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Abstract One of the most important questions in the

science of global change is how to balance the atmospheric

CO2 budget. There is a large terrestrial missing carbon sink

amounting to about one billion tonnes of carbon per

annum. The locations, magnitudes, variations, and mech-

anisms responsible for this terrestrial missing carbon sink

are uncertain and the focus of much continuing debate.

Although the positive feedback between global change and

silicate chemical weathering is used in geochemical models

of atmospheric CO2, this feedback is believed to operate

over a long timescale and is therefore generally left out of

the current discussion of human impact upon the carbon

budget. Here, we show, by synthesizing recent findings in

rock weathering research and studies into biological carbon

pump effects in surface aquatic ecosystems, that the carbon

sink produced by carbonate weathering based on the H2O–

carbonate–CO2–aquatic phototroph interaction on land not

only totals half a billion tonnes per annum, but also dis-

plays a significant increasing trend under the influence of

global warming and land use change; thus, it needs to be

included in the global carbon budget.

Keywords Carbon sink � H2O–carbonate–CO2–

aquatic phototroph interaction � Carbonate

weathering � Biological carbon pump � Land aquatic

ecosystem � Global change

1 Introduction

One of the most important questions in the science of

global change is how to balance the atmospheric CO2

budget [1–4]. According to Melnikov and O’Neill [3], there

is a large terrestrial missing carbon sink as follows:

The (terrestrial) missing carbon sink = sources (emissions

from fossil fuels ? net emissions from changes in land use)

- sinks (oceanic uptake ? atmospheric increase), i.e.,

2.8 = 7.9 (6.3 ? 1.6) - 5.1 (1.9 ? 3.2) (all values in Pg C/a,

1 Pg = 1015 g).

The locations, magnitudes, variations, and mechanisms

responsible for the terrestrial missing carbon sink, how-

ever, are uncertain and continue to be debated. The pre-

vailing dogma has focused on carbon sinks in soil and

vegetation [5–8]. The preferred explanation for the missing

carbon sink is the effect of CO2 and/or nitrogen fertiliza-

tion [5–7]. For example, Kheshgi et al. [7] found that

*25 % of CO2 emissions are sequestered by the terrestrial

biosphere. Therefore, there is still a *0.8 Pg C/a missing

sink (or net terrestrial flux) to be determined.

Although the positive feedback between global change

and the silicate chemical weathering of rocks is used in

geochemical models of atmospheric CO2 [9], this effect is

believed to operate over a long timescale and therefore is

generally left out of the current discussion of human impact

upon the carbon budget [10]. For example, current global

carbon budgets assume that pre- and post-anthropogenic

riverine carbon fluxes are equal [11].
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Here, we show, by synthesizing recent findings in rock

weathering research and studies into biological carbon

pump effects in surface aquatic ecosystems, that the carbon

sink produced by carbonate weathering based on the H2O–

carbonate–CO2–aquatic phototroph interaction on land not

only totals one half billion tonnes per year [12], but also

displays a significant increasing trend under the dual

influence of global warming and land use change [12–15],

comparable with those in the world’s forests [8]. Therefore,

the atmospheric CO2 sink produced by the H2O–carbon-

ate–CO2–aquatic phototroph interaction on land needs to

be included in the global carbon budget due to both its

large quantity and its changing characteristics.

2 Significance of weathering of trace carbonates

in silicate rock watersheds

Although primarily known in carbonate rocks, carbonate

(mainly CaCO3) is also commonly associated with silicate

rocks, such as shales, calcareous sandstones, metamor-

phosed gneisses and schists, hydrothermally altered gra-

nitic rocks [16], and pristine granitoids, which probably

form CO2-rich fluids associated with the final cooling of

batholiths as well as during later periods of hydrothermal

activity [17, 18]. Therefore, the CO2 consumed in silicate

rock terrains does not necessarily result primarily from

silicate weathering: It may be chiefly due to the contribu-

tion of rapid calcite dissolution in the silicate rocks [16–

18]. For instance, Blum et al. [16] investigated the major

element and strontium (Sr) isotope geochemistry of bed-

rocks, surface waters, and river sands in the Raikhot

watershed within the High Himalayan Crystalline Series

(HHCS) of northern Pakistan. Mass balance calculations of

mineral-weathering contributions to the flux of dissolved

ions from the watershed showed that 82 % of the HCO3
-

flux is derived from the weathering of carbonate minerals

and only 18 % from silicate weathering, even if the bed-

rock in the watershed is predominantly silicate rocks

(quartzofeldspathic gneiss and granite) with only *1 %

carbonate. This indicated the significance of small amounts

of bedrock carbonate in controlling the water chemistry of

silicate rock watersheds. It also suggests that the flux of Sr

with high 87Sr/86Sr ratios in major Himalayan rivers may

be derived mainly from the weathering of small amounts of

calcite within the HHCS silicates. Therefore, models using

the flux of radiogenic Sr from the Himalaya as a proxy for

silicate weathering rates may overestimate the amount of

CO2 consumption attributable to reactions with silicates

there. Similar results were obtained by Jacobson et al. [19,

20], who showed that the conventional application of two-

component Ca/Sr and 87Sr/86Sr mixing equations overes-

timated silicate-derived Sr2? and HCO3
- fluxes from the

Himalaya. They found that carbonate dissolution provided

more than 90 % of the weathering-derived HCO3
-, Ca2?

and Sr for at least 55 ka following initial exposure of rock

surfaces, although carbonate may represent only

*1.0 wt% in fresh glacial till; this significantly increases

the ratios of HCO3
-/Na? and Ca2?/Na? in the so-called

silicate end-member reservoir. Jacobson et al. [20] also

found the following: (1) Carbonate bedrock in the Hima-

laya has a wide range of ratios of Ca/Sr and 87Sr/86Sr that

cannot be adequately defined by a single end-member in

conventional mass balance equations; and (2) Ca2?

behaves non-conservatively during transport in Himalayan

stream waters. The removal of up to 70 % of the dissolved

Ca2? by calcite precipitation appears to be a pervasive

process in the Himalaya that drives dissolved Ca/Sr ratios

toward values much lower than those measured in car-

bonate bedrock. Therefore, they concluded that, without

taking these factors into account, stream water Ca/Sr and
87Sr/86Sr ratios, and hence HCO3

-, can be erroneously

interpreted as representing the dominance of silicate dis-

solution. We think similar problems could arise with the

inversion method if ratios of HCO3/Na and Ca/Na are used.

This may explain why Gaillardet et al. [21] obtained such

high estimates of CO2 consumption from silicate weath-

ering despite the fact that its weathering rates are 102–108

times lower than those of carbonates [22, 23]. They cal-

culated CO2 consumption vis-à-vis silicate weathering by

measuring the bulk chemistry of large rivers and underes-

timated the carbonate weathering contributions that occur

in predominantly silicate areas.

In a more recent study, Moore et al. [24] tracked the

relation between mountain uplift, silicate weathering, and

long-term CO2 consumption by the use of Ca isotopes in the

Southern Alps, New Zealand. Although rocks in the sampled

watershed contain only *3 % hydrothermal and metamor-

phic calcite, these authors found that riverine Ca largely

originates from carbonate weathering and that the fraction of

Ca from carbonate weathering increases with increasing tec-

tonic activity, from *50 %–60 % in regions experiencing the

lowest uplift rates to as high as [90 % in regions experi-

encing the highest uplift rates. Therefore, they concluded that

silicate weathering in the Himalayan–Tibetan Plateau is also

not a major sink for atmospheric CO2.

It should be noted that present results are mainly from

the uplifted silicate areas, which are conventionally

thought to have stimulated CO2 consumption by silicate

weathering. Research results from other areas are needed in

future.

To summarize, the contribution of carbonate weathering

to the atmospheric CO2 sink may have been greatly

underestimated in these previous studies [21, 25, 26] due to

ignorance of the important role played by trace calcite in

silicate rock areas.
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3 Photosynthetic uptake of DIC by aquatic phototrophs

(the biological carbon pump effect)

DIC (dissolved inorganic carbon, DIC=CO2(aq) ?

HCO3
- ? CO3

2-) in surface waters is consumed by

aquatic photosynthesis on the continents and in the ocean

[27–30]. Some of it, of course, will return to the atmo-

sphere due to the CO2 pressure difference between water

and the atmosphere. Aquatic ecosystems, such as rivers,

lakes, wetlands, and the oceans, play an important role in

the carbon cycle by means of the so-called biological pump

[31]. Aquatic phototrophs occupy the well-mixed surface

layers of a given river, lake, wetlands, or ocean and grow

by photosynthesis at a rate which varies according to the

nutritional state of the water. Dead biota and feces fall down

through the water column, thus removing carbon from the

surface layers, hence reducing the partial pressure of CO2

there. This reduction enables the uptake of new DIC from

the surface waters and/or of new CO2 from the atmosphere.

Our argument that the H2O–carbonate–CO2–aquatic

phototroph interaction serves as an important atmospheric

CO2 sink that depends on the carbonate dissolution, and the

uptake rate of DIC (CO2 and/or HCO3
-) by aquatic

phototrophs differs from the generally accepted view that

the consumption of atmospheric CO2 resulting from car-

bonate weathering on the continents is balanced over a

relatively short timescale by carbonate precipitation in the

oceans and that all of the CO2 involved is released back to

the ocean–atmosphere system [10]. This latter contention is

at least partly problematic because it does not consider the

large uptake of DIC by the photosynthesis that produces

organic carbon in the aquatic systems of both oceans and

continents. For instance, Ternon et al. [32] found that the

fertilization of oceanic waters by the Amazon River around

its outflow enhances the biological pumping effect of CO2,

contributing up to 30 % of the measured lowering of pCO2

there, and so, increasing the atmospheric CO2 sink in the

Atlantic Ocean. Einsele et al. [33] investigated atmospheric

carbon burial in modern lake basins and its significance for

the global carbon budget. They found that, although the

area of lake basins is only about 0.8 % of the ocean surface

(or 2 % of the land surface), a surprisingly large amount of

atmospheric carbon is buried in them, amounting to

0.07 Pg C/a, or more than one-fourth of the annual atmo-

spheric carbon burial in the modern oceans. This burial is

accomplished mainly by the rapid accumulation of lacus-

trine sediments and a very high preservation factor which

is, on average, 50 times higher than that observed in the

oceans. Lerman and Mackenzie [34] found that the primary

production and net storage of organic carbon counteract the

CO2 released by carbonate precipitation, leading to lower

CO2 emissions from the surface layer through the reaction:

Ca2? ? 2HCO3
- ) CaCO3 ? CH2O ? O2. Wang et al.

[35] found that the flux of CO2 into the atmosphere from

the Changjiang (Yangtze River) has decreased dramatically

(*75 %) during the past four decades (*1960–2000) due

to a marked increase in nutrient (e.g., NO3
-) concentra-

tions. This may show the importance of CO2 uptake by

phototrophs in river systems due to the importance of

elemental fertilization for phototroph growth. Yang et al.

[36] investigated the carbon source/sink of a subtropical,

eutrophic lake by investigating the overall mass balance

expressed as a balance between gas exchange and carbon

burial. They found that the ratio of carbon emission into the

atmosphere to carbon burial in the sediment was only 0.08,

indicating that this lake is an effective carbon sink.

All of these findings show the significance of photo-

synthetic uptake of DIC by aquatic phototrophs (the bio-

logical carbon pump effect) in stabilizing the carbon sink

produced by carbonate weathering through the transfor-

mation from DIC to organic carbon.

However, most researches were done in the un-con-

taminant rivers or streams. For the situation in the con-

taminant rivers or streams (such as dark water, in which

low light will limit the amount of photosynthesis), more

work has to be done in future.

4 Net carbon sink produced by H2O–carbonate–CO2–

aquatic phototroph interaction on land

In a recent attempt to balance the atmospheric CO2 budget,

Liu et al. [12] considered the combined effects of carbonate

dissolution, the global water cycle, and the photosynthetic

uptake of DIC by aquatic phototrophs. They found that the

net atmospheric CO2 sink produced by the H2O–carbonate–

CO2–aquatic phototroph interaction on the land (for the

expression of carbonate weathering based on H2O–carbon-

ate–CO2–aquatic phototroph interaction, see the new con-

ceptual model in Fig. 1) could be as large as 0.477 Pg C/a

(CFR1 ? CFR2 ? CFS-AL in Fig. 2), which accounts for

about 17 % of the terrestrial missing carbon sink and is

comparable with the carbon sink in the world’s forests [8].

This is much larger (by a factor of about three) than the

estimate of 0.148 Pg C/a obtained by Gaillardet et al. [21],

who underestimated the carbonate weathering sink in sili-

cate areas and did not consider the photosynthetic uptake of

DIC by land aquatic phototrophs or the burial of part of the

resulting organic matter on the continents (CFR2 ? CFS-

AL = 0.233 Pg C/a, Fig. 2). This latter value of 0.233 Pg

C/a has been confirmed by the independent work of others

[37, 38]. For instance, Waterson and Canuel [37] have

shown that the contribution of autochthonous organic carbon

(AOC) derived from DIC transformed by aquatic photo-

synthesis in the Mississippi River system (the largest river

system in North America) can constitute 20 %–57 % of the
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total organic carbon (TOC). If the lower value, 20 %, is

multiplied by the sedimentary deposition of organic carbon

in inland waters (0.6 Pg C/a) plus riverine TOC discharge to

oceans (0.5 Pg C/a) [38], a similar value of 0.22 Pg C/a

AOC is obtained. Therefore, the atmospheric CO2 sink due

to carbonate weathering based on the H2O–carbonate–CO2–

aquatic phototroph interaction on land has previously been

greatly underestimated. If the result put forward by Jacobson

et al. [19] (i.e., about 10 % of HCO3
- originates from sili-

cate weathering) is applied to the case of Gaillardet et al.

[21], then the atmospheric CO2 sink produced by silicate

weathering is diminished from 0.14 Pg C/a to about

0.014 Pg C/a and, correspondingly, the atmospheric CO2

sink due to carbonate weathering is bound to increase from

0.148 to 0.211 Pg C/a, i.e., fifteen times greater than the

silicate weathering sink [39]. In other words, carbonate

reactions contribute about 94 % of the atmospheric CO2

sink that is due to rock weathering, while only 6 % results

from silicate weathering [39]. The similarity of calcium

isotope ratios in the world’s largest rivers and in marine

limestones [40] provides further support for the dominance

of carbonate weathering in CO2 consumption in the world’s

watersheds.

5 Increase in the carbon sink under the dual influence

of global warming and land use change

A substantial amount of the atmospheric carbon taken up

on land through photosynthesis and chemical weathering is

transported laterally along the aquatic continuum from

upland terrestrial ecosystems to the ocean [38, 41, 42].

Thus far, global carbon budget estimates have implicitly

assumed that the transformation and lateral transport of

carbon along this aquatic continuum has remained

unchanged since pre-industrial times [11]. However, a

synthesis of published work reveals the magnitude of

present-day lateral carbon fluxes from land to ocean and

the extent to which human activities have altered these

fluxes. For instance, Battin et al. [38] showed that anthro-

pogenic perturbation (e.g., land use and land cover chan-

ges) may have increased the flux of carbon to inland waters

by as much as 1.0 Pg C/a since pre-industrial times, mainly

owing to an enhanced carbon export from soils. Most of

this additional carbon input into upstream rivers is either

emitted back into the atmosphere as carbon dioxide

(*0.4 Pg C/a) or sequestered in sediments (*0.5 Pg C/a)

along the continuum of freshwaters, estuaries, and coastal

Fig. 1 Conceptual model of the carbon cycle produced by carbonate weathering (karst processes) based on H2O–carbonate–CO2–aquatic

phototroph interaction (drawing in reference to Lerman and Mackenzie [34] and Liu et al. [12]). Notes: 1. CSF (net carbon sink flux produced by

H2O–carbonate–CO2–aquatic phototroph interaction) = 0.5 9 Q 9 ([DIC2] ? [AOC])/A ? FSAOC where the ratio 0.5 indicates that only one

half of the HCO3
- generated by carbonate dissolution is of atmospheric origin; Q is the discharge from the surface water system; [DIC2] is the

concentration of dissolved inorganic carbon in the surface water system; and [AOC] is the concentration of total organic carbon in the surface

water system transformed from DIC1 (dissolved inorganic carbon in the groundwater system) by submerged aquatic phototrophs via

photosynthesis in the surface water system. FSAOC is the sedimentary flux of autochthonous organic carbon (OC) in the surface water system over

the catchment area (A). 2. Unlike the conventional carbonate weathering carbon cycle model [9, 10, 25], which considers H2O–carbonate–CO2

interaction and ignores organic matter formation produced by the aquatic photosynthetic uptake of DIC, this new conceptual model helps to

answer important questions such as whether carbonate weathering could be contributing to the long-term carbon sink (e.g., through

sedimentation, burial of autochthonous organic matter, FSAOC), and thus, to a proportionate degree, controlling long-term climate change
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waters downstream, leaving only a perturbation carbon

input of *0.1 Pg C/a to the open ocean. Thus, they sug-

gest that carbon fluxes along the land–ocean aquatic con-

tinuum need to be included in global carbon dioxide

budgets.

Such overall assessments [38, 41, 42], however, do not

show detailed mechanisms determining the changes. In

contrast, Macpherson et al. [15] investigated an increasing

trend in shallow groundwater CO2 and limestone weath-

ering at Konza Prairie, Kansas, USA, a mid-continental

North American undisturbed grassland. This site is

restricted to use for ecological research to avoid the com-

plexities of changing land use and water management that

are problematic for large river chemistry research in

developed countries. The authors found that groundwater

CO2 increased by 20 % between 1991 and 2005, and that

the long-term increase in shallow groundwater CO2 was

greater than the 7 % increase in atmospheric CO2 recorded

over the same time period, due to increased soil CO2 from

the microbial breakdown of vegetation and/or root respi-

ration. The latter two factors may be synergetically

enhanced in relation to increasing atmospheric CO2 [43–

46] and/or increasing atmospheric temperatures [46].

Therefore, Macpherson et al. [15] propose that

groundwater is a CO2 sink by way of the weathering of

limestone; soil-generated CO2 is transformed to alkalinity

through the dissolution of calcite or dolomite. For the

surface water system detailed in Fig. 1, Raymond and Cole

[13] show an increase of *60 % in the export of carbonate

alkalinity (HCO3
- ? CO3

2-) from North America’s largest

river, the Mississippi, during the past half-century. This

increase is in part the result of increased flow resulting

from higher rainfall in the Mississippi Basin. Subcatchment

data from the Mississippi suggest that the increase in the

export of alkalinity is also linked to amount and type of

land cover. In a later paper, Raymond et al. [14] further

demonstrated that land use change and management have

arguably been more important than changes in climate and

plant CO2 fertilization as factors contributing to the

increases in riverine water and carbon export from this

large region over the past 50 years. These observations

have important implications for the potential management

of carbon sequestration throughout the world.

On the other hand, there are also many records of long-

term increases in organic carbon concentrations in the

world’s rivers, streams, or lakes during recent decades [47–

51]. For instance, Worrall et al. [47] found an approxi-

mately 100 % increase in dissolved organic carbon (DOC)

Fig. 2 Atmospheric carbon sources and sinks (Pg C/a) produced by carbonate weathering based on H2O–carbonate–CO2–aquatic phototroph

interaction (drawing in reference to Liu et al. [12]). CSPL: carbon sink resulting from precipitation on the land; CSPO: carbon sink resulting from

precipitation in the ocean; CCCL: carbonate weathering carbon flux on the land; CSWL: carbon source flux from waters on the land; CFR1: DIC

flux from rivers to the ocean; CFR2: autochthonous organic carbon (AOC) flux from rivers to the ocean; CFS-AL: autochthonous sedimentary

organic carbon (SAOC) flux in surface waters on land (Y to be determined); CFS-O: autochthonous sedimentary organic carbon (SAOC) flux in

the ocean; DIC: dissolved inorganic carbon; AOC: autochthonous organic carbon; SAOC: autochthonous sedimentary organic carbon. Note: The

conventional carbon cycle model of carbonate weathering [9, 10, 25] (or the karst processes-related carbon cycle model) does not consider

organic processes, i.e., x = 1, and all CO2 gas is returned to the atmosphere. Thus, carbonate weathering does not form a net long-term carbon

sink and cannot influence climate change over extended timescales
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concentrations over 30 years in the River Tees in northern

England. All these increases in DOC or TOC were related

to climate change and/or a decrease in acid deposition. As a

result of these findings, questions about the true causes of

the long-term increases in DOC and/or TOC remain open.

The DOC or TOC sources in these rivers or lakes need to

be determined before this problem can be solved. Are they

soil derived (allochthonous) or formed in aquatic ecosys-

tems (autochthonous) [52–54]? If autochthonous, the long-

term increases in organic carbon concentrations in the

world’s rivers, streams, wetlands, or lakes may also be

related to the fertilization of possibly increased DIC [55–

57], i.e., they may be linked to carbonate weathering by

way of the H2O–carbonate–CO2–aquatic phototroph inter-

action [39]:

H2Oþ CaCO3 þ CO2 ! Ca2þ þ 2HCO �
3

������!Photosynthesis
CaCO3 þ x CO2 þ H2Oð Þ
þ 1� xð Þ CH2Oþ O2ð Þ:

Findings by Bianchi et al. [52, 53] suggest that

autochthonous production in the Mississippi River may

be more important as a source of DOC and POC than

previously thought, for example. Increases in nutrient

loading and decreases in the suspended load in the

Mississippi (because of dams), as well as in other large

rivers around the world, have resulted in significant

changes in the sources and overall cycling of riverine

DOC and POC.

6 Implications of the new conceptual model

We have shown that the rapid kinetics of carbonate dis-

solution and the importance of carbonate minerals in con-

trolling the DIC in both silicate and carbonate watersheds,

coupled with aquatic photosynthetic uptake of the weath-

ering-derived DIC and burial of a part of the resulting

organic carbon, suggest that the atmospheric CO2 sink

produced by carbonate weathering based on H2O–carbon-

ate–CO2–aquatic phototroph interaction [12, 39] on land

may have been underestimated in much previous work by a

factor of about three.

Firstly, we must question the origin of carbonates in

oceans and lakes since the first appearance of aquatic

phototrophs about 3.416 billion years ago [58]. Is it mainly

due to the following silicate weathering reaction:

CaSiO3 þ CO2 ) CaCO3 þ SiO2? ð1Þ

Or is it mainly due to the following carbonate weathering

reaction:

H2Oþ CaCO3 þ CO2 ) Ca2þ þ 2HCO �
3

������!Photosynthesis
CaCO3 þ x CO2 þ H2Oð Þ
þ 1� xð Þ CH2Oþ O2ð Þ?

ð2Þ

Because of the much faster kinetics of carbonate weath-

ering, the carbonates in oceans and lakes may originate

mainly from (2), the carbonate-shifted reaction [34, 39,

59], though more work remains to be done to confirm this.

Secondly, we must reassess the atmospheric CO2 sinks

produced by rock weathering since the first appearance of

aquatic phototrophs. It appears that the atmospheric CO2 sink

by way of rock weathering rests chiefly on carbonate disso-

lution and subsequent aquatic photosynthetic uptake of the

resulting DIC [12]. There is a great deal of evidence to show

that biological productivity may be limited by the supply of

DIC from rock weathering. For example, Liu et al. [57] found

that DIC utilization and induced calcium carbonate precipi-

tation by Oocystis solitaria Wittr were much higher (4.6- and

tenfold, respectively) in karst water (with high [DIC], as an

analog of the carbonate aquatic system) than in non-karst

water (with low [DIC], as an analog of the silicate aquatic

system). This clearly shows the greater significance of the

karst water environment in DIC fertilization and its conse-

quent effect upon the growth of Oocystis solitaria Wittr; it is

also significant for the carbonate weathering-related carbon

sink in general. Iglesias-Rodriguez et al. [60] studied phyto-

plankton calcification in a high-CO2 environment. Their lab-

oratory evidence shows that calcification and net primary

production in the coccolithophore species Emiliania huxleyi

are significantly increased by high CO2 partial pressures and

HCO3
-. Their field evidence from the deep ocean is consistent

with these laboratory conclusions, indicating that over the past

220 years, there has been a 40 % increase in average coccolith

mass. The coccolithophores are already responding, and will

probably continue to respond, to rising atmospheric CO2

partial pressures and HCO3
-. Of course, considering inland

waters are generally oversaturated in CO2, aquatic primary

production may be limited by other micronutrients, such as P

[61], N [62], Zn [63], or Fe [64], and this needs to be inves-

tigated further in future studies.

In brief, the rock weathering-related carbon sink will be

greatly underestimated where only DIC concentrations at

river mouths are considered and the transformation of DIC

to autochthonous TOC [29, 39] is neglected. In order to

assess correctly the carbon sink produced by rock weath-

ering, it is necessary to consider the concentrations of both

DIC and autochthonous TOC in rivers.

Thirdly, the presence of a ‘‘biological carbon pump

effect’’ in natural aquatic ecosystems which diverts carbon

produced by the reaction Ca2þ þ 2HCO �
3 ������!Photosynthesis
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CaCO3 þ x CO2 þ H2Oð Þ þ 1� xð Þ CH2Oþ O2ð Þ to the

lithosphere by means of sedimentation and burial of the

organic carbon [33, 59, 65–69] implies that such carbonate

weathering might also be significant in controlling long-

term climate change, due to the substantial production and

burial of AOC, the latter being an important mechanism in

the formation of lacustrine and marine petroleum source

rocks [70, 71]. For example, Jarvis et al. [68] studied black

shale deposition, atmospheric CO2 drawdown, and cooling

during the Cenomanian–Turonian Oceanic Anoxic Event

about 93.95 Ma ago. They found that rising pCO2 and sea

surface temperatures (SST) during the Late Cenomanian

were due to volcanic degassing; pCO2 and SST maxima

occurred at the onset of black shale deposition, followed by

falling pCO2 and cooling due to carbon sequestration by

marine organic productivity and preservation, in addition to

increased silicate weathering. This questions the traditional

point of view [9, 10, 25] that only chemical weathering of

calcium silicate rocks can potentially control long-term

climate change by providing feedback interactions with

atmospheric CO2 drawdown via precipitation of carbonate.

In another recent study, Bowen and Zachos [72] investi-

gated the rapid carbon sequestration at the termination of

the Paleocene–Eocene Thermal Maximum about 56 Ma

ago and found that the rate of recovery is an order of

magnitude more rapid than that expected for carbon

drawdown by silicate weathering alone. Therefore, they

concluded that the accelerated sequestration of organic

carbon could reflect the regrowth of carbon stocks in the

biosphere or shallow lithosphere that were released at the

onset of the event. This may provide further support for our

new conceptual model of a carbon sink produced by car-

bonate weathering based on H2O–carbonate–CO2–aquatic

phototroph interaction.

7 Future directions for research

There are two great problems in the study of carbon cycle

of aquatic systems. One is the high degree of uncertainty

present in estimating the fluxes of carbon sources and

carbon sinks, and the other is a paucity of knowledge about

the mechanisms determining sources and sinks. At present,

oceans are regarded an important carbon sink

(2 ± 0.4 Pg C/a) [73]. However, inland waters are mainly

considered as an important carbon source (2.1 Pg C/a:

1.8 ± 0.25 for streams and rivers, and 0:32þ0:52
�0:26 for lakes

and reservoirs) [74]. Although two studies [38, 41] have

considered inland waters as an important carbon sink

through the burial of organic carbon in their aquatic sys-

tems, the sources (or forming mechanisms) of this organic

carbon remain to be determined; there is also substantial

difference (0.2 versus 0.6 Pg C/a) in the carbon sink flux

estimation between these two studies. It would thus appear

that solid results concerning carbon sequestration in

aquatic systems cannot, as yet, be provided. This review is

therefore an effort to emphasize the importance of com-

plete mechanisms (H2O–carbonate–CO2–aquatic photo-

troph interaction on land) in understanding the terrestrial

carbon cycle.

There are two major processes which sequester carbon

on the continents [12, 13, 21]: (1) Photosynthesis, where

plants store the atmospheric carbon in the ecological sys-

tem in the form of organic carbon and (2) carbon storage in

aqueous systems in the form of DIC and AOC. Inorganic

carbon cycling is as important as organic carbon cycling,

but current studies of terrestrial ecosystems consider

mainly organic carbon cycling; the interaction between

inorganic and organic carbon cycles is neglected. Eluci-

dating the coupling relations between the inorganic and

organic carbon cycles is the key to revising the carbon

cycle model, especially in carbonate rock areas.

In short, we need to combine the separate studies of

photosynthesis and water–rock–gas interaction into a

water–rock (soil)–gas–organisms interaction study (Fig. 3).

In carbonate terrains, especially in karst regions, the carbon

sink produced by carbonate weathering has a similar

impact on the organic carbon sink. Therefore, atmosphere,

vegetation, soil, carbonate, and water have to be considered

within the context of the carbon cycle as a whole (Fig. 3).

The conventional rock weathering evaluation method

based on water–rock–gas interaction considers only inor-

ganic components; the calculation can be simply expressed

as

CSF ¼ FDIC ¼ n� Q� DIC½ �=A; ð3Þ

where CSF is the rock weathering carbon sink flux; FDIC is

the DIC flux via runoff; A is the watershed area; Q is the

aqueous discharge; [DIC] is the concentration of dissolved

inorganic carbon at river mouths; and n is the rock

weathering coefficient for the carbon sink. For the weath-

ering of carbonate rocks n = 0.5, indicating that only one

half of the HCO3
- generated is of atmospheric origin when

the rock dissolves; for pure silicate weathering, n = 1

because all the HCO3
- involved is of atmospheric origin

[21].

However, due to the presence of aquatic phototrophs

(Fig. 4), a large proportion of the DIC in aquatic ecosys-

tems is converted into organic carbon (Fig. 2), forming

AOC. Therefore, in order to calculate the rock weathering

carbon sink flux (CSF) correctly, it is necessary to consider

AOC values [37, 52, 53, 75]. The CSF is thus rewritten as

CSF ¼ FDIC þ FAOC þ FSAOC

¼ n� Q� ð DIC½ � þ ½AOC�Þ=Aþ FSAOC; ð4Þ

188 Sci. Bull. (2015) 60(2):182–191

123



where FDIC and FAOC are the dissolved inorganic carbon

flux and the AOC flux via surface runoff, respectively;

FSAOC is the sedimentary flux of AOC in surface water

system(s); and [DIC] and [AOC] are the concentrations of

the DIC and autochthonous OC at river mouths,

respectively.

Any prediction of the extent of the carbon sink produced

by H2O–carbonate–CO2–aquatic phototroph interaction

under global warming and land use change needs to be

enhanced and corroborated with additional evidence.

Satellite observations indicate that the water cycle will

increase at a rate of 7 % per �K of surface warming [76].

Raymond et al. [14], however, argue that land use change

and management have been more important than changes

in climate and plant CO2 fertilization vis-à-vis increases in

riverine water and carbon export from the Mississippi

River over the past 50 years. The vital question is how far

this applies to other parts of the world.

Finally, it should be noted that, although the DIC con-

centration in water can be increased by rock weathering

due to high concentrations of deep earth CO2 [77, 78], this

is not of atmospheric origin and so cannot be regarded as a

carbon sink. Thus, this carbon must be deducted from any

carbon sink calculations. In addition, other inorganic acids

such as sulfuric acid formed by the oxidation of sulfide

[79–83] and nitric acid due to nitrification [84, 85] can also

increase the DIC concentration in water. Their roles are

similar to that of deep earth CO2 and thus should also be

deducted from the calculation of carbon sinks. Neverthe-

less, determining the relative contributions of all these

mechanisms, which will vary in importance regionally and

temporally, is a critical component of future research.
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