GYIG OpenIR  > 研究生  > 学位论文
太阳活动驱动气候变化SGC机制的数理研究
其他题名Initial Numerical Study on SGC Models for Effect of Solar Acitivity on Climate Change
周立旻
2006-11-29
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词太阳活动 气候变化 空间天气 全球电路 补偿电流 静电微物理过程
摘要十年至百年时间尺度的气候变化与人类社会关系密切。来自现代气候学和古气候学大量统计分析表明,太阳活动和这一时间尺度的气候变化有很好的相关性。据此,不少学者指出太阳活动强度周期性的变化驱动了这一时间尺度的气候变化。然而对这一观点一直存在众多反对意见。一部分认为,来自于统计研究的结果还不足以证明太阳活动是十年~百年时间尺度气候变化的动力源,因为地球气候系统内部海-气交换的周期性变化也能产生类似周期的气候变化。另一部分认为,由于至今没有较为令人信服的机制能够解释太阳活动对气候变化的影响,因此不能断定就是太阳活动驱动了气候变化。研究太阳活动驱动气候变化的机制已成为目前太阳活动与气候变化间关系研究领域最为迫切有待解决的问题。 目前,在太阳活动和气候变化联系机制研究领域主要存在着三类理论:1)太阳总辐射影响机制:该机制认为,太阳活动强度的变化引起了太阳总辐射量的周期性变化,从而导致了地球气候变化;2)太阳紫外辐射变化影响机制:该机制认为,太阳活动周期中占太阳总辐射9%的太阳短波辐射的变化量占太阳总辐射变化量的32%,短波辐射变化将直接影响地球中层大气热平衡和动力状态,中层大气的变化以行星波的形式传递到低层大气,从而影响地球气候;3)空间天气影响机制:该机制认为太阳活动造成空间环境中的各种高能粒子通量发生相应的变化(如银河宇宙射线、太阳宇宙射线、相对论电子等),高能粒子通量影响低空大气中的云量,云量变化改变了气候系统能量平衡,从而驱动气候变化。70年代以来,欧美利用卫星平台对太阳总辐射进行了观测。目前的结果表明,在一个太阳活动周期内太阳总辐射的变化仅有0.1%。根据目前的气候理论如此小的辐射能量变化还不足以引起显著的气候变化。对于紫外辐射变化影响机制,虽然观测到的短波辐射变化足以引起中层大气的热状态和动力状态的变化,但目前对中低层大气的联系机制还缺乏长时间的观测数据支持。20世纪60年代以来,在空间物理学家的努力下,发展了空间天气影响机制(这里简称空间天气机制)。空间天气机制目前主要形成两大次级理论,1)离子诱导成核机制(IMN机制);2)空间天气-全球电路-静电云微物理机制(SGC机制)。离子诱导成核机制认为银河宇宙射线通量的变化能够通过离子诱导成核过程影响云层中云滴的粒子谱,导致全球的云量变化。然而随着对银河宇宙射线通量变化和全球云量间关系研究的深入人们发现,银河宇宙射线通量的变化不但仅与低层云云量有较好的相关性,而且呈现较强的纬度分异。这些都无法运用离子诱导成核理论来进行解释。空间天气-全球电路-静电云微物理机制(SGC机制),是通过对天际尺度空间天气变化与气象要素间的统计研究而建立起来。在这一时间尺度上,海气作用等因素被排除,太阳活动成为引起天气要素变化唯一的影响因子。该机制不但能有效地解释银河宇宙射线、太阳宇宙射线和相对论电子等引起的低空大气变化,而且更能解释低层大气响应的纬度分异性。同时该机制还有机地将离子诱导成核理论融入。因此,该机制可能是当前最接近太阳活动与气候变化间联系真是面目的理论。然而,该理论目前仅仅完成了理论框架体系,对静电云微物理过程进行了初步探讨,还需进行大量的定量研究。本文主要在该机制的理论框架体系下,初步尝试了定量化研究,主要建立与该机制有关的三个物理模型:1)全球电路模型;2)准静止状态下层云中电荷分布模型;3)较为完善的静电云微物理模型。 1. 全球电路模型 本文的全球电路模型,运用更为精确的银河宇宙射线成因电荷分布模型和放射性成因电荷分布模型模拟全球低空大气电荷分布,并引入了太阳活动对电荷产率的影响,同时采用了更为准确的全球地面高程数据和地表气溶胶数据,并首次引入平流层火山成因的超细气溶胶层,探讨它对全球电路的影响。通过模拟结果表明: 1) 本全球电路模型输出结果与实测数据有较好的对应,能够反映全球电路的基本特征,以及太阳活动对全球电路的影响。 2) 受太阳活动的影响,大气电阻发生明显的变化,各地大气电阻值的变化与当地的地磁纬度密切相关,即太阳活动对全球电路的影响具有很强的纬度效应,在火山活动平静期高低纬度全球电路对太阳活动的响应存在着10%~25%的差异。 3) 火山活动高峰期,高纬度中高平流层中的硫酸在离子诱导成核机制的作用下形成超细气溶胶层,由于该超细气溶胶层的存在造成全球电路对太阳活动响应的纬度效应进一步增大。在火山活动高峰期高低纬度大气柱电阻对太阳活动响应的差异可达45~85%。这造成在太阳活动强度变化过程中高纬度和低纬度地区大气补偿电流出现相反的变化。 2. 准静止状态下层云中电荷分布模型 目前通过飞机平台对非对流云系中电荷分布的观测还刚刚起步(以往的观测均来自对通过山顶观测站云层的观测,观测误差较大;以飞机为平台,穿越云层进行观测,精度较高),而对层云中电荷分布的定量模拟更是鲜见。本文尝试建立了这一模型,结果表明: 1) 本模型的计算结果得到在标准状态下云层上下边界层中云滴带电量为50~100e(e为基本带电单位),这与Beard(2004)进行的野外观测结果对应良好。云层电荷主要集中在云边界层中,在云顶层富集正气溶胶、带正电云滴,在云滴富集负气溶胶与带负电云滴。云滴和气溶胶上吸附的电荷量受大气补偿电流、云滴和气溶胶粒度、云滴和气溶胶浓度、云层高度影响显著。 2) 太阳活动引起的大气补偿电流的变化能造成低层云边界层中云滴带电量发生显著的变化,而对高层云的影响较小。结合静电云微物理过程低层云中得电荷分布将对低层云的理化特性产生较大影响,从而引起天气、气候变化。 3. 静电云微物理模型 Tinsley(2000,2001)的静电云微物理过程模型计算结果表明,带电云滴和气溶胶(包括成冰核、云凝结核),在长程斥力和短程吸引力(无论云滴带电状态如何)的作用下,碰撞过程均会发生相应变化。本文在Tinsley(2000,2001)静电微物理模型的基础上,在模型中引入小颗粒的惯性参量和云滴的重位移参量,采用新的流态模型,将参与碰撞的小颗粒的粒径范围拓展到0.1~10μm。在此基础上,运用导电面方法讨论静电云微物理过程,和原有映射电荷方法结果进行了对比。结果表明: 1) 在考虑了云滴或粒子上所带电荷在另一方上产生的映射电荷的情况下,在低层云中带电云滴与0.1~3.0μm粒径的带电粒子间的碰撞效率与不带电条件下所得的碰撞效率差异明显,随粒子所带电量的增长,碰撞效率逐步增加。而在高层大气中由于梯度力的作用控制了碰撞过程,因此静电力对碰撞过程的影响较小。粒径大于3.0μm的粒子,随着粒子质量的增加碰撞过程将受粒子自身惯性主导,静电力对这一范围内云滴-粒子的碰撞没有影响。 2) 在受静电力主导的粒子粒径范围内,随粒子密度的增大,粒子质量增加,粒子的碰撞效率随粒子的密度增大而减小。 3) 映射电荷方法和导电面方法的差异仅在“Greenfield Gap”区域表现的较为显著。在“Greenfield Gap”区域导电面方法获得的粒子碰撞效率显著高于映射电荷方法所得值。随云滴与小颗粒粒径比增大两种方法所得结果的差异逐步减小。 通过以上三个模型的模拟得到以下推论:1)与高层云相比较低层云更易受到太阳活动引起的空间环境变化的影响。而且低空大气对太阳活动的响应具有纬度效应。这与Svensmark等(2000),Kniveton等(2004)统计研究结果吻合。2)火山活动增强了全球电路对太阳活动响应的纬度差异。3)太阳活动-空间环境变化-全球电路-云静电物理过程能使太阳活动成为“小冰期”主要驱动力,太阳活动的强弱变化控制了小冰期的起止。随着太阳活动减弱,极地降雪、云量和赤道雷暴系统产生的总上升电流构成的正反馈系统加速了“小冰期”的变冷过程。对于更长时间尺度的“Milankovich”周期,受太阳常数和太阳辐射全球分布的变化,总上升电流发生相应的调制,通过SGC机制对气候产生一定影响。
其他摘要Is the sun driving the sub-orbital time-scale, decadal to centennial, climate change? Although there are thousands of observations from current climatology, and the historical climate record, and the paleoclimate proxies from the geology record such as the ice core, tree rings, which suggest the relationship between the solar activity and the climate change, the critics argue that the statistic analysis is not significant enough to support the opinion because the internal driver of the climate such as ocean-atmosphere system oscillation can produce the same time-scale climate change according to the statistic work. The key point to making break through is to set up the mechanism of the relation between solar activity and lower atmosphere. Three theories have been established:1) the total solar energy variation theory (herein TSI theory) , the solar energy varying with the solar activity and causing the climate change; 2) the ultra-violet variation theory (herein UV theory), the ultra-violet energy varying due to the solar activity taking 32% of the total solar energy change which can significantly affect the middle atmosphere and change the planet wave to transport the energy to lower atmosphere and to change the climate; 3) spaceweather theory (herein SW theory), the particle flux in the upper atmosphere changing due to the solar activity, which can affect the global cloud coverage and then influence the climate. Satellite observations prove that the variation of the total solar energy output between solar maximum and solar minimum reaches only 0.1% ( about 1W/s at the top of the atmosphere), which is too small to drive the climate according current climatology theory. The lack of long term observation for the UV theory reduced its progress. SW theory is made up of two sub-theories: 1) the ion mediate nuclei theory (IMN); 2) the spaceweather-global circuit-cloud microphysics theory (herein SGC). IMN theory was used to explain the relationship between variation of galactic cosmic ray (GCR) flux and global cloud coverage. However, with progress of the research on the variation of global cloud coverage during the solar cycle, the latitudinal difference for change of the cloud coverage was found. Then it is hard to explain the cloud coverage variation by the IMN theory. The SGC theory then seems to be a more efficient candidate. The SGC theory is developed by a series of statistic research on the meteorologic affair and solar activity, which is independent of other internal drivers such as the ocean-atmosphere system. The SGC theory can not only explain the effect of solar activity affairs such as the solar proton affair, the variation of GCR, the variation of the flux of the electron precipitation on the meteorology and the cloud cover, but also can explain the latitudinal difference of the response of the low atmosphere to the solar activity. The theoretical framework of the SGC theory has been established. However there are still lots of numerical work which is necessary to complete the theory. This work is the initial effort to complete the numerical simulation for the SGC theory. There are three models involved: 1) the updated global circuit model; 2) the initial model for the charges in the layer cloud; 3) the electric cloud microphysical model with the treatment of the wider range of the particle size, the new flow, the weight and inertia of the particle and the superposition and with the comparison of the image charge method to the conducting sphere method. 1. The global circuit model This new global electric circuit model has improved accuracy for the galactic cosmic ray ion-pair production, the near surface ion production by radioactivity, and the concentrations and size distribution of aerosols. The effect on the global circuit parameters of the variabilities with solar activity, volcanic activity, and seasonal changes has been evaluated. A treatment has been introduced for a layer of ultrafine aerosol particles in the high latitude, high altitude stratosphere, following large, explosive volcanic eruptions. This has the capability of providing a regional stratospheric column resistance comparable with the tropospheric value, so that the total column resistance and the ionosphere-earth current density Jz become sensitive to ionization by energetic particle fluxes that only penetrated to mid-stratospheric levels. While ionization from the influx of relativistic electrons from the radiation belts would cancel this volcanic stratospheric column resistance most of the time, observations indicate that in periods of low solar wind velocity near heliospheric current sheet crossings the influx is reduced sufficiently so that cancellation no longer occurs. 2. The initial model for the charge in the layer cloud The variable flow of ionosphere-earth current density Jz generates variable amounts of space charge near the upper and lower boundaries of clouds. We modeled the production of space charge and its partitioning between droplets, aerosol particles, and atmospheric ions, for a range of relevant atmospheric variables. The results give average charges on droplets of 50 to 100 elementary charges; positive at cloud top and negative at cloud base, which supports the recent measurements of Beard et al. (2004). The effects of moderate downdrafts at cloud top and updrafts at cloud base may be necessary to provide a narrow enough boundary layer together with a more concentrated current density, to generate the observed charges. When taken with models of electrical effects on cloud microphysics, the results are consistent with observations of meteorological responses to processes affecting Jz, and suggest that the accumulation of space charge in layer clouds may affect cloud microphysics sufficiently to cause measurable effects on weather and climate. 3. The cloud electric mircohpysics The charges on the droplets and the aerosol particles, including the ice forming nuclei (IFN) and the cloud condensation nuclei (CCN), have an effect on the scavenging rates that is a complicated function of droplet size, particle size, particle density, and amounts of charge on each. Since there is a long-range Coulomb-type force that is repulsive for particles having charges of the same sign (and attractive for opposite sign) and a short-range image force that is always attractive, trajectory calculations show electrically-induced decreases as well as increases in scavenging rates (and in particle-particle and droplet-droplet coagulation rates). Depending on the results of the model, the electrical effects on scavenging are likely to be an increase in scavenging rates for the larger particles being scavenged by the larger droplets, with a decrease below the scavenging rates for the smaller particles in the presence of smaller droplets. The increase of the scavenging rate for the larger particles promotes the close of the “Greenfield Gap”. The comparison of the image charge method and conducting sphere method shows that the greatest difference of the results appears in the “Greenfield Gap”. In “Greenfield Gap”, conducting sphere method gives larger collision efficient than the image charge method. The increase of the radius ratio between droplet and particle causes less difference between two methods. 4. The SGC theory and the climate Depended on three models above, it is clear that the low cloud is more sensitive to the solar activity, which is fit for the results from lots of statistic results such as Svensmark et al.(2000), Kniveton et al.(2004). With the ultrafine aerosol in the middle and upper stratosphere, the cloud in the high latitude and polar region will more sensitive to the solar activity. And the difference response to the solar activity between low latitude and high latitude increase. The different response causes different direct of variation of the cloud coverage. The low latitude and tropical region will become warmer and the high and polar region will be cooler. The warmer tropical can increase the magnitude of the thunderstorm and produce larger upward current It. The enhancement of the upward current increases the downward current density at the polar region. The temperature difference increases. Then this forms the new feedback system to increase the solar activity effect. It can be used to explain the beginning of the “Little Ice Age”. For the longer orbital time scale climate change——Milankovich period,the variation of upward current due to the variation of the temperature will affect the climate besides the irradiance variation effect.
页数114
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3202
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
周立旻. 太阳活动驱动气候变化SGC机制的数理研究[D]. 地球化学研究所. 中国科学院地球化学研究所,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20031800650148(4699KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周立旻]的文章
百度学术
百度学术中相似的文章
[周立旻]的文章
必应学术
必应学术中相似的文章
[周立旻]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。