第35卷第4期	桂 林 理 工 大 学 学 报	Vol. 35	No. 4
2015 年 11 月	Journal of Guilin University of Technology	Nov.	2015

文章编号: 1674 - 9057(2015)04 - 0747 - 09

doi: 10. 3969/j. issn. 1674 - 9057. 2015. 04. 012

广西大瑶山隆起区大村岩体年代学及地球化学特征

吴佳昌¹,康志强¹²,冯佐海¹,方贵聪¹,庞崇进¹,张青伟¹, 能松泉¹, 蒋兴洲¹, 周国发³

(1. 桂林理工大学 a. 地球科学学院; b. 广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004; 2. 中国科学院地球化学研究所 矿床地球化学国家重点实验室,贵阳 550002; 3. 广西地质调查院,南宁 530023)

摘 要: 广西大瑶山隆起区中部的大村岩体,岩性主要为细粒花岗闪长岩。采用 LA - (MC) - ICP - MS 锆 石 U - Pb 同位素定年技术 获得了该岩体的结晶年龄为451.5±1.3 Ma(MSWD=0.0014),其形成时代为晚 奥陶世,属于加里东晚期岩浆活动的产物。大村岩体岩石含角闪石5%~10%,具低SiO,(60.74%~ 64.53%) 和 K,O/Na,O 值(0.63~0.89),属准过铝质 - 弱过铝质钙碱性系列; Rb、Th、U、Pb 等元素强烈 富集, Ba、Nb、Ta及Ti等元素亏损;稀土总量较低, ∑REE为(58.93~99.14)×10⁻⁶, δEu = 0.75~0.83, 具弱的负铕异常。综合判断属于 I 型花岗岩,应为陆内造山运动早期碰撞挤压背景下岩浆活动的产物。 关键词:花岗闪长岩;LA - (MC) - ICP - MS 锆石 U - Pb 定年;地球化学;大村岩体;大瑶山隆起区 中图分类号: P597.3; P588.122 文献标志码: A

大瑶山地区位于广西中东部,面积约 1.8 万 Pb 年代学研究,测得其年龄为 456.9 ± 2.0 Ma^[1], km^2 ,大地构造位置上属于南华活动带桂中-桂东 北褶皱系之大瑶山隆起。前人对该区岩浆岩做了 大量的地质研究工作,取得了一系列的研究成 果^[1-6]。研究表明,大瑶山地区岩浆岩主要发育。 有加里东期和燕山期两期^[1,3-4](图1a):加里东期 花岗岩多呈岩脉、岩墙、小岩株产出,由闪长岩、 花岗闪长(斑)岩等中酸性岩浆岩组成,年龄多为 432.0~468.2 Ma,成因类型为幔源同熔型(I型) 花岗岩^[1-2,5-6]; 而燕山期花岗岩多呈岩株、岩基产 出,少部分呈岩脉产出,主要由黑云母花岗岩、二 长花岗岩、闪长花岗岩等酸性岩组成,年龄多在 91.0~168.7 Ma,属于改造型(S型)花岗岩^[13]。 大村岩体位于大瑶山降起区中部,是该区加里东 期代表性花岗岩之一。前人对其进行了锆石 U-

但地球化学研究目前尚处空白,因此,本文对大 村岩体进行了系统的年代学和地球化学研究,厘 定其成岩时代和成因类型,进而对其形成构造背 景加以约束。

1 地质背景

大瑶山降起区位干扬子陆块与华夏陆块拼合 处(图1b),区域上断裂较发育,主要发育南北向 和北东向断裂。区内出露的地层主要为寒武系和 震旦系。寒武系为一套浅海相类复理式砂泥质沉 积岩,下部夹3~4层硅质岩,个别地方上部夹透 镜状灰岩或大理岩(广西苍梧县岭脚镇附近)。震 旦系岩性以轻微变质的粗 - 中粒砂岩、细砂岩、 粉砂岩为主,夹数层页岩、硅质岩及硅质页岩。广

收稿日期: 2015-05-25

基金项目: 国家自然科学基金项目(41162005; 41463001; 41572191); 广西自然科学基金重点项目(2015GXNSFDA139029); 广 西找矿突破战略行动地质矿产勘查项目(桂国土资函[2014]459);广西"八桂学者"创新团队项目(2013,有色金属 成矿理论与勘查技术); 广西研究生教育创新计划项目(YCSZ2015158); 广西矿冶与环境科学实验中心项目 (KH2011ZD002)

作者简介:吴佳昌(1989—),男,硕士研究生,研究方向:构造地质、地球化学,jiachang0512@163.com

通讯作者: 康志强,博士,副教授,zk99201@163.com。

引文格式:吴佳昌,康志强,冯佐海,等.广西大瑶山隆起区大村岩体年代学及地球化学特征 [J]. 桂林理工大学学报, 2015, 35 (4): 747-755.

图 1 广西大瑶山地区花岗岩类时空分布图(据文献 [1,7-9] 修改) Fig. 1 Spatial-temporal distribution of granitoids in Dayaoshan area, Guangxi 1—寒武系砂岩夹泥岩;2—震旦系硅质岩夹泥岩;3—晚燕山期岩浆岩;4—早燕山期岩浆岩;5—海西-印支期岩浆岩;6—加里东 期岩浆岩;7—断层;8—地名及年龄;9—研究区;Ⅰ—桂中凹陷;Ⅱ—大瑶山隆起;Ⅲ—钦防海槽;Ⅳ—云开隆起;Ⅴ—粤中凹陷

西大瑶山隆起区岩浆岩较为发育,主要发育有古 龙、大村、胡六脑、夏郢等花岗闪长岩岩株,古袍、 平头背、社山等花岗斑岩株和岩墙群(图1a)。

大村花岗岩体位于广西藤县古龙镇北西约 5.0 km 处,呈长轴为北北西向的椭球状分布,岩株状产 出,出露面积约 6.0 km²,侵入于寒武纪地层中,接 触带常见角岩化、硅化,未接触有新地层(图 2)。

2 岩体及样品特征

大村岩体岩性主要为浅灰白色细粒花岗闪长 岩,呈半自形粒状结构,块状构造(图3)。主要组 成矿物为斜长石(31%~48%)、钾长石(1%~ 8%)、石英(20%~30%)、黑云母(10%~23%)、 角闪石(5%~10%),副矿物主要有榍石、磷灰 石、锆石、钛铁矿等。岩石蚀变类型主要有绢云母 化、绿泥石化、硅化、碳酸盐化等。斜长石呈半自

图3 大村花岗闪长岩标本及显微镜下照片 Fig. 3 Photos and microphotographs of Dacun granodiorite 样品 DC-01 (a、b、c); 样品 DC-04 (d、e、f); Qtz—石英; Kfs—钾长石; Pl—斜长石; Bt—黑云母; Amp—角闪石

形板状,具明显的聚片双晶,粒径一般1~3 mm; ~2 mm; 石英呈他形粒状, 粒径一般 0.5~2.5 mm,充填于其他矿物的空隙当中;黑云母呈片 状,斑晶大小不一,一组完全解理;角闪石为长 柱状,呈浅黄绿色,部分发生了绿泥石化。

分析测试方法 3

本次研究一共采集了4件细粒花岗闪长岩样 品,具体采样位置见图2。

用于年龄测试的岩石样品经破碎成粉末、人 工淘洗、电磁分选和重液分选后,在双目镜下挑 选出晶形较好、透明度高的锆石晶体,在重庆宇。 劲科技有限公司进行制耙和阴极发光图像扫描, 在天津地质调查中心实验室采用 LA - (MC) - ICP - MS 进行锆石 U - Pb 年龄测试分析。锆石 U - Pb 年龄分析采用的光斑直径为 30 µm,并采用国际标 正方法为每隔8个样品分析点测一次标准,保证标 准和样品的仪器条件完全一致。样品的同位素数据 处理采用软件 ICPMSDATACal 进行,年龄计算及谐。 和图的绘制采用 Isoplot 3.23 进行,测试中的误差 标准为 1σ 。

全岩样品分析在中国科学院广州地球化学研 钾长石表面较脏,呈半自形板柱状,粒径一般0.8 究所完成,其中主量元素利用 X 射线荧光光谱法 测定,分析相对误差小于2%~5%;微量元素分 析在电感耦合等离子质谱仪(ICP - MS)上进行, 分析精度优于10%。

> 4 LA - (MC) - ICP - MS 锆石 U - Pb 定年分析

> 本次研究采集了1件细粒花岗闪长岩样品 (DC-05) 进行锆石 U - Pb 年龄测试分析,分析结 果见表1。

大村岩体细粒花岗闪长岩中的锆石多呈典型 的长柱状,多数透明度较好,柱面和锥面均清晰 可见, 锆石颗粒长度在 150~300 µm, 个别大于 300 µm, 宽 60~150 µm, 长宽比一般介于1:1和4 :1之间。锆石阴极发光(CL)图像显示(图4b), 锆 石具明显的岩浆振荡环带结构, 锆石 Th/U 值为 准锆石 GJ-1(600 Ma) 作为外标标准物质,外标校 0.35~1.08,显示出典型的岩浆锆石特征。其中2 号锆石存在老的继承核,其内部环带模糊,呈现 为椭圆状晶形,边缘有溶蚀、圆化和重结晶的迹 象,具有源区继承锆石的特点。

> 24 个测点中, 共有 16 个分析点位于 U - Pb 谐和线上及其附近,除2号锆石外的15粒锆石

Table 1 Zircon U – Pb results of Dacun granitic pluton (Sample DC-05)											
测点 一	w _B /	$w_{\rm B}/10^{-6}$		同位素比值及误差							
	U	Th	- Th/U	$^{207}{\rm Pb}/^{235}{\rm U}$	$\pm 1\sigma$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	±1 σ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	$\pm 1\sigma$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	$\pm 1\sigma$
1	285	149	0.48	0.5859	0.005 2	0.072 6	0.000 2	468	3.3	452	1.5
2	141	102	0.72	1.5126	0.008 9	0.1563	0.0007	936	3.6	936	3.9
3	337	134	0.35	0.5543	0.004 1	0.072 5	0.0004	448	2.7	451	2.3
4	321	135	0.39	0.5563	0.005 2	0.072 5	0.0004	449	3.4	451	2.3
5	318	127	0.43	0.582 1	0.005 8	0.072 6	0.0004	466	3.7	452	2.3
6	289	131	0.49	0.5668	0.005 6	0.072 6	0.000 6	456	3.6	452	3.4
7	283	157	1.07	0.5616	0.004 4	0.072 5	0.0004	453	2.8	451	2.2
8	267	166	0.97	0.5609	0.004 4	0.072 6	0.0004	452	2.9	452	2.4
9	302	149	0.57	0.5747	0.008 2	0.072 5	0.0004	461	5.3	451	2.5
10	262	172	1.08	0.5711	0.004 0	0.072 6	0.000 2	459	2.6	452	1.5
11	256	171	0.56	0.5817	0.006 6	0.072 5	0.000 3	466	4.3	451	1.8
12	274	161	0.89	0.5770	0.004 2	0.072 5	0.000 3	463	2.7	451	2.0
13	296	156	0.59	0.5623	0.011 3	0.072 6	0.000 2	453	7.4	452	1.5
14	345	129	0.54	0.562 0	0.004 7	0.072 5	0.000 2	453	3.1	451	1.5
15	279	153	0.91	0.581 2	0.005 0	0.072 6	0.0004	465	3.2	452	2.6
16	319	155	0.96	0.5602	0.007 2	0.072 5	0.000 3	452	4.7	451	1.9

表 1 大村岩体(样品 DC-05) LA - (MC) - ICP - MS 锆石 U - Pb 分析结果

图 4 锆石阴极发光图像(a)和 U – Pb 年龄谐和图(b) Fig. 4 Zircon CL images (a) and U – Pb concordia diagram (b)

²⁰⁶ Pb / ²³⁸ U 加权平均年龄为 451.5 ±1.3 Ma(95% 以上的置信度 ,MSWD = 0.001 4) (图 4b),代表了细粒花岗闪长岩的结晶年龄,为晚奥陶世。2 号锆石内部环带模糊,边沿呈现出溶蚀、圆化和重结晶的迹象,测得其²⁰⁶ Pb / ²³⁸ U 年龄为 936 ± 3.9 Ma,老于岩浆锆石的年龄,可能为岩浆上侵时捕掳的锆石的年龄或者是继承锆石的年龄。

5 岩石地球化学特征

大村细粒花岗闪长岩的主量元素分析结果见 表 2,在 SiO₂ - (Na₂O + K₂O) 图解上(图 5),所有

样品投影在亚碱性系列区,其中 3 个样品落于花 岗闪长岩范围内,1 个样品落在闪长岩区域,其 SiO₂ 含量为 60.74% ~ 64.53%,TiO₂ 含量为 0.35% ~ 0.47%,Fe₂O₃的含量为 5.80% ~ 6.89%,Al₂O₃含量为 15.56% ~ 17.05%,CaO的 含量为 3.93% ~ 5.08%,MgO的含量为 2.13% ~ 2.86%,P₂O₅的含量变化为 0.12% ~ 0.14%, K₂O和 Na₂O的含量变化分别为 1.80% ~ 2.24%和 2.16% ~ 3.22%,显示出高Ti、Fe、Al、Ca、Mg, 低Si、K、Na、P的特点。K₂O/Na₂O 值小于 1, 在SiO₂ - K₂O 图解(图6)上,样品落入了钙碱性系

表2 大村岩体主量元素分析结果

 Table 2
 Major element compositions of Dacun granitic pluton

				$w_{\rm B}$ / %
样号	DC-01	DC-03	DC-04	DC-05
SiO ₂	60.74	64. 53	64.14	63.35
TiO_2	0.47	0.37	0.35	0.40
Al_2O_3	17.05	16.10	15.56	15.62
$\mathrm{Fe}_{2}\mathrm{O}_{3}^{\mathrm{T}}$	6.89	5.80	5.66	6.03
MnO	0.18	0.15	0.20	0.16
MgO	2.86	2.16	2.13	2.43
CaO	4.25	3.93	5.12	5.08
Na_2O	2.16	2.85	3.04	3.22
K_2O	1.91	1.80	2.24	2.10
P_2O_5	0.14	0.12	0.12	0.13
LOI	3.33	2.46	0.75	1.12
Total	99. 98	100. 27	99.31	99.63
Mg#	51.2	51.6	50.6	49.0
$\rm FeO^{T}$	3.82	3.54	4.60	4.57
K ₂ O/Na ₂ O	1.13	1.59	1.35	1.54

w(SiO₂) / % 图 6 SiO₂ - K₂O 图解(仿文献 [11 - 12]) Fig. 6 SiO₂ - K₂O diagram 列范围内。在 *A/CNK – A/NK* 图中(图7),样品 落在准铝质 – 过铝质系列区。

大村岩体的微量元素分析结果如表 3 所示。 在微量元素原始地幔标准化蛛网图(图 8)中, 样品数据总体呈现右倾特征,强烈富集大离子亲 石元素 Rb 和高场强元素 Th、U、Pb,明显亏损 Ba、Nb、Ta 及 Ti 等元素; 与原始地幔相比,所有 的元素均大于1,多数大于10。

ィ A/CNN-A/IVN 宮畔(1万又歌 [13]) Fig. 7 A/CNK-A/NK diagram

表3 大村岩体微量元素分析结果

Table 3 Trace element compositions of Dacun

	granitic	pluton	$w_{\rm B}/10^{-6}$	
样号	DC-03	DC-04	DC-05	
Rb	65.18	86.69	85.80	
Ba	529.90	681.30	704.50	
Th	11.96	11.10	18.10	
U	3. 57	3.99	3.00	
Nb	8.62	9.10	9.01	
Та	0. 89	0.94	0.80	
Pb	23.66	28.58	41.81	
\mathbf{Sr}	244.80	230. 30	243.30	
Zr	107.10	89.82	94.30	
Hf	3. 50	3.10	2.99	
Ti	2 183.60	2 149.90	2 458.80	
Y	20.73	17.40	18.36	
Sc	13.12	14.34	16.61	
V	108.00	105.50	121.90	
Cr	15. 57	20. 51	17.79	
Mn	1 083.60	1 472.20	1 207.80	
Co	12.29	12.31	13.13	
Ni	9. 53	12.95	10.38	
Cu	8.73	37.47	41.48	
Zn	58.93	61.79	67.22	
Ga	16.22	16.11	16. 79	
Ge	2.07	1.89	2.04	
Cs	4. 28	5. 55	4.90	

2015 年

大村岩体稀土元素分析结果及特征参数见表 4。样品的稀土元素含量偏低,ΣREE 值为(58.93 ~99.14)×10⁻⁶,配分曲线呈明显的右倾模式(图 9);轻稀土相对富集,LREE/HREE = 4.63 ~7.65, (La/Yb)_N值变化范围 3.86 ~7.84,(La/Sm)_N值为 2.94~4.88,(Gd/Yb)_N值为 0.98~1.15,轻重稀土 分馏较明显;具轻微负 Eu 异常 δEu 为 0.75~0.83。

6 讨 论

6.1 形成时代 采用高精度的 LA - (MC) - ICP - MS 锆石 U - Pb

样号 DC-03 DC-04 DC-05 La 18.67 10.62 22.26 Ce 36.21 21.41 41.21 Pr 4.15 2.71 4.56 Nd 15.24 10.75 15.98 Sm 2.95 2.33 2.95 Eu 0.73 0.65 0.72 Gd 2.89 2.34 2.84 Tb 0.52 0.43 0.48 Dy 3.19 2.67 2.91 Ho 0.72 0.60 0.65 Er 2.13 1.81 1.91	10 -6
La 18. 67 10. 62 22. 26 Ce 36. 21 21. 41 41. 21 Pr 4. 15 2. 71 4. 56 Nd 15. 24 10. 75 15. 98 Sm 2. 95 2. 33 2. 95 Eu 0. 73 0. 65 0. 72 Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Ce 36. 21 21. 41 41. 21 Pr 4. 15 2. 71 4. 56 Nd 15. 24 10. 75 15. 98 Sm 2. 95 2. 33 2. 95 Eu 0. 73 0. 65 0. 72 Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Pr 4.15 2.71 4.56 Nd 15.24 10.75 15.98 Sm 2.95 2.33 2.95 Eu 0.73 0.65 0.72 Gd 2.89 2.34 2.84 Tb 0.52 0.43 0.48 Dy 3.19 2.67 2.91 Ho 0.72 0.60 0.65 Er 2.13 1.81 1.91	
Nd 15. 24 10. 75 15. 98 Sm 2. 95 2. 33 2. 95 Eu 0. 73 0. 65 0. 72 Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Sm 2. 95 2. 33 2. 95 Eu 0. 73 0. 65 0. 72 Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Eu 0. 73 0. 65 0. 72 Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Gd 2. 89 2. 34 2. 84 Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Tb 0. 52 0. 43 0. 48 Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Dy 3. 19 2. 67 2. 91 Ho 0. 72 0. 60 0. 65 Er 2. 13 1. 81 1. 91	
Ho 0.72 0.60 0.65 Er 2.13 1.81 1.91	
Er 2.13 1.81 1.91	
Tm 0.33 0.28 0.30	
Yb 2. 25 1. 97 2. 04	
Lu 0. 39 0. 35 0. 35	
Σ REE 90. 38 58. 93 99. 14	
LREE 77. 95 48. 47 87. 68	
HREE 12.42 10.46 11.46	
LREE/HREE 6. 27 4. 63 7. 65	
<u>δ</u> Eu 0. 76 0. 83 0. 75	

表4 大村岩体稀土元素分析结果 Table 4 REE element compositions of Dacun granitic pluton

法对大村岩体细粒花岗闪长岩的岩浆锆石进行测 试分析,获得了451.5±1.3 Ma(95%以上的置信 度,*MSWD*=0.0014)的锆石结晶年龄,与陈懋弘 等^[1]测得的456.9±2 Ma基本一致,从而厘定了 大村岩体的形成时代为晚奥陶世,属于加里东晚 期岩浆活动的产物。

6.2 岩石类型

根据岩浆来源,花岗岩可分为 I 型和 S 型两 类。其中,I 型花岗岩源岩为未经风化的火成岩, 而 S 型花岗岩源岩为经风化后的沉积岩。因此两 者在成分上有一定区别^[16-18]。大村岩体的测试结 果表明,其矿物组合中含角闪石、黑云母、榍石 等矿物,属于准铝质-过铝质花岗岩; SiO₂ 含量 变化范围为 60.74% ~ 64.53%,均值为 63.19%; K_2O/Na_2O 值较低(0.63~0.89);100Fe³⁺/(Fe³⁺ + Fe²⁺)均值为 53%; 具轻微负 Eu 异常。以上特征 与典型的 I 型花岗岩更加相符^[16-18]。

此外,大村岩体的 P_2O_5 含量与 SiO_2 呈负相关 关系(图 10a),也表现出 I 型花岗岩的特征。在 准铝质至弱过铝质岩浆中(A/CNK < 1.1),磷灰石 溶解度低,在岩浆分异过程中易过饱和而从岩浆 中分离结晶,导致 P_2O_5 含量随 SiO_2 含量增加而降 低^[19],而 S 型花岗岩则往往有着高的 P_2O_5 含量, 并与 A/CNK 值呈正相关趋势^[16 20-21]。在花岗岩成 因判别图 Ce – SiO₂ 图解中(图 10b)可知,全部 样品落入了 I 型花岗岩内;在 ACF 图解上(图 11),所有样品也落在了 I 型花岗岩范围内,进一 步表明大村岩体细粒花岗闪长岩应为 I 型花岗岩。 6.3 构造背景

前人研究表明,钙碱性 I 型花岗岩既可出现在 板块俯冲阶段^[24],也可在后碰撞阶段形成^[25]。

Fig. 10 $SiO_2 - P_2O_5(a)$ and $SiO_2 - Ce(b)$ diagrams

在 Y - Nb 图解中(图 12),大村岩体样品全部 投影在火山弧 - 同碰撞花岗岩区;在 Si - Fe - Mg - Ca 等构成的花岗岩构造环境系列判别图上(图 13),全部样品落在了岛弧花岗岩类(IAG)+大陆 花岗岩类(CAG)+大陆碰撞花岗岩类(CCG)范围

Fig. 12 Y – Nb diagram

60 r 60 (a) 1.0 (c) (b) 50 RRG+CEUG 50 RRG+CEUG 0.9 RRG+CEUG %40 30 20 %/(0⁹H+O^gM)^M 40 POG 8.0 (FeO+Mg) 0.2 0.0 (FeO+Mg) 0.6 0.6 w(FeO^T)/% POG POG 20 IAG+CAG+CCG 10 10 IAG+CAG+CCG 0.5 IAG+CAG+CCG 0.4 0 0 80 4 20 24 4 8 12 16 20 60 64 68 72 76 8 12 16 w(SiO₂) / % w(MgO)/% w(CaO) / %

图 13 大村岩体 Si – Fe – Mg – Ca 构造环境判别图解(仿文献 [27]) Fig. 13 Si – Fe – Mg – Ca discrimination diagrams for tectonic settings of Dacun granitic pluton

IAG一岛弧花岗岩类; CAG一大陆花岗岩类; CCG一大陆碰撞花岗岩类; POG一造山后花岗岩类; RRG一与裂谷有关的花岗岩类; CEUG—陆内造陆隆起花岗岩类

内。在早古生代,华南大陆发生了加里东期陆内造 山运动,从而导致云开陆块与桂滇-北越陆块近 南北向碰撞,造成了在两陆块拼合部位的大瑶山 地区隆起,整体形成了大瑶山复式背斜,同时伴 随着大规模的岩浆活动^[22 28-31]。因此,结合区域 构造演化背景,笔者倾向于认为大村岩体应该形 成于陆内造山运动早期碰撞挤压背景下。

7 结 论

LA - (MC) - ICP - MS 锆石 U - Pb 定年结果 表明,大村花岗闪长岩的结晶年龄为451.5±1.3 Ma(MSWD = 0.0014),形成时代为晚奥陶世,属 于加里东晚期岩浆活动的产物。其地球化学特征 显示 I 型花岗岩属性。综合地质与地球化学证据, 大村岩体的形成构造背景应为陆内造山运动早期 碰撞挤压背景。

参考文献:

- [1] 陈懋弘,李忠阳,李青,等.初论广西大瑶山地区多期次
 花岗质岩浆活动与成矿系列 [J].地学前缘,2015,22
 (2):41-53.
- [2] 程顺波,付建明,徐德明,等. 桂东北大宁岩体锆石
 SHRIMP 年代学和地球化学研究 [J]. 中国地质,2009,
 36 (6): 1278 1288.
- [3] 广西地质局区域地质普查大队.1:20万桂平幅区域地质图 和调查报告 [R].桂林:广西区域地质调查研究院, 1964.
- [4] 黄惠民,和志军,崔彬.广西大瑶山地区花岗岩成矿系列[J].地质与勘探,2003,39(4):12-16.
- [5] 刘腾飞. 桂东花岗岩类特征及其与金矿关系 [J]. 广西 地质, 1993, 6 (4): 77-86.
- [6] 骆靖中. 桂东地区花岗岩类与金银成矿的关系 [J]. 桂林冶金地质学院学报, 1993, 13 (4): 329-339.
- [7] 蒋兴洲,康志强,许继峰,等.广西大瑶山隆起宝山铜矿 区斑岩体锆石 U-Pb 定年及其地质意义 [J].桂林理工 大学学报,2015,35(4):766-773.
- [8] 熊松泉,康志强,冯佐海,等.广西大瑶山地区大进岩体 的锆石 U – Pb 年龄、地球化学特征及其意义 [J].桂林 理工大学学报,2015,35(4):736-746.
- [9] 叶鸣,张青伟,胡华清,等.广西昭平县大王顶岩体花 岗闪长斑岩年代学和地球化学特征 [J].桂林理工大学 学报,2015,35 (4):756-765.
- [10] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association [J]. Lithous , 1980 13: 97 – 108.
- [11] Peccerillo A , Taylor S R. Geochenustiy of eocene calc-alka-

line volcanic rocks from the Kastamonu area , Northem Turkey
[J]. Contributions to Mineralogy and Petrology , 1976 , 58:
63 - 81.

- [12] Middlemost Eric A K. Magmas and Magmatic Rocks [M]. London: Longnmn, 1985.
- [13] Maniar P D, Piccoli P M. Tectonic Discrimination of granitoids [J]. Geological Society of America Bulletin, 1989, 101 (5): 635-643.
- [14] McDonough W F, Sun S -s. The composition of the earth [J]. Chemical Geology ,1995 ,120 (3): 223 - 253.
- [15] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies [M] //Henderson P. Rare Earth Elements Geochemistry. Amsterdam: Elsevier, 1984: 63 – 144.
- [16] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites [J]. Lithos, 1999, 46 (3): 535-551.
- [17] Sylverster P J. Post-collision strongly peraluminous granites[J]. Lithos , 1998 , 45: 29 44.
- [18] 周刚,张招崇,罗世宾,等.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义[J].岩石学报,2007,23(8):1909-1920.
- [19] Wolf M B , London D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms [J]. Geochimica et Cosmochimica Acta , 1994 , 58 (19): 4127-4145.
- [20] Li X H , Li Z X , Li W X , et al. U Pb zircon , geochemical and Sr – Nd – Hf isotopic constraints on age and origin of Ju– rassic I and A-type granites from central Guangdong , SE Chi– na: A major igneous event in response to foundering of a sub– ducted flat-slab? [J]. Lithos , 2007 , 96: 186 – 204.
- [21] Wu F Y , Jahn B M , Wilde S A , et al. Highly fractionated Itype granites in NE China (I): Geochronology and petrogenesis [J]. Lithos , 2003 , 66: 241 – 273.
- [22] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia [J]. Contributions to Mineralogy and Petrology, 1982, 80: 189 – 200.
- [23] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt [J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992. 83: 1-26.
- [24] Pitcher W S. Granites and yet more granites forty years on [J]. Geologische Rundschau , 1987 , 76 (1): 51 – 79.
- [25] 韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性 [J]. 地学前缘, 2007, 14 (3): 64 72.
- [26] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of graniticrocks [J]. Journal of Petrology, 1984, 25(4): 956-983.

755

- [27] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin , 1989 , 101: 635-643.
- [28] 湖升奇,周国发,彭松柏,等.广西大黎铜钼矿石英二 长(斑) 岩年代学、地球化学特征及其地质意义 [J].
 地球学报,2012,33 (1): 23-37.
- [29] Faure M , Shu L S , Wang B , et al. Intracontinental subduction: A possible mechanism for the Early Paleozoic Orogen of

SE China. [J]. Terra Nova, 2009, 21 (5): 360-368.

- [30] 李建华. 华南中生代大地构造过程——源于北部大巴山 和中部沅麻盆地、衡山的构造变形及年代学约束 [D]. 北京: 中国地质科学院, 2013.
- [31] 郝义,李三忠,金宠,等. 湘赣桂地区加里东期构造变
 形特征及成因分析 [J]. 大地构造与成矿学,2010,34
 (2): 166-180.

Geochronology and geochemistry of Dacun granitic pluton in Dayaoshan uplift area , Guangxi

WU Jia-chang1 , KANG Zhi-qiang12 , FENG Zuo-hai1 , FANG Gui-cong1 , PANG Chong-jin1 ,

ZHANG Qing-wei¹, XIONG Song-quan¹, JIANG Xing-zhou¹, ZHOU Guo-fa³

(1. a. College of Earth Sciences; b. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, China; 2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 3. Geological Survey of Guangxi, Nanning 530023, China)

Abstract: The Dacun granitic pluton , located in Dayaoshan uplift area , includes mainly fine-grained granodiorite. The formation age of 451.5 ± 1.3 Ma(*MSWD* = 0.001 4) is obtained by LA-(MC) -ICP-MS zircon U – Pb dating , which was formed in the Late Ordovician , due to Late Caledonian magmatic activity. The Dacun granitic pluton includes hornblende (5% – 10%) and shows the feature of low SiO₂(60.74% – 64.53%) and K₂O/ Na₂O ratio (0.63 – 0.89) , and belongs to the quasi peraluminous-weakly peraluminous calc-alkaline series. The rock is characterized by enrichment of Rb ,Th ,U and Pb , depletion of Ba ,Ta ,Nb and Ti. The REE model is characterized by low REE contents. Σ REE is in the range of (58.93 – 99.14) × 10⁻⁶ &Eu = 0.75 – 0.83. REE distribution curve has a weak negative europium anomalies. It belongs to I-type granite , which was formed under the background of intracontinental orogeny in the early impact extrusion product of magmatic activity. **Key words**: granodiorite; LA-(MC) -ICP-MS zircon U – Pb dating; geochemistry; Dacun granitic pluton; Dayaoshan uplift area