅锌矿床。
其他摘要The sediment-hosted lead and zinc ore deposits attract worldwide earth scientists and economic geologists because they are the important metal sources of lead and zinc. In the last fifty years, lots of sediment-hosted lead and zinc ore deposits have been discovered in southwest margin of Tarim, and lots of research works have been carried on. But some key questions are still worthy of consideration, such as the time of mineralization, the source of the metal and sulfur, and mechanism of mineralization. Tamu lead and zinc ore deposit is one of the most important sediment-hosted lead and zinc ore deposits in the southwest margin of Tarim, the side of Tarim, north of the joint of West Kunlun and Tarim Block, where the regional strata are all deformed and thrusted. The ore deposit locates in the breccias belt of Lower Carboniferous carbonate, has five economic ore bodies, and keeps zinc and lead reserves of ca. 0.2Mt. Since Tamu lead and zinc ore deposit discovered in 1940s’, many research works have been done, such as fluid inclusions, isotope of lead, sulfur, carbon and oxygen, and rare earth elements (REEs), but the genesis of the ore deposit still confuses economic geologists. Some of them support the ore deposit belong to Mississippi Valley type, but the others think it is one of the sedimentary-exhalative lead and zinc deposits. But in their literatures, it can be pointed that little attention is paid on some basic matters - the types, structures and textures of the breccia and matrixe. Hence, some new data, investigation results, and views about Tamu lead and zinc ore deposit are listed here, which are distinguished by the principles and methods of mineralogy, petrology, economic geology and geochemistry, aimed at illustrating the genesis and mechanism of ore deposit, supported by the Knowledge Innovation Project, Chinese Academy of Sciences (KZCX2-YW-107-6) and Key Projects in the National Science & Technology Pillar Program, Ministry of Science and Technology of People’s Republic of China (2006BAB07B04-04). (1). In light of the ore deposits geometric characteristics and contact relationships with wall rock, Tamu lead and zinc ore deposit is controlled by syn-sedimentary growth fault, and the belt of breccias is a part of the fault belt. Furthermore, based on the observation on microscope, breccias, matrixes and ore structures and textures are discussed correctly, the important role of bitumen to the mineralization is pointed out and Ba-K feldspar is distinguished from matrix for the first time. The breccia can be classified under five groups by geometry characteristics and relationships of breccias contact - Intraclast Breccia (IB), Diagenetic Breccia (DB), Epigenetic Breccia (EB), Fall Breccia (FB), and Dislocation Breccia /Fault Breccia (DB), and Dislocation Breccia can be divided into Mineralized Fault Breccia (MFB) and Without Mineralization Fault Breccia (WFB). The matrixe can be classified under three groups by textures, syngenesis-diagenesis matrix (layer texture), dissolving – metasomatic matrix (fine grain with embayed margin), and cavity filling matrix (coarse grain). The three periods of evolution of Tamu lead and zinc ore deposit can be distinguished clearly, they are period of sediment, diagenesis and epigenesis. The mineralization is the results of diagenesis and epigenesis, especially of epigenesis. Two main stages of mineralization are easily distinguished – dissolving–metasomatic stage and cavity filling stage. The dissolving-metasomatic stage is the main stage of mineralization. The pipeline/vein structure is the typical characteristic to dissolving-metasomatic stage, and it always can be seen in matrix of epigenetic breccias. (2). It can be pointed that the evolution of fluid is controlled by water-rock interaction and TSR, illustrated by carbon and oxygen isotopes, fluid inclusions, trace elements and REEs coming from breccias (dolomite) and matrixes (dolomite). The fluid of cavity filling stage is a low temperature (119~191°C), salinity between 10.9 and 14.4wt% NaCl eq., pressure between 2 and 39 MPa, with small quantity of H2S and absents SO42- fluid. Ca2+ and HCO3- are the major cation and anion in the fluid. The matrix and breccia have a similar REEs distribution model – marine carbonate. If matrix is stained by Ba-K feldspar, the REEs distribution model changes wildly. The isotope characteristics of oxygen and carbon show the matrix is rich of lighter isotopes than the breccia. In light of value of oxygen isotope coming from sphalerites fluid inclusions and breccia, the ore fluid has been stained by meteoric water. Based on oxygen isotope mass balance formula it can be pointed that the ratio of water and rock is 0.16~0.67 (119°C) or 0.12~0.43 (191°C) in closing system or 0.13~0.37 (119°C) or 0.10~0.28 (191°C) in opening system. Thermo-chemical sulfate reduction (TSR) maybe does an important role to induce the bitumen and H2S, and rules the change of carbon isotope values. (3). It can be pointed the sulfur of Tamu lead and zinc ore deposit should come from seawater or evaporate, stained by bearing sulfur organic compounds and is controlled by TSR and reservoir effect, but for the source of Pb, the partial melting of crystallized basement plays an important role. (4). By the discussion of the rule and premises of sphalerite Rb-Sr isochron, it can be pointed out that sphalerites must be tested by the methods of mineralogy in detail before to date, and a dating of the Tamu lead and zinc ore deposit is tried. (5). It can be concluded that the Tamu lead and zinc ore deposit is an epigenetic carbonate-hosted lead and zinc ore deposit controlled by syn-sedimentary growth fault and TSR.
页数109
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3454
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
杨向荣. 塔里木西南缘塔木铅锌矿矿床特征与成因[D]. 地球化学研究所. 中国科学院地球化学研究所,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20061800651400(4745KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杨向荣]的文章
百度学术
百度学术中相似的文章
[杨向荣]的文章
必应学术
必应学术中相似的文章
[杨向荣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。