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Zircon U-Pb age, geochemical, and Sr-Nd-Hf isotopic constraints on the origin of Early
Cretaceous mafic dykes from western Shandong Province,eastern North China Craton, China
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Abstract Mesozoic mafic doleritic dykes form swarms that are widespread across Shandong Province in the eastern North China
Craton ( NCC) . We present U-Pb zircon ages geochemical data and Sr-Nd-Hf isotopic data for representative samples of these dykes.
U-Pb zircon analyses for four samples using laser ablation-inductively coupled plasma-mass spectrometry ( LAICP-MS)  yielded ages
that range from 121.9 +0. 6 to 124.3 £ 0. 5Ma ( Early Cretaceous time) . The dolerites are characterised by a narrow range of rock
compositions. They display enrichments in light rare earth elements and large ion lithophile elements (i.e. Rb Ba U K and Pb)
as well as depletion in high field strength elements ( Nb Ta and Ti) . The mafic dykes have uniform (¥ Sr/*Sr) ; values of ~0.7098
low gy, (t) values in the range of —14.7 to —14.5 &,,(t) values ( for zircon) are between —31.4 and —-26.7 and high hafnium
model ages ( f,y, =1817 ~2024Ma) . These results indicate that the mafic dykes were derived from partial melting of an enriched
lithospheric mantle source. The magmas underwent direct crustal contamination. In summary the origin of the dykes can be attributed
to the collision between the NCC and the Yangtze Craton the magmas that formed these dykes were sourced from a hybridized source
caused by subduction of Yangtze crustal sedimentary material beneath southeastern before the Late Mesozoic.
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1 Introduction

Mafic dykes ranging in size from tens to several hundreds
of metres thickness and from several to many hundreds or even
thousands of kilometres in length have been emplaced in many
parts of the world in response to regional-scale lithospheric
extension that commonly accompanies the initial stages of the
breakup of supercontinents ( Halls 1982; Halls and Fahrig
1987; Féraud et al. 1987; Tarney and Weaver 1987; Zhao
and McCulloch 1993; Gudmundsson 1995; Hou et al. 2006;
Liu 2004; Liu et al. 2004 2005 2006 2008a b c
2009a b 2012a b 2013a b ¢ d e; Peng 2010; Peng et
al. 2005 2007 2008 2010 2011a b). The compositions of
these mafic dykes include basalt
porphyry
continentalscale suites of mafic dykes include the Kennedy and
San Rafael mafic dykes; the
Mistassini  Franklin = Grenville and Marathon dyke swarms of
Canada ( Halls and Hatts 1990; Emnst et al. 1992 1995
2005; Liu et al. 2013c¢); the Great Dyke of Zimbabwe
( Oberthiir et al. 2002); the Jimberland and Widgiemooltha
mafic dykes of Australia ( Ma et al. 2000); and the
southwestern Greenland mafic dykes ( Nisson et al. 2013) .
Other important occurrences of mafic dykes include swarms from

dolerite  gabbro  dolerite—

picrite  norite and lamprophyre. Examples of

Mackenzie =~ Matachewan

Brazil India Italy Japan Norway Scotland Siberia South
Africa and China (e. g the southern China and NCC; Hou et
al. 2006; Liu 2004; Liu et al. 2004 2005 2006 2008a
b 2009a b 2012a b 2013a b ¢ d e; Peng 2010; Peng

et al. 2005 2007 2008 2010 201la b; Chen et al.
2015) . And the swarms of mafic dykes have very old ages ( >
2.5~1.0Ga) .

In terms of China workers to date have focused primarily
on the mafic dykes of Proterozoic age in both of the southern
China and NCC (e. g Chen and Shi 1983 1994; Chen et
al. 1992; Peng et al. 2005 2007 2008 2010 201la b;
Hou et al.  2006; Piper et al. 2011; Li et al. 2010; Liu ez
al. 2012b 2013b ¢; Peng 2010). However in addition to
these older mafic dykes many mafic dykes of Mesozoic age occur
across China. For example in southern China (e. g.  Zhejiang

Jiangxi Hunan Fujian Guangdong Guangxi and Hainan

provinces) more than 700 dykes have been recorded while a
similar number crop out over the entire NCC ( e. g  the
Shandong Liaoning Jilin Shanxi Hebei and Inner Mongolia

regions) . While many studies have been carried out on these

Mesozoic  dykes  there are controversy regarding their
petrogenesis and ages of emplacement ( e. g  underplating
magma immiscibility metathesis delamination; 150 ~ 80Ma;,

Shao and Zhang 2002; Zhang and Sun 2002; Shao et al.
2003; Xie 2003; Zhai er al. 2003 2004; Liu 2004; Xu
2004; Yang et al. 2004; Zhao 2004; Liu et al. 2005
2006 2008a b ¢ 2009a b 2012¢ d 2013a d e
Zhang 2006; Cao 2007, Wang et al. 2007, Wu et al.
2008; Zhang 2009; Zhai and Santosh 2013).

To further refine the ages and petrological models for
China a detailed
geochronological geochemical and isotopic study of a variety of

Mesozoic mafic magmatism in more

Mesozoic mafic dykes from southern China and the NCC is
required. We therefore present here the results of new zircon U-
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Pb dating using LACP-MS as well as petrological whole—ock
geochemical and Sr-Nd-Hf isotopic data for representative
samples of mafic dykes from the Eastern Block of the NCC and
the Zichuan region in western Shandong Province. These new
data allow us to constrain the emplacement ages of these dykes
and the origin of this mafic magmatism.

2 Geological setting and petrography

The NCC is located in northern China covers a wide area
( ~170 x10*°km®) ( Wu et al. 2008; Zhai and Santosh 2011
2013; Zheng et al. 2013; Li et al. 2013) and consists of
Archaean Eastern and Western blocks which = collided at
~ 1. 85Ga along the nearly N-S+rending Palaeoproterozoic Trans—
North China Orogen ( Zhao et al. 2001 2005; Wilde et al.
2002; Guo et al. 2005). The Eastern and Western blocks can
be further subdivided into microcontinental blocks and active
belts ( Zhai and Bian 2000; Zhao 2009) . For example the
Western Block consists of the Yinshan Block in the north and the
Ordos Block to the south separated by the E-W-rending
Palaeoproterozoic Khondalite Belt ( Xia et al. 2008; Yin et al.
2009 2011; Lietal. 2011; Wanget al. 2011). The Eastern
Block consists of the Longgang ( also known as the Yanliao
Block) and Langrim blocks separated by the Palaeoproterozoic
JiaoLiaoJi Belt ( Li et al. 2006; Li and Zhao 2007; Luo et
al. 2008; Zhou et al. 2008; Huang et al. 2009; Wang et
al. 2009; Zhao et al. 2010 2012; Tam et al. 2011
2012a b; Wu et al. 2013a b; Zhao and Zhai 2013) . The
NCC is one of the oldest continents ( Lin et al. 2008) with a
crustal age of >3.8Ga (Liu et al. 1992) and its southern and
northern margins are the Indosinian Qingling-Dabie and Hercynian
Yinshan—Yanshan orogenic belts respectively. Traditionally the
NCC has been considered to comprise uniform Precambrian
( Archaean-Sinian) crystalline basement overlain by a variety of
younger cover lithologies of Cambrian-Quaternary age.

Shandong Province is located in the Eastern Block of the
NCC and more than 200 Mesozoic mafic dykes occur throughout
eastern Shandong ( Jiaodong)  western Shandong ( Luxi) and
adjacent areas of Tandu Fault. The study areas for this
investigation are in the Zichuan region of western Shandong
Province ( samples SJ1 to SJ8 KJ1 to KJ4 and CN1 to CN4) .
The sampled mafic dykes from this area intrude Jurassic
sedimentary rocks ( JzS) and Proterozoic complexes ( P)
( Fig. 1) . Individual dykes are vertical trend NW-SE are 15m
to 0. 8km wide and 3. 0 to 20km long ( Fig. 1b) . The dykes are
typical medium-grained diabases that contain phenocrysts of
clinopyroxene (2.0 ~6.5mm) and plagioclase (2.0 ~5. Omm)
within a matrix ( 60% ~ 65%) of clinopyroxene ( 0.05 ~
0.07mm) and plagioclase ( 0.03 ~ 0.06mm) with minor
magnetite ( ca. 0.02 ~ 0.04mm) and chlorite ( 0.04 ~

0.05mm) . Accessory minerals include zircon and apatite.

3 Analytical techniques

3.1 Zircon LAACP-MS U-Pb dating

Zircon was separated from four samples ( SJ01
and CNO1)
techniques at the Langfang Regional Geological Survey Hebei

SJ02  KJO1

using conventional heavy liquid and magnetic
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Fig. 1 Sketch map of study area and adjacent areas China (a) and geological map of the study areas showing the

distribution of the mafic dykes and sampling localities ( b)
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Fig. 2 Zircon LAHCP-MS U-Pb concordia diagrams and CL images of zircons separated from the mafic dykes from western

Shandong Province China

Province China. After separation and mounting the internal
and external structures of zircon grains were imaged using
and cathodoluminescence at the
Northwest

Prior to zircon U-Pb dating grain mount

transmitted and reflected light
State Key Laboratory of Continental Dynamics
China.

surfaces were rinsed in dilute HNO; and pure alcohol to remove

University

any potential lead contamination. Zircon U-Pb ages were
determined using LACP-MS ( Tablel; Fig.2) with an Agilent
7500a ICP-MS instrument equipped with a 193nm excimer laser
at the State Key Laboratory of Geological Processes and Mineral
China.
Zircon standard (# 91500) was used for quality control and the

Resources China University of Geoscience ( Wuhan)

NIST 610 standard was used for data optimisation. A spot
diameter of 24pm was used during analyses employing the
methodology described by Yuan et al. (2004) and Liu et al.
(2010) . Common Pb correction was undertaken following
Andersen (2002) and the resulting data were processed using
the GLITTER and ISOPLOT programs ( Ludwig 2003; Tablel;
Fig.2) . Uncertainties for individual LA-dCP-MS analyses are
quoted at the 95% (2¢) confidence level.

3.2  Whole—+ock geochemistry

The whole-rock and Sr-Nd isotope compositions of 16
samples were determined during this study. Prior to whole—rock
geochemical analysis samples were trimmed to remove altered

surfaces cleaned with de-onised water and then crushed and

powdered in an agate mill. Major element concentrations were

determined on fused glass discs using a PANalytical Axios—
advance X-ray fluorescence spectrometer at the State Key
Ore
Geochemistry  Chinese Academy of Sciences

Institute  of
China. These
analyses have a precision of < 5% as determined using the
GSRH and GSR-3 Chinese national standards ( Table 2) .
on ignition values was obtained using lg of powder heated to
1100°C for one hour ( Table 2) . Trace element concentrations
were determined using ICP-MS at the State Key Laboratory of Ore
Deposit  Geochemistry

Laboratory  of Deposit  Geochemistry

Loss

Institute of Geochemistry  Chinese
Academy of Sciences China following the procedures outlined
in Qi et al. (2000) .
within 5% for all elements and analyses of the OU-6 ( Potts and
2005) and GBPGH 2000 )

international standards are agreed with recommended values

( Table 3) .

Triplicate analyses were reproducible to

Kane ( Thompson et al.

3.3  Sr-Nd isotope analyses
Sample powders used for Rb-Sr and Sm-Nd isotope analyses
were spiked with mixed isotope tracers dissolved in Teflon

and HNO,

conventional cation-exchange techniques. Isotopic measurements

capsules with HF acids  and separated by
were performed using a Finnigan Triton Ti thermal ionisation
mass spectrometer at the State Key Laboratory of Geological
Resources ~ China  University of
Geosciences ( Wuhan)  China. Procedural blanks yielded

concentrations of <200pg for Sm and Nd and <500pg for Rb

Processes and Mineral
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Table 1 LAJCP-MS U-Pb isotope data for zircon separates from the mafic dykes of western Shandong Province
Th U Pb Isotopic ratio Age ( Ma)
Spot No. Th/U
( x107%) 207ph /2P 1 27Ph/PU 1o 2Ph/*BU Lo 2"Ph/*Ph 1o 27Ph/*U lo 2Ph/>¥U lo

SJo1
1 348 253 8.14 1.38 0.0472 0.0053 0.1225 0.0073 0.0189 0.0003 55 227 118 11 122 2
2 266 193 5.96 1.38 0.0585 0.0044 0.1197 0.0098 0.0191 0.0003 545 112 144 8 122 3
3 185 136 4.36 1.36 0.0582 0.0031 0.1236 0.0076 0.0193 0.0004 572 79 144 8 122 2
4 321 173 5.98 1.86 0.0581 0.0032 0.1205 0.0075 0.0195 0.0003 547 81 143 6 123 2
5 312 213 6.37 1.46 0.0504 0.0034 0.1304 0.0083 0.0192 0.0003 205 113 127 8 121 3
6 258 196 6.47 1.32 0.0462 0.0045 0.1223 0.0083 0.0194 0.0003 535 212 118 13 123 2
7 372 214 7.15 1.74 0.0464 0.0043 0.1197 0.0091 0.0185 0.0004 12 193 116 10 121 3
8 453 242 8.36 1.87 0.0553 0.0029 0.1236 0.0072 0.0193 0.0003 414 88 137 8 124 2
9 358 253 8.03 1.42 0.0472 0.0035 0.1218 0.0086 0.0192 0.0004 433 164 118 10 121 2
11 272 213 6.43 1.28 0.0485 0.0025 0.1292 0.0063 0.0195 0.0003 116 83 125 8 125 2
12 165 114 3.75 1.45 0.0573 0.0068 0.1248 0.0082 0.0197 0.0003 493 264 147 10 125 2
13 248 191 5.82 1.30 0.0575 0.0026 0.1221 0.0071 0.0195 0.0003 508 69 146 8 125 3

SJ02
1 482 393 11.6 1.23 0.0486 0.0041 0.1263 0.0104 0.0187 0.0003 118 186 122 9 122 2
2 313 205 6.78 1.53 0.0535 0.0064 0.1283 0.0116 0.0193 0.0004 343 274 132 11 123 3
3 424 256 8.33 1.66 0.0561 0.0027 0.1246 0.0068 0.0193 0.0003 448 82 135 9 122 2
4 206 146 4.36 1.41 0.0554 0.0072 0.1266 0.0117 0.0185 0.0003 417 295 134 10 121 3
5 356 321 9.15 1.11 0.0535 0.0024 0.1268 0.0058 0.0192 0.0004 306 73 132 6 122 2
6 343 205 6.43 1.67 0.0587 0.0046 0.1246 0.0127 0.0191 0. 0005 545 123 148 10 121 3
7 229 177 5.42 1.29 0.0583 0.0046 0.1303 0.0114 0.0193 0.0004 537 131 144 10 122 2
8 455 392 12.6 1.16 0.0516 0.0042 0.1256 0.0105 0.0192 0.0003 262 176 128 9 122 2
9 403 344 11.5 1.17 0.0546 0.0075 0.1254 0.0116 0.0195 0.0003 395 304 135 11 123 2
10 246 187 5.76 1.32 0.0545 0.0025 0.1242 0.0058 0.0193 0.0003 388 65 136 6 123 2
11 427 325 10.3 1.31 0.0544 0.0024 0.1243 0.0058 0.0193 0.0003 386 73 134 6 122 2
12 237 174 5.55 1.36  0.0462 0.00482 0.1262 0.0121 0.0188 0.00036 298 213 114 10 121 2

KJo1
1 382 265 8.22 1.44 0.0463 0.0034 0.1186 0.0083 0.0189 0.0003 423 154 116 9 119 2
2 236 165 5.13 1.43 0.0462 0.0032 0.1213 0.0077 0.0192 0.0004 382 145 117 7 122 2
3 280 221 6.83 1.31 0.0463 0.0052 0.1189 0.0127 0.0186 0.0003 465 218 116 10 119 2
4 233 172 5.24 1.35 0.0462 0.0038 0.1211 0.0102 0.0192 0.0003 293 187 115 10 122 2
5 188 113 3.83 1.66 0.0491 0.0068 0.1255 0.0141 0.0188 0.0004 145 276 123 12 121 3
6 280 226 6.88 1.28 0.0475 0.0037 0.1251 0.0098 0.0193 0.0003 73 181 122 9 122 2
7 239 172 5.33 1.39 0.0483 0.0045 0.1262 0.0115 0.0191 0.0003 106 205 123 10 121 2
8 166 93 3.21 1.78 0.0524 0.0098 0.1261 0.0125 0.0191 0.0004 294 364 131 12 121 3
9 132 103 3.13 1.28 0.0518 0.0067 0.1275 0.0131 0.0195 0.0005 276 285 132 12 123 3
10 209 171 5.06 1.22 0.0525 0.0061 0.1241 0.0137 0.0188 0.0004 263 274 127 14 121 2
11 208 145 4.73 1.43 0.0473 0.0051 0.1267 0.0128 0.0195 0.0004 72 226 123 12 124 2
12 266 202 6.14 1.32 0.0505 0.0028 0.1234 0.0073 0.0193 0.0003 215 98 126 9 122 2

CNO1
1 352 258 8.16 1.36 0.0525 0.0045 0.1291 0.0072 0.0195 0.0003 303 197 135 10 124 2
2 375 149 6.46 2.52 0.0462 0.0034 0.1304 0.0087 0.0195 0.0003 426 155 116 8 124 2
3 435 308 9.68 1.41 0.0521 0.0024 0.1317 0.0059 0.0198 0.0003 282 72 133 8 126 2
4 621 482 145 1.29 0.0496 0.0021 0.1305 0.0053 0.0194 0.0002 171 68 125 6 125 2
5 243 103 4.26 2.36 0.0544 0.0107 0.1303 0.0076 0.0192 0.0004 386 398 135 10 123 3
6 455 391 11.6 1.16 0.0462 0.0028 0.1301 0.0075 0.0192 0.0002 265 142 115 8 122 2
7 3375 996 43.6 3.39 0.0526 0.0015 0.1311 0.0045 0.0194 0.0002 308 53 135 6 123 1
8 336 275 8.06 1.22  0.0508 0.0027 0.1319 0.0067 0.0194 0.0003 227 88 126 6 123 2
9 581 484 15.7 1.20 0.0516 0.0026 0.1311 0.0066 0.0198 0.0003 273 81 132 6 127 2
10 678 345 12.5 1.97 0.0532 0.0038 0.1301 0.0073 0.0196 0.0004 332 156 142 10 126 3
11 495 356 11.2 1.39 0.0462 0.0024 0.1305 0.0061 0.0192 0.0002 266 112 117 6 123 1
12 381 323 9.45 1.18 0.0509 0.0024 0.1308 0.0063 0.0196 0.0002 232 83 132 6 124 2
13 608 586 16.5 1.04 0.0497 0.0018 0.1306 0.0055 0.0196 0.0002 188 73 128 6 126 1
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Table 2 Major element concentrations ( wi% ) for the mafic dykes from western Shandong Province

Sample No.  S]1 SJ2 SJ3 SJ4 SJ5 SJ6 SJ7 SJ8 KJ1 KJ2 KJ3 KJ4 CN1 CN2 CN3  CN4
Si0, 51.49 51.54 51.39 51.55 51.51 51.47 51.42 51.39 51.48 51.52 51.36 51.43 51.41 51.42 51.37 51.39
TiO, 0.28 0.26 0.25 0.24 0.25 0.26 0.25 0.26 0.27 0.25 0.23 0.25 0.22 0.23 0.22 0.23
Al, 04 20.43 20.22 20.52 20.34 20.23 20.61 20.74 20.42 20.84 20.53 19.93 20.25 20.12 20.25 20.43 20.36

Fe, 0, 3.98 3.76 4.03 4.05 4.07 431 3.95 3.88 3.85 3.98 432 466 462 465 458 4.65
FeO 4.36  4.38 4.41 4.15 4.43 4.35 4.23 4.41 436 435 4.21 423 416 4.16 4.17 4.13
MnO 0.18 0.21 0.17 0.19 0.21 0.18 0.18 0.16 0.18 0.19 0.17 0.15 0.13 0.12 0.15 0.16
MgO 4.27 413 3.96 3.95 4.02 415 3.97 3.8 3.8 3.92 4.26 4.43 4.38 4.33 425 4.18
CaO 5.46 5.57 6.04 5.61 553 538 536 535 538 542 538 543 535 532 535 534
Na, O 3.62 3.76  3.69 3.8 3.73 3.63 3.57 3.54 3.62 3.59 3.48 3.54 3.47 3.51 3.48 3.46
K,0 3.14 3.25 3.16 3.31 3.23 3,12 3.13 3.12 3.16 3.22 3.16 3.22 3.18 3.22 3.15 3.16
P, 05 0.23 0.26 0.21 0.24 0.25 0.22 0.21 0.22 0.22 0.23 0.24 0.23 0.22 0.21 0.22 0.21
LOI 2,12 2,34 1.98 2,23 236 221 225 262 215 212 246 1.65 214 1.92 1.95 2.17

Total 99.53 99.66 99.79 99.65 99.75 99.88 99.22 99.21 99.33 99.29 99.17 99.42 99.38 99.29 99.29 99.38
Mg* 49 49 47 47 47 47 48 47 47 47 48 48 48 48 48 47

Note: LOI =loss on ignition Mg* =100( Mg/( Mg + Fe) in atomic proportions

Table 3 Trace element compositions ( x 10 ™®) of the mafic dykes from western Shandong Province

Sample No. ~ S]1 SJ2 SJ3 SJ4 SJ5 SJ6 SJ7 SJ8 KJ1 KJ2 KJ3 KJ4 CNI1 CN2 CN3 CMN4

Se 25.2  26.3 248 264 255 249 248 252 229 21.8 235 234 28.3 29.5 30.6 29.2
v 246 245 236 247 253 239 246 248 285 286 269 281 186 193 196 212
Cr 143 146 136 154 138 143 146 141 54.1 46.3 65.2 73 375 383 373 387
Ni 38.9 37.6 36.4 36.7 38.2 38.1 38.4 385 248 188 263 27.2 93.2 956 8.1 96.3
Ga 22.3  21.4 21.7 20.7 221 21.4 209 21.6 22.2 256 23.5 246 18.6 18.7 18.8 18.6
Rb 71.5 63.9 54.8 62.8 69.5 63.6 639 70.8 62.8 69.6 657 67.6 58.4 59.4 57.8 59.6
Sr 871 824 816 816 866 825 832 858 952 938 966 975 706 712 703 716
Y 17.8 17.5 17.3 17.6 17.4 17.6 17.9 17.2 16.5 15.9 17.3 17.5 17.5 17.9 17.4 17.6
Zr 106 103 98.5 105 103 102 106 104 106 128 134 139 85.3 86.4 84.3 85.7
Nb 6.65 6.54 6.68 6.63 6.73 6.65 6.46 6.58 6.35 6.56 6.57 6.62 536 538 535 5.37
Ba 718 679 685 682 725 693 698 732 863 873 879 893 687 679 676 682

Hf 2.49 2.48 2.53 2.47 2.53 2,46 2.55 2.54 235 265 276 274 236 2.37 238 241
Ta 0.33 0.34 0.36 0.33 0.31 0.33 0.39 0.32 0.33 0.42 0.45 0.46 0.34 0.34 0.33 0.35

Pb 18.6 17.8 17.4 17.6 18.4 17.5 17.6 18.6 20.2 26.2 21.8 22.4 12.6 12.4 12.5 12.6
Th 5.43 5.38 5.29 535 539 542 537 534 6.12 7.23 6.27 6.34 4.46 4.48 4.45 4.49
U .52 1.51 1.48 1.54 1.51 1.46 1.48 1.54 1.66 2.03 1.78 1.83 1.35 1.36 1.34 1.36
La 32.1 3.6 31.7 31.8 32.2 31.6 31.4 32.5 245 263 257 255 21.2 21.4 21.3 21.2
Ce 72.3 66.7 65.4 65.6 67.1 66.2 71.5 659 50.2 61.5 56.3 56.5 48.3 49.5 48.2 49.8
Pr 7.76  6.65 6.73 6.58 7.57 6.71 6.73 7.49 575 7.16 5.8 595 592 596 5287 585
Nd 33.5 34.2 33.7 351 345 343 345 348 253 27.2 258 262 257 259 254 253
Sm 6.35 6.31 6.42 6.34 6.34 598 583 6.35 478 581 516 518 508 495 506 5.03
Eu 1.65 1.63 1.64 1.65 1.63 1.64 1.63 1.65 1.37 1.53 1.37 1.37 1.36 1.36 1.37 1.36
Gd 4.89 506 4.95 505 474 4.84 4.66 476 3.8 4.66 4.25 426 4.23 4.26 4.18 4.25
Th 0.66 0.72 0.68 0.75 0.64 0.73 0.76 0.64 0.56 0.65 0.62 0.64 0.58 0.57 0.56 0.56
Dy 3.91 3.94 3.78 3.76 4.02 3.74 3.69 4.04 296 3.54 3.33 3.29 3.28 3.27 3.29 3.18
Ho 0.72 0.73 0.71 0.68 0.68 0.69 0.66 0.69 0.56 0.68 0.64 0.63 0.58 0.62 0.61 0.61
Er 2.06 2.08 202 207 205 206 203 207 153 1.8 1.74 1.76 1.72 1.74 1.68 1.73
Tm 0.25 0.26 0.24 0.23 0.25 0.23 0.25 0.23 0.22 0.23 0.24 0.25 0.23 0.24 0.22 0.22
Yb .74 176 1.73 1.75 1.72 1.73 1.74 1.68 1.32 1.75 1.53 1.52 1.46 1.44 1.45 1.43
Lu 0.22 0.21 0.22 0.23 0.25 0.23 0.24 0.22 0.21 0.23 0.23 0.22 0.23 0.23 0.22 0.21
Eu/Eu” 0.9 0.9 0.9 0.9 0.9 0.9 1 0.9 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Notes: chondrite-normalisation factors for ( La/Yb) y are from Sun and McDonough ( 1989) ; ( Eu quantifies the anomalous behaviour of Eu in relation to

the interpolated value for this element ( ( Sm + Gd) /2)



15 e '
(a) NG o
/ \‘\‘o', trachy e
- 4 '\. P \
s 10 BRSRMIpREEE S \ Alkaling series 4
= / 2 latite N\ |
Q, ,/\\\ =t
:—. 5 L | r \
2 ‘.[ ;Z‘h‘..|...
[y I | dsboud e L R 3
35 45 55 65 75
Si0, (%)
12 T .
(b)
Ultrupotassic
g1
2
: i Shoshonitic
4
@i ]
= Cale-alkaling
] — L 3
0 2 (i}
Na O(%)

Fig. 3
Shandong Province

(‘a) TAS diagram ( after Middlemost 1994; Le Maitre 2002)
where all major element concentrations are recalculated to 100%
volatilefree compositions and (b) Na,O vs.
( after Menzies and Kyle 1972)

Classification of the mafic dykes from western

K,0 diagram

and Sr. Mass fractionation corrections for Sr and Nd isotopic
ratios were based on *Sr/* Sr = 0.1194 and "*Nd/'* Nd =
0.7219 respectively and analysis of the NBS987 and La Jolla
standards yielded values of ¥Sr/* Sr = 0. 710246 = 16 ( 2sm)

and "*Nd/"Nd =0. 511863 +8 ( 2sm)

respectively.

3.4 In situ zircon Hf isotopic analysis

In situ zircon Hf isotopic analyses were conducted using a
Neptune multiple collectordCP-MS
laser

equipped with a 193nm
at the Institute of Geology and Geophysics Chinese
Academy of Sciences China. During the analyses
repetition rate of 10Hz at 100m] was used
32 and 63pum. Details of the analytical technique are described
in Wu et al. (2006). During the analyses the "Hf/'" Hf and
"Lu /"7 HI ratios of the standard zircon 91500 were 0. 282300 +
15 (2sm n =24) and 0.00030 respectively similar to the
commonly accepted "°Hf/'" Hf ratios of 0.282302 = 8 and
0.282306 + 8 ( 2sm)

( Goolaerts et al. 2004) .

a laser

and spot sizes were

measured using the solution method

4  Results

4.1 Zircon UPb ages

Euhedral zircon grains in samples SJ01 SJO1 KJO1 and CNO1
are clean and prismatic with magmatic oscillatory zoning ( Fig. 2) .
A total of 13 grains provided a weighted mean Ph/™ U age of
123.2 £ 0.6Ma (20) (95% confidence interval) for SJO1 12
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Fig.4 Variations in major element contents compared with MgO
for the mafic dykes of western Shandong Province

grains gave a weighted mean “*Ph/™* U age of 122.0 0. 6Ma ( 20)
(95% confidence interval) for SJ02 12 grains gave a weighted
mean “Ph/™* U age of 121.9 +0.6Ma (2¢) (95% confidence
interval) for KJO1 ( Table 1; Fig. 2a-d) and 13 grains gave a
weighted mean Pb/™ U age of 124.3 + 0.5Ma (20) (95%
confidence interval) for CNOI. These weighted mean ages are the
best estimates for the times of these doleritic dykes crystallised.
Some inherited zircons were observed.

4.2 Major and trace element geochemistry

Geochemical data for the mafic dykes in the study area are
presented in Tables 2 and Table 3. The diabase samples exhibit
a narrow range of geochemical compositions falling into the
alkaline field when plotted on the total alkali-silica diagram
( Fig. 3a) ; The mafic dyke
samples also display an affinity to shoshonitic compositions in
terms of Na,O vs. K,O ( Fig. 3b) . The dykes display obscure
trends of decreasing TiO, Al,0; K,0 Na,O and P,0; with
increasing MgO ( Fig.4b ¢ f-h)
between Fe,0; and MgO. They are also characterised by a

the rock type is phonotephrite.

and a positive correlation

relative enrichment in light rare earth elements with a wide
range of ( La/Yb) y ratios (10.4 ~ 13.9) and negligible Eu
anomalies ( Eu/Eu” = 0.9 ~ 1.0) ( Table 3; Fig 5a) . On
primitive-mantle-normalised trace element diagrams the mafic
dykes show enriched in large ion lithophile elements (i. e. Rb
Ba U K and Pb) and P as well as depleted in high field
Nb Ta and Ti) ( Fig. 5b).

strength elements ( i. e.



636

Acta Petrologica Sinica

Table 4 Sr-Nd isotopic compositions of the mafic dykes from western Shandong Province

2016 32(3)

Sample No.  Age( Ma) Rock type ¥ Rb/%Sr 87Sp/%Sr  2sm  (¥Sr/*Sr); Sm/'"Nd "Nd/"Nd  2sm ("*Nd/™Nd); ex(t)
SJ1 123.2 0.238 0.710208 5 0.709782 0.1141 0.511828 10 0.511736 -14.5
SJ3 0.194 0.710133 6 0.709793 0.1147 0.511824 10 0.511732 -14.6
SJ4 0.223 0.710182 6 0.709782 0.1087 0.511821 9 0.511733 -14.6
SJ5 122.0 0.283 0.710285 6 0.709785 0.1373 0.511842 10 0.511732 -14.6
SJ8 Dolerite 0.337 0.710381 8 0.709796 0. 1405 0.511838 9 0.511726 -14.7
KJ1 121.9 0.391 0.710473 6 0.709806 0.1384 0.511845 9 0.511735 -14.6
KJ2 0.337 0.710379 5 0.709785 0.1282 0.511842 9 0.511740 -14.5
CN2 124.3 0.631 0.710912 8 0.709797 0.1294 0.511836 10 0.511731 -14.6
CN3 0.610 0.710873 6 0.709786 0.1316 0.511831 12 0.511724 -14.7
CN4 0.629 0.710906 8 0.709785 0. 1296 0.511837 10 0.511733 -14.5

Note: the Chondrite Uniform Reservoir values and decay constants of Ap, =1.42 x 10 ™" year ™' ( Steiger

year "' ( Lugmair and Harti 1978)
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Fig. 5 Chondrite-normalized rare earth element patterns ( a) and

primitive-mantle-normalized incompatible element distribution

diagrams ( b) for the mafic dykes of western Shandong Province

1989)

( normalization values after Sun and McDonough

4.3  Sr-Nd isotopes

Sr-Nd isotopic data were obtained for 10 representative
mafic dyke samples ( Table 4) . The dykes show uniform
(¥Sr/*Sr) | values ( ~0.7098) and little variation in gy, ( t)

and Jiger 1977) and A, =6.54 x 101
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Fig. 6 Variations in initial ¥Sr/*Sr vs. gy, (t) values for

the mafic dykes of western Shandong Province

Also shown is a field delineating the composition of Mesozoic mafic
dykes within the Yangtze Craton NCC the Sulu Belt and other areas
1998 2004; Jahn et al. 1999;
Chen et al. 2001; Guo et al. 2001; Fanet al. 2004; Liu 2004;
Wang et al. 2005; Liuet al. 2008a b 2009a). The mafic dykes
analysed during this study plot within the field of an enriched

in Shandong Province ( Li et al.

mantle source
values ( from - 14.7 to - 14.5) The Sr-Nd isotopic
compositions ( Fig. 6) are comparable to those of Mesozoic mafic
rocks from the Sulu Belt ( Li et al. 1998; Jahn et al. 1999;
Fan et al. 2004; Wang et al. 2005) and Shandong Province
(Liu 2004; Liu et al. 2008a b 2009a) . they
differ from those of Mesozoic mafic dykes in the Yangize Craton
(Chen et al. 2001; Li et al. 2004) and other parts of the
North China Craton ( Guo et al. 2001) .

However

4.4 Zircon Hf isotopes
Four samples of zircon dated by LAdCP-MS zircon U-Pb
and the

results are presented in Table 5. Fifteen spot analyses were

dating were also analysed for their Lu-Hf isotopes

performed on zircon from sample KJO1. The determined negative
ey 1) values for this dyke vary between —30.4 and -28.6



Sr-Nd-Hf 637
Table 5 Zircon Lu-Hf isotopic compositions of the mafic dykes from Shandong Province
Spot No. Age( Ma)  'Yh/'""Hf 2sm 176 L /"7 HE 2sm 76 He /177 HE 2sm ene( 1) tpy ( Ma) Srume
KJo1
1 0.0258 0.010990 0.000656 0.000047 0.281858 0.000016 -29.7 1941 -0.98
2 0. 0255 0.010640 0.000613 0. 000034 0.281865 0.000015 -29.5 1930 -0.98
3 0.0386 0.015845 0.000944 0.000054 0.281896 0.000014 -28.4 1904 -0.97
4 0.0175 0.007112 0.000424 0.000024 0.281844 0.000015 -30.2 1950 -0.98
5 0.0149 0.005954 0.000370 0.000019 0.281839 0.000014 -30.4 1954 -0.96
6 0.0179 0.007031 0.000428 0.000022 0.281886 0.000016 -28.7 1892 -0.97
7 0.0254 0.009835 0. 000656 0.000033 0.281875 0.000017 -29.1 1919 -0.98
8 121.9 0.0323 0.012428 0.000778 0.000056 0.281876 0.000015 -29.1 1923 -0.98
9 0.0185 0. 006966 0.000443 0.000021 0.281869 0.000016 -29.3 1917 -0.95
10 0.0319 0.011939 0.000760 0.000044 0.281857 0.000015 -29.8 1949 -0.98
11 0.0385 0.014082 0. 000903 0. 000044 0.281847 0.000013 -30.1 1969 -0.97
12 0.0359 0.012916 0.000871 0.000040 0.281842 0.000015 -30.3 1975 -0.97
13 0.0125 0.004418 0.000313 0.000014 0.281867 0.000014 -29.4 1913 -0.95
14 0.0296 0.010330 0. 000765 0.000040 0.281841 0.000016 -30.3 1971 -0.98
15 0.0308 0.010567 0.000722 0.000032 0.281889 0.000018 -28.6 1903 -0.98
SJo2
1 0.0615 0.000961 0.001945 0.000037 0.281871 0.000011 -29.4 1991 -0.95
2 0.0603 0.002117 0.001666 0.000059 0.281888 0.000014 -28.7 1952 -0.95
3 0.0577 0.001382 0.001502 0.000027 0.281871 0.000013 -29.3 1968 -0.95
4 0.0215 0.000917 0.000582 0.000025 0.281892 0.000010 -28.5 1891 -0.98
5 0.0517 0.002365 0.001379 0.000067 0.281875 0.000013 -29.2 1955 -0.96
6 0.0599 0.002088 0.001559 0. 000056 0.281887 0.000013 -28.8 1948 -0.95
7 0.0240 0.000298 0.000633 0.000003 0.281864 0.000011 -29.5 1932 -0.98
8 122.0 0.0358 0. 000526 0. 000976 0. 000015 0.281885 0.000012 -28.8 1832 -0.97
9 0.0489 0.001561 0.001226 0.000038 0.281880 0.000017 -29.0 1918 -0.96
10 0.0404 0.000614 0.001110 0.000019 0.281890 0.000014 -28.6 1902 -0.97
11 0.0458 0.002071 0.001172 0.000053 0.281896 0.000014 -28.4 1994 -0.96
12 0. 0409 0.000818 0.001097 0.000015 0.281889 0.000014 -28.6 1888 -0.97
13 0.0375 0. 000522 0.001034 0.000013 0.281886 0.000013 -28.7 1817 -0.97
14 0.0432 0.000586 0.001139 0.000014 0.281875 0.000016 -29.1 1943 -0.97
15 0.0741 0.003640 0.002021 0.000106 0.281898 0.000013 -28.4 1957 -0.95
SJo1
1 0.0128 0.000961 0.000334 0.000037 0.281808 0.000011 -31.4 1994 -0.95
2 0.0347 0.002117 0.001047 0.000059 0.281833 0.000014 -30.6 1997 -0.95
3 0.0613 0.001382 0.001463 0.000027 0.281902 0.000013 -28.2 1922 -0.98
4 0.0488 0.000917 0.001218 0.000025 0.281864 0.000010 -29.5 1962 -0.96
5 0.0765 0.002365 0.001924 0.000067 0.281921 0.000013 -27.6 1919 -0.95
6 0.0198 0.002088 0. 000495 0.000056 0.281835 0.000013 -30.5 1965 -0.98
7 0.0603 0.000298 0.001666 0.000003 0.281837 0.000011 -30.5 2024 -0.97
8 123.2 0.0577 0. 000526 0.001502 0. 000015 0.281841 0.000012 -30.4 2010 -0.98
9 0.0215 0.002787 0.000582 0. 000069 0.281833 0.000012 -30.6 1973 -0.95
10 0.0517 0.001021 0.001379 0. 000056 0.281831 0.000013 -30.7 2017 -0.96
11 0.0599 0.001416 0.001559 0.000035 0.281842 0.000019 -30.3 2011 -0.96
12 0. 0240 0.001416 0.000633 0. 000035 0.281844 0.000019 -30.2 1960 -0.96
13 0.0358 0.001561 0. 000976 0.000038 0.281901 0.000017 -28.2 1898 -0.97
14 0.0432 0.000614 0.001139 0.000019 0.281862 0.000014 -29.6 1961 -0.96
15 0.0375 0.002071 0.001034 0. 000053 0.281858 0.000013 -29.7 1961 -0.97
CNO1
1 0.0392 0.000436 0. 000998 0.000017 0.281842 0.000014 -30.3 1982 -0.97
2 0.0290 0.000581 0.000723 0.000011 0.281867 0.000013 -29.3 1933 -0.98
3 0.0350 0.001260 0.000857 0. 000028 0.281869 0.000014 -29.3 1937 -0.97
4 0.0294 0.000425 0.000719 0.000012 0.281896 0.000014 -28.3 1893 -0.98
5 0.0447 0.002259 0.001121 0.000055 0.281954 0.000020 -26.3 1833 -0.97
6 0.0475 0.000437 0.001190 0.000015 0.281892 0.000013 -28.5 1922 -0.96
7 0.0340 0.000512 0.000830 0.000008 0.281893 0.000014 -28.5 1903 -0.97
8 124.3 0.0148 0.000342 0.000397 0. 000005 0.281870 0.000012 -29.2 1912 -0.96
9 0.0316 0.000599 0.000787 0.000011 0.281896 0.000012 -28.3 1896 -0.98
10 0.0211 0. 000393 0. 000532 0. 000008 0.281893 0.000012 -28.4 1888 -0.98
11 0.0284 0.000520 0.000709 0.000016 0.281879 0.000013 -28.9 1916 -0.95
12 0.0320 0.000376 0.000767 0.000012 0.281891 0.000014 -28.5 1902 -0.98
13 0.0388 0.001194 0.000934 0.000021 0.281859 0.000012 -29.6 1954 -0.97
14 0.0404 0.002140 0. 000968 0. 000053 0.281900 0.000017 -28.2 1900 -0.97
15 0.0271 0. 000260 0. 000675 0. 000006 0.281895 0.000013 -28.4 1892 -0.98
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Fig. 7 Histograms of zircon g,(t) values (a-d) and two-stage Hf model ages ( e-h) for the mafic dykes in western Shandong Province

( Table 5; Fig. 7a) . This sample has initial "°Hf/"" Hf ratios
that vary between 0. 281839 and 0. 281896. Fifteen spot analyses

obtained for zircon sample SJO1 yielding variable g,,( t) values
between —31.4 and —-27.6 ( Table 5; Fig.7c) and giving

were made for sample SJ02. The determined negative &y ( )
values for this zircon vary between —29.5 and -28.4 ( Table
5; Fig. 7b). This sample has initial " Hf/'"” Hf ratios that vary
between 0.281864 and 0.281898. Fifteen spot analyses were

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved.

initial "*Hf/'” Hf ratios ranging from 0. 281808 to 0.281921.
Fifteen spot analyses were obtained for zircon sample SJO1
yielding variable &,,( ) values between - 30.3 and - 26.7

Table 5; Fig. 7d and initial "*Hf/" Hf ratios ranging from
& ging

http://www.cnki.net



0. 281842 to 0. 281896.

5 Petrogenesis

5.1 Lithospheric mantle source

The investigated Early Cretaceous mafic dykes are
characterised by low SiO, contents ( 51.4% ~ 51.5%; Table
2) suggesting they were derived from an ultramafic source ( Liu
et al. 2008a b 2009a 2013a b c¢ d).
be ruled out as possible sources as partial melting of any of the
1990) and lower crustal
1998) in the deep crust
would produce liquids with high Si and low Mg contents ( i. e.
granitoid liquids; Rapp et al. 2003) . The high initial ¥ Sr/* Sr
ratios ( ~ 0.7098) negative gy, () values ( - 14.7 to
—14.5) and zircon g,,( #) values ( —=31.4 to —26.7) ( Tables

4 and Table 5) for the mafic dykes are consistent with derivation

Crustal rocks can
crustal rocks ( e. g Hirajima et al.
intermediate granulites ( Gao et al.

from an enriched lithospheric mantle source rather than an
asthenospheric mantle source with a depleted Sr-Nd isotopic
composition such as Middle Ocean Ridge Basalt ( MORB) .

5.2 Crustal contamination

Crustal contamination might cause a significant depletion in
Nb-Ta and enriched Sr-Nd isotopic signatures in basaltic rocks
(Guo et al. 2004)
characterised by negative Nb-Ta anomalies ( Table 3; Fig. 5b)

The dolerites studied here are

and this implies a crustal component in the genesis of the mafic
dyke magma. In Fig.4a b e and h the major elements such as
Si0, CaO TiO,

linear correlation with MgO. This would suggest that magma

and P,0; and so on actually show obscure

mixing or contamination might have played an important role
during the magma ascending. The above observation is further
supported by inherited zircons the fact that the dykes have low
Ni (18.8 x107° ~96.3 x 107°) ( Table 3)
between Mg® Ni and initial Sr ratio ( not shown)
negative high field strength elements (Nb Ta and Ti) positive
2005) and high Ba/
1999) .

no correlation
distinctive

Pb anomalies ( Fig. 5a b; Zhang et al.
Nb ratios ( 103 ~136; Table 3; Jahn et al.

5.3 Genetic model
All of the mafic dykes

characteristics in terms of their geochemisiry and isotopes

studied here have similar
implying a similar source region. On a plot of La versus La/Sm
( not shown) all the samples are distributed along a trend line
for partial melting indicating the dykes were derived by partial
melting of an enriched mantle. In addition as noted above the
possibility of significant and direct assimilation of crust during
the genesis of the mafic magmas occurred. Moreover in the

all the dykes

show distinctive negative anomalies in Nb  Ta and Ti and

primitive-mantle-normalised diagram ( Fig. 5b)

positive anomalies in Pb. HFSE-depletion could indicate the
involvement of components from the proto-Tethyan oceanic or
ancient continental crust ( Zhang et al.  2005) . In addition the
higher La/Nb (3.9 ~4.9) and Ba/Nb ratios ( 103 ~135) in
these rocks ( Table 3) differ from those of most intraplate
including Ocean Island Basalt ( OIB)  alkali
basalt and kimberlite which have much lower ratios of La/Nb

(2.5~0.5) and Ba/Nb (20 to 1) ( Jahn et al. 1999). These

volcanic rocks

N Sr-Nd-Hf 639

data suggest that continental materials ( granitoids granulites
sediments etc. ) were involved in the petrogenesis of the mantle—
derived magmas which is further supported by the low &y, ( ¢)
values from —14.7 to —14. 5 and high ( ¥Sr/*Sr) , values ( ~
0.7098) ( Table 4; Fig. 6) . Therefore

involvement of crustal components that were already incorporated

we propose the

into the mantle source. Nevertheless it is necessary to know by
which mechanism those crustal materials may have been
incorporated.

Accordingly a genetic model is required to decipher the
origin of these dykes. at least two competing
mechanisms can be envisaged ( Liu et al. 2008a b ¢ 2009a
2013b) : (1) contributions from the subducting Yangtze Block
and (2) the action of the subducted ancient Pacific Plate ( Cai et
al. 2013; Tang et al. 2013) . However it is generally
believed that the final collision between the NCC and the Yangtze
Block occurred during the Triassic ( Meng and Zhang 1999;
Zhang et al. 2005) and there was no westwards subduction of
an ancient Pacific Plate below the NCC before the Early
1993) .

yet been presented that a contribution of the Palaeco-Pacific Plate

At present

Cretaceous ( Xu et al. Furthermore no evidence has

to Mesozoic magmatism in the eastern NCC ( Zhang et al.
2005) . Thus

magmas relates to either a subducting Yangtze lithosphere or

it is unlikely that the petrogenesis of these

ancient Pacific Plate. An alternative model therefore is
required to account for how the mafic dykes were formed.

Since the direct assimilation of crustal material has been
shown to be negligible in the genesis of the mafic dykes in the
Zichuan area and if the role of subducting lithosphere ( either
the Yangtze or Palaeco—Pacific plates) can been discounted it is
necessary to know by which reasonable mechanism crustal
materials may have been incorporated into the underlying
lithospheric mantle. The foundering of the lower continental crust
has been suggested as a possible genetic model for the origin of
the Mesozoic mafic dykes in Shandong Province ( Liu et al.
2008a b 2009a b) and because of its higher density than
lithospheric mantle ( Anderson 2006) eclogite can be recycled
into the mantle ( Kay and MahlburgKay 1991; Jull and
Kelemen 2001; Gao et al. 2004) . Moreover eclogites have
lower melting temperatures than mantle peridotites ( Yaxley

2000; Kogiso et al. 2003)

eclogite may partially melt to produce silicic melts ( tonalite to

and so foundered. Silica-saturated

trondhjemite) that may be hybridised with the overlying mantle
peridotite. Such hybridisation could produce an olivine-free

pyroxenite which if subsequently melted would generate
basaltic melt ( Kogiso et al. 2003; Herzberg et al. 2007; Gao
2008) . In the eastern NCC this model is further
supported by observations of intensive lithospheric thinning ( Liu
et al. 2008a b)

120Ma) ( Wang et al.
2003 2004; Liu et al.
2004; Li et al. 2013)
al. 1998; Yang et al.

adakitic rocks ( Gao et al.

et al.

voluminous coeval magmatism ( 130 ~
1998; Guo et al. 2001; Yang et al.
2004 2008a b c¢; Zhang et al.
large-scale mineralization ( Wang et
2003 2004) and the presence of
2004; Liu et al. 2008c 2009b)
all of which could be produced during a process of lithospheric

foundering.
Nevertheless  if delamination of eclogitic lower crust
occurred this would lead to rapid uplift of the study area

( Menzies et al. 2007) . Evidence for this uplift is lacking

however. At the same time lithospheric delamination would
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induce asthenospheric upwelling leading to decompression
melting and the formation and eruption of basalt with similar
geochemical features to that of MORB or OIB. The absence of
such asthenospherically-derived magma contemporaneous with the
studied dykes thus argues against a delamination of the
lithosphere. Moreover
depletion in Th and U

the possibility of delamination of lower crust. Thus

the study dykes are characterized by
and enrichment in K; they all exclude
what is the
cause of the enriched mantle source to the mafic magmas and
where do the hybridized materials derive? These key issues will
be discussed next.

By contrast with the exposed Archaean—Proterozoic
metamorphic complexes and typical marine sediment as a
(2014)
‘cold” subduction of the Yangtze Craton to explain the origin of
the mafic dykes ( 115Ma) from Jiaodong peninsula. Their
interpretation has provided credible evidence based on which

we propose that a sedimentary component derived from Yangtze

possible explanation Guo et al. sought help from

Craton continental crust to be the cause of mantle enrichment
beneath the study area. The interaction of sedimentary melt with
overlying mantle lithologies helped to generate fertile mantle
pyroxenite. Partial melting of this modified and olivine-poor
pyroxenite can produce Mg-—rich magmas with low Nb-Ta-Ti
concentrations. In the Guo et al. (2014) study

suggested that fertile pyroxenite formed through sediment melt—

it was indeed

peridotite interaction to be the source of mafic dykes emplaced
2014) . In
accordance with geophysical observations ( Engebretson et al.

1985)
NCC occurred during the Early Cretaceous.

along the western Shandong Province ( Guo et al.

oblique subduction of the paleo-Pacific Plate towards the
This subduction
exerted a driving force to induce the extensive collapse of the
southeastern margin of the NCC triggering extensive melting of
the metasomatized mantle responsible for mafic magmatism across
the NCC ( Wu et al. 2005) .

As such a special model can explain the formation of the

Chemenda et al. (2000)

proposed a two-imensional thermo-mechanical laboratory model

mafic dykes within the sutdy area.
for continental subduction and used this to interpret the
evolutionary history of the India-Asia collisional system. They
suggested that subducted continental crust or sediments would be
detached from underlying lithosphere mantle if the subduction
was sufficiently rapid or if the subducted lithosphere had a thick
lower crust ( Zhang and Sun 2002) . This model may be suitable
for the Triassic Dabie collisional zone because the Yangtze
Craton is an old Craton and should have had a thickened lower
Thus

possible scenarios for the Dabie collision and for the formation of

crust. we adopt this explanation to help reconstruct
the Mesozoic lithosphere adjacent to the Dabie Orogen.

At ~240Ma collision between the Yangtze Craton and the
NCC occurred along with northward subduction of the paleo—
2002) . The

Yangtze lithosphere was dragged down into mantle by the denser

Tethys oceanic lithosphere ( Zhang and Sun

oceanic lithosphere it comprised. Subsequently the upper/
middle Yangtze crust and sedimentary drape reached a depth of
~200km ( Ye et al. 2000; Zhang and Sun 2002) and
subsequently rapidly moved upward between the NCC and
Yangtze Craton in response to slab break-off of the subducting
oceanic lithosphere ( Davies and Von Blanckenburgh 1995;
O’ Brien 2001). At ~220Ma Yangtze subduction switched to
2000)  which

a highly compressional mode ( Chemenda et al.
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resulted in the detachment of the Yangtze crust and sediments
would be then
underplated beneath the base of the NCC lithosphere because of

from the mantle. The crust tectonically
its buoyancy relative to the surrounding mantle. This process
would lead to a thickened continental root and an isostatic uplift
of the southeastern NCC. The thickened continental root was then
probably eclogitized ( Leech 2001) or melted ( Skjerlie and
Douge 2002) by underlying asthenosphere.

Subsequently silicic melts produced by melting of these
crustal materials migrated through the overriding continental
lithosphere and interacted with mantle peridotite. Extensive
interaction would have completely destroyed the old lithosphere

Sr-Nd
( hybridized) Mesozoic lithosphere that was the source for the

regime  finally generating the isotopic  enriched
Cretaceous dykes’ intrusion. As a result decompression melting
of this enriched mantle at 125 ~ 120Ma produced primary basaltic
melts that evolved to form the mafic magmas that were emplaced
as swarms of dykes across the western Shandong Province of the

southeastern NCC.

6 Conclusions

Based on new geochronological geochemical and Sr-Nd and
Hf isotopic studies of mafic dykes from the Zichuan area of
western Shandong Province the following conclusions can be
drawn:

(1) U-Pb zircon dating indicates that the mafic dykes in
western Shandong Province were emplaced between 121.9 +
0. 6Ma and 124.3 £0. 5SMa.

(2) The mafic dykes in the study area are alkaline and
shoshonitic have high light rare earth element concentrations
with slight negative Eu anomalies ( ( Eu=0.9 ~1.0) and have
K Pb and P and Ti
anomalies. These dykes were derived from partial melting of an

values = ~ 0.7098

and formed from parental

positive Ba and negative Nb Ta

enriched mantle source ( (¥ Sr/* Sr),
exa(7) values= -14.7 to -14.5)
magmas that were generated during lithospheric extension—related
partial melting of an enriched region of the lithospheric mantle
beneath the southeastern NCC. In addition

significant contamination of these magmas during emplacement.

there underwent

(3) The mafic dykes in the study area formed in an
extensional setting following collision between the NCC and the
Yangtze Craton. The magmas that formed these dykes were
sourced from a hybridized source caused by subduction of
Yangtze crustal sedimentary material beneath southeastern NCC

before the Late Mesozoic.
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