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a b s t r a c t

Basaltic trachyandesites and trachyandesites from the northern North China Craton (NCC) provide an
excellent opportunity to examine the nature of their mantle source and the secular evolution of the
underlying mantle lithosphere. In addition, our study of these rocks helps to constrain the age and mech-
anism of NCC lithospheric destruction. In this paper, we report geochronological, geochemical, and Sr–Nd
isotopic analyses of the Niujiaogou (NJG) basaltic trachyandesites and trachyandesites. Laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded an age of
120.7 ± 0.8 million years, which we regard as the crystallization age of the rocks. Analysed whole-rock
samples are enriched in both light rare earth elements and large ion lithophile elements (i.e. Rb, Sr
and Ba), but depleted in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, and
Ti), with slightly negative to positive Eu anomalies (Eu/Eu* = 0.73–1.09). The NJG basaltic trachyandesites
and trachyandesites are characterized by low MgO (2.42–3.69 wt.%), Cr (10.3–24.6 ppm) and Ni (17.1–
25.6 ppm), suggesting that they may have originated from an extremely evolved magma. In addition,
the rocks display negative eNd (t) values (�12.2 to �8.5), which indicate that they were derived from a
common lithosphere mantle that had previously been metasomatized by fluids related to subduction
of Paleo-Asian Ocean sedimentary units. This magmatism may have been induced by large-scale, trans-
tensional strike-slip on the Tan-Lu fault zone. In accord with earlier studies, these findings provide evi-
dence that the lithospheric mantle source beneath western Liaoning Province was not changed much by
the extensive Mesozoic magmatism during Triassic to early Cretaceous time.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The North China Craton (NCC) formed by amalgamation of the
Eastern and Western Blocks at 1.85 Ga (Zhao et al., 2001, 2005),
and the majority of the craton remained stable up to the Triassic;
however, the eastern part of the NCC underwent extensive destruc-
tion and modification during the Mesozoic and Cenozoic (Griffin
et al., 1998; Xu, 2001; Wu et al., 2005a,b, 2008; Zhai, 2008a,b;
Gao et al., 2009; Zheng and Wu, 2009; Zhu and Zheng, 2009; Liu
et al., 2010a). These events caused dramatic changes in the struc-
ture and nature of the NCC. In particular, the composition of the
lithosphere in this area changed from old, enriched cratonic mantle
to younger, depleted oceanic-type mantle (Zhou et al., 2005; Zhou,
2006). However, the mechanism, timing, range, and dynamic set-
ting of this destruction, as well as the composition of the litho-
sphere prior to destruction, remain controversial (Wu et al.,
2008; Zheng and Wu, 2009) due to a lack of systematic research
into the geochronology, source characteristics, and evolution of
mantle-derived magmatism in this area (Guo et al., 2001; Wu
et al., 2003a,b, 2008; Xu et al., 2004). Mesozoic intermediate-silicic
volcanic rocks are widespread along the northern margin of the
NCC, western Liaoning Province. Previous research divided these
rocks into four formations, from oldest to youngest; the Xinglong-
gou (176.6 Ma), Lanqi (166–148 Ma), Yixian (132–120 Ma), and
Zhanglaogongtun (�106 Ma) Formations (Zhang et al., 2005a;
Yang, 2007). These Jurassic and Cretaceous rocks provide an excel-
lent opportunity to investigate the evolution of the underlying
lithospheric mantle and the mechanism by which it was thinned
(Yang and Li, 2008). These rift-related, Mesozoic volcanic rocks
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are predominantly basaltic trachyandesites to trachyandesites or
trachydacites that can potentially provide invaluable information
concerning continental extension in the region (Hall, 1982; Li
et al., 1997; Liu et al., 2004; Liu et al., 2006a,b; Windley, 1984;
Zhou et al., 1998). The present study focuses on the Niujiaogou
(NJG) basaltic trachyandesites and trachyandesites of the Jian-
chang area of western Liaoning Province. Zircons from these rocks
yielded a U–Pb age of 120 ± 0.8 Ma, consistent with the age of the
Yixian Formation (132–120 Ma; Yang, 2007) and with the most
extensive and intense magmatism in the eastern NCC. Previous
Sr–Nd–Pb isotope analyses of mafic rocks (mainly basalt and gab-
bro) suggested that the lithospheric mantle in this area was isoto-
pically heterogeneous and had a special spatial and temporal
distribution (Xu et al., 2004; Zhai et al., 2004; Zhang et al., 2004;
Zhou et al., 2005), although these studies mainly focused on the
Luxi, Jiaodong, and Taihang Mountain regions. The present study
discusses the properties of the Mesozoic lithospheric mantle
beneath the northern NCC, and aims to improve our understanding
of the evolution of the lithospheric mantle and to constrain the
timing and mechanism involved in thinning of the NCC
lithosphere.
2. Geological background and petrography of the volcanic rocks

The western area of Liaoning Province lies along the northern
margin of the NCC (Fig. 1) and is bounded by an Archean craton
to the south and the Paleozoic Xingmeng Orogenic Belt (XMOB)
to the north. The NCC is one of the oldest Archean cratons in the
world, with ages extending back to 3.8 Ga (Liu et al., 1992; Zhao
and Cawood, 2012; Zhao and Zhai, 2013). The cratonization of
the NCC occurred in the Early Paleoproterozoic at �1.85 Ga
(Zhao, 2001; Wilde et al., 2002; Kroner et al., 2006; Liu et al.,
2006a,b), and the area was covered by thick sedimentary deposits
during the Middle-Late Proterozoic and the Paleozoic (Chen and
Chen, 1997). The NCC is cut by the Tan-Lu fault zone, a strike-slip
fault that was initiated between the Jurassic and the Early Creta-
ceous (Zhu et al., 2001a); this tectonism led to deformation and
graben formation in the area during the late Cretaceous and Ter-
tiary (Zhu et al., 2001b).

The XMOB was formed through collision of the NCC and Sibe-
rian plates, and is composed of several blocks and/or terranes,
namely the northernmost Erguna Massif, the central Xing’an, Son-
gliao, and Liaoyuan terranes and the eastern Jiamusi Block and the
Fig. 1. Geological map of the study area, including the locations of samples of the N
Raohe Complex. The amalgamation of northeast China occurred
predominantly during the Paleozoic and Mesozoic; the Erguna
Massif collided with the Xing’an terrane in the early Paleozoic,
whereas collisions between the Xing’an, Songliao, and Liaoyuan
terranes occurred in the late Paleozoic (Zhou et al., 2009,
2010a,b,c, 2011; Wilde et al., 2010). Later accretion of the Jiamusi
massif to the Songliao terrane occurred between the Early and Late
Jurassic; this was followed by Late Jurassic-Early Cretaceous accre-
tion of the Raohe complex (Wu et al., 2011).

The western part of Liaoning Province lies within the northern
margin of the NCC and is on the western side of the Tan-Lu fault
zone. This area is part of the eastern Yanshan zone, and is under-
lain by cratonic Precambrian basement. This old cratonic basement
was formed during the Lüliang movement in the Neoarchean, and
then underwent a long and stable development stage, followed by
intense tectonism and magmatism in the Mesozoic, when the NCC
was in an intraplate orogenic stage of development. The early
Mesozoic tectonic evolution of this area was controlled by the
Paleo-Asian tectonic domain, whereas it was constrained by the
Pacific tectonic domain during the Middle-Late Mesozoic (Ma
and Zheng, 2009; Wu et al., 2000; Zhang, 2006).

The study area is located in the Jianchang basin (Fig. 1b), in wes-
tern Liaoning Province. Exposed units in the area include basaltic
trachyandesites, trachyandesites, and pyroclastic rocks of the Tia-
ojishan Group, all of which have similar compositions; andesites,
conglomerates, and sandy conglomerates of the Yaolugou Group;
rhyolites and trachytes of the Early Cretaceous Yixian Formation;
and sandy conglomerates, silty shales and rhyolites of the Late Cre-
taceous Yixian Formation (Fig. 1b). The basaltic trachyandesite and
trachyandesites sampled during this study were intruded into the
Yixian Formation. These rocks are grey-black in color, medium-
grained, massive with a diabasic texture. The studied samples
obtained during this study generally contain 25–30 vol% of med-
ium-grained (0.5–1.5 mm) plagioclase and minor pyroxene micro-
phenocrysts. Some of the plagioclase are moderately to strongly
altered.

3. Analytical methods

3.1. LA-ICP-MS U–Pb dating

Zircons were separated from one > 40-kg rock sample (NJG2-
01) using conventional heavy liquid and magnetic techniques at
iujiaogou basaltic trachyandesites and trachyandesites taken during this study.



Fig. 2. Representative cathodoluminescence images and LA-ICP-MS U–Pb concordia
diagrams for zircons obtained from basaltic trachyandesite sample NJG2-01.
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the Langfang Regional Geological Survey, Hebei Province, China.
Representative zircons were hand-picked under a binocular micro-
scope and mounted in an epoxy resin disc, before polishing and
gold coating. Zircons were imaged under transmitted and reflected
light and cathodoluminescence (CL) at the State Key Laboratory of
Continental Dynamics, Northwest University, China to determine
their external and internal structures.

Zircons were U–Pb dated using LA-ICP-MS at the State Key
Laboratory of Geological Processes and Mineral Resources, China
University of Geosciences, Wuhan, using the laser ablation and
ICP-MS conditions and data reduction techniques outlined in Liu
et al. (2008a, 2010b, 2010c). An Agilent Chemstation was utilized for
the acquisition of each individual analysis, off-line selection, and
integration of background and analyte signals, and ICPMSDataCal
(Liu et al., 2008a, 2010c) was used for time-drift correction and
quantitative calibration during both trace element and U–Pb
analysis.

Zircon 91500 was used as an external standard during U–Pb
dating, and was analyzed twice for every five analyses of
unknowns. Time-dependent drift of U–Th–Pb isotopic ratios was
corrected using a linear interpolation (with time) and with drift
corrections calculated and applied every five analyses according
to variations in the 91500 zircon analysis (i.e., one correction every
two zircon 91500 + five unknown samples + two zircon 91500
analyses; Liu et al., 2010c). The U–Th–Pb isotopic ratios for the
91500 standard used during this study are those of Wiedenbeck
et al. (1995). The uncertainties on these preferred 91500 values
were propagated through to the overall uncertainties for each zir-
con analysis, and concordia diagrams and weighted mean calcula-
tions were undertaken using Isoplot/Ex ver3 (Ludwig, 2003).

3.2. Whole-rock geochemical analysis

The major and trace element of 15 representative samples were
determined during this study. Prior to analysis, whole-rock sam-
ples were trimmed to remove altered surfaces, and were cleaned
with deionized water before crushing and subsequent powdering
in an agate mill.

Major element concentrations were determined using a PANa-
lytical Axios-advance (Axios PW4400) X-ray fluorescence (XRF)
spectrometer at the State Key Laboratory of Ore Deposit Geochem-
istry, Institute of Geochemistry, Chinese Academy of Sciences
(IGCAS), Guiyang. Analysis was undertaken on fused glass discs,
and the analytical precision, as determined using Chinese National
standard GSR-3, was better than 2%. Loss on ignition (LOI) values
was determined using 1 g of powder, heated to 1100 �C for 1 h.

Trace element concentrations were determined using a Perkin–
Elmer Sciex ELAN 6000 ICP-MS instrument at IGCAS. Each analysis
used 50 mg of powdered sample, which was dissolved using a
HF + HNO3 mixture for 48 h at ca. 190 �C in high-pressure Teflon
bombs (Qi and Conrad, 2000). Rh was used as an internal standard
during analysis to monitor signal drift, and the GBPG-1 interna-
tional standard was used for analytical quality control. The analyt-
ical precision during ICP-MS was generally better than 5% for all
elements and analyses of the OU-6 and GBPG-1 international stan-
dards are in agreement with recommended values.

3.3. Sr–Nd isotope analyses

Whole-rock Sr–Nd isotopic data were obtained using a Finnigan
Triton multi-collector mass spectrometer at the State Key Labora-
tory of GPMR. Sr and Nd isotopic fractionation was corrected to
86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. Analysis
of the NBS987 and La Jolla standards yielded average values of
87Sr/86Sr = 0.710215 ±10 and 143Nd/144Nd = 0.511837 ±1, respec-
tively (both 2r), and total procedural Sr and Nd blanks of <4 and
<1 ng, respectively. Details of the analytical approach are given in
Zhang et al. (2004).
4. Results

4.1. Zircon U–Pb dating

Sufficient zircons were selected from basaltic trachyandesite
sample NJG2-01 for U–Pb analysis during this study. These zircons
are euhedral, colorless, transparent, mostly elongate and prismatic,
ranging up to 100 lm in diameter. The majority of zircons have
oscillatory or planar zoning in CL images (Fig. 2), a typical feature
of magmatic zircons. The zircons have variable Th (62.1–758 ppm)
and U (127–956 ppm) concentrations, yielding Th/U ratios of 0.45–
0.80 (Table 1), providing additional evidence of a magmatic origin.
Zircon U–Pb dates for these samples are given in Table 1, Eighteen
analyses on 18 oscillatory-zoned grains yielded concordant dates
and a weighted mean 206Pb/238U age of 120.7 ± 0.8 Ma (Fig. 2). This
age is interpreted as the crystallization age of the basaltic trachy-
andesites and trachyandesites in the study area.
4.2. Major and trace elements

The analysed whole-rock samples were variably altered with LOI
ranging from 3.01 to 5.62 wt.% and an average of 4.66 wt.% (Table 2).
Al2O3, TiO2, CaO and P2O5 concentrations do not vary with LOI val-
ues, whereas Fe2O3, MgO and Na2O concentrations increase slightly
and SiO2 concentrations decrease with increasing LOI. In addition,
generally mobile elements, such as Rb, Sr and Ba, show moderate
degrees of scatter. Given this, we focus the following discussion
on the REE and the high field strength elements (i.e. Nb, Ta, Ti)
and Y, Al, P and Ca (cf., Arndt et al., 1998; Song et al., 2008).

The major element concentrations of the analyzed samples are
given in Table 2. All of the analyses were normalized to 100% vol-
atile-free before plotting on classification diagrams. These rocks
have SiO2 contents of 52.42 to 57.72 wt.%, and all they have rela-
tively high total alkalies (Na2O + K2O = 8.23–9.68 wt.%). In the
TAS diagram they plot in the fields of basaltic trachyandesite and
trachyandesite (Fig. 3). All of the samples have low MgO concentra-
tions (2.57–3.82 wt.%; Mg# = 43–50) and show negative correla-
tions between MgO and SiO2, K2O, Cr, and Zr, and positive
correlations between MgO and Al2O3, P2O5, TiO2, Fe2O3, and
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Na2O. In contrast, CaO, Ni, and Sr concentrations show no correla-
tion with MgO (Fig. 4).

Trace element compositions of analyzed samples are given in
Table 3. Total rare earth element (REE) concentrations range from
94.0 to 148 ppm. All samples are characterized by relatively flat
heavy rare earth elements (HREE) and significant enrichment
in light rare earth elements (LREE)), with (La/Yb)N values of
7.7–26.6. The samples show slightly negative to slightly positive
Eu anomalies (Eu/Eu* = 0.73–1.09; Fig. 5a), and they contain low
concentrations of Cr (10.3–24.6 ppm), Co (25.4–42.3 ppm), and Ni
(17.1–25.6 ppm), consistent with their low MgO contents. In
addition, they have positive Rb, Sr, and Ba, and negative Nb, Ta,
and Ti anomalies on the primitive mantle normalized multi-
element diagram (Sun and McDonough, 1989; Fig. 5b).

4.3. Sr–Nd isotope data

The whole-rock Sr and Nd isotope compositions of representa-
tive basaltic trachyandesite and trachyandesite samples are given
in (Table 4). These samples have very uniform 87Sr/86Sr ratios
(0.7058–0.7069), and initial 87Sr/86Sr values of 0.70536–0.70546.
In addition, these samples have similarly uniform Nd isotope com-
positions, and low initial 143Nd/144Nd (0.51186–0.51205) and eNd(-
t) (�12.2 to �8.5) values. All of these samples plot within the EMI
enriched mantle field in a (87Sr/86Sr) i vs. eNd (t) diagram (Fig. 6),
similar to basalts from the Yixian Formation that have (87Sr/86Sr)i

values of 0.706144–0.706287 and eNd (t) values of �12.0 to �9.7
(Yang, 2007).

Nd isotopic model ages (TDM) can be derived from the Nd iso-
tope characteristics of rock samples. However, it is generally
agreed that differing degrees of Sm/Nd fractionation mean that
model ages are only valid and geologically significant in systems
with f Sm/Nd values of �0.5 to �0.2 (Wu et al., 1997). The studied
samples have Nd isotopic model ages from 1.59 to 1.81 Ga, and
corresponding f Sm/Nd values of �0.47 and �0.43, except for sample
NJG2–01, which has a value of 0.53. These data indicate that the
aforementioned Paleo- to Meso-proterozoic model ages are geolog-
ically significant. Previous geochemical research on magmatic
rocks and deep mantle xenoliths indicates that the lithospheric
mantle beneath the NCC was enriched between the Paleozoic and
the Mesozoic (Wang et al., 1996; Yan et al., 2000; Zhou et al.,
2001).

5. Discussion

5.1. Fractional crystallization

The basaltic trachyandesite and trachyandesites were derived
from a highly fractionated magma or low degrees of partial melting
of an enriched source, as evidenced by their low MgO concentra-
tions (2.57–3.82 wt.%; Mg# = 43–50, Cr (10.3–24.69 ppm) and Ni
(17.1–25.6 ppm) (Liu et al., 2008b). The positive correlation
between MgO and Al2O3, P2O5, TiO2, Fe2O3, and Na2O indicates that
minor plagioclase, apatite, Fe–Ti oxides (rutile, ilmenite and
sphene) were involved in their fractional crystallization history.
Ni shows very little change with MgO and Cr increases as MgO
decreases suggesting little fractionation of olivine and pyroxene.
Weak negative Eu anomalies of some samples suggest minor
removal of plagioclase. SiO2 shows two distinct groups with differ-
ent trends, possibly suggesting magma mixing or significant crus-
tal contamination.

5.2. Crustal contamination and fluid metasomatism

Mantle-derived magmas can undergo crustal contamination
during ascent (Mohr, 1987), and the geochemical characteristics



Table 2
Major element compositions (in wt.%) of the NJG basaltic trachyandesites and trachyandesites in western Liaoning Province.

Sample No. SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO P2O5 Total LOI Mg# Na2O + K2O

NJG-01 54.59 1.13 16.79 8.59 3.56 6.37 5.72 3.02 0.12 0.11 100.00 4.58 48.00 8.73
NJG-03 57.72 1.22 16.21 7.38 3.05 5.31 5.61 3.32 0.10 0.07 99.99 5.61 48.00 8.94
NJG-02 56.08 1.25 15.99 7.68 3.02 5.89 5.08 3.95 0.11 0.06 99.11 4.82 46.00 9.03
NJG-04 56.92 1.27 15.63 7.66 3.07 5.66 3.89 5.77 0.10 0.03 100.00 5.47 47.00 9.66
NJG-05 57.58 1.20 15.61 7.43 2.62 5.69 4.08 5.60 0.11 0.04 99.96 5.55 44.00 9.68
NJG-06 57.33 1.20 16.21 7.45 2.57 5.46 4.20 5.42 0.10 0.04 99.98 5.34 43.00 9.62
NJG-07 57.02 1.34 15.89 7.80 2.72 6.07 5.26 3.55 0.11 0.05 99.81 5.62 43.00 8.81
NJG-08 56.50 1.29 16.03 7.80 3.09 5.96 4.95 4.24 0.11 0.05 100.02 4.93 47.00 9.19
NJG-09 55.31 1.42 16.57 8.71 3.62 5.73 6.01 2.21 0.10 0.31 99.99 4.15 48.00 8.23
NJG-10 54.65 1.50 16.71 8.55 3.40 6.45 5.96 2.54 0.12 0.10 99.98 4.50 47.00 8.50
NJG-11 53.29 1.45 16.31 8.25 3.41 8.03 5.60 2.99 0.14 0.51 99.98 4.19 48.00 8.59
NJG-12 54.67 1.50 16.73 8.51 3.77 5.95 6.08 2.41 0.12 0.25 99.99 4.23 49.00 8.50
NJG-13 52.42 1.38 16.08 7.53 3.44 10.04 5.77 2.85 0.15 0.33 99.99 3.01 50.00 8.63
NJG-14 54.65 1.56 16.51 8.76 3.74 5.92 6.02 2.34 0.12 0.39 100.01 4.57 48.00 8.36
NJG-15 55.29 1.55 16.49 8.65 3.82 5.30 5.55 2.99 0.09 0.28 100.01 3.37 49.00 8.54
GSR3(RV*) 45.72 2.43 14.16 13.72 7.96 9.02 3.46 2.38 0.17 0.97 99.99 2.24
GSR3(MV*) 45.83 2.40 14.27 13.69 7.92 8.95 3.47 2.34 0.17 0.97 100.01 2.24
GSR1(RV*) 73.63 0.29 13.55 2.16 0.42 1.57 3.16 5.06 0.06 0.09 99.99 0.70
GSR1(MV*) 73.73 0.29 13.57 2.15 0.41 1.51 3.15 5.04 0.06 0.09 100.00 0.56

Notes: LOI = loss on ignition, Mg# = 100 �Mg/(Mg + Fe) atomic ratio, RV* = recommended values, and MV* = measured values; values for GSR-1 and GSR-3 are from Wang
et al. (2003).
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of the Niujiaogou basaltic trachyandesites and trachyandesites
suggest some slight crustal contamination. However, significant
crustal contamination of the parental magmas is ruled out by the
relatively low and uniform 87Sr/86Sr ratios.

The Mesozoic evolution of western Liaoning Province was influ-
enced by the Paleo-Pacific tectonic regime, suggesting that the
northern NCC may have been metasomatized by fluids derived
from dehydration of subducted ocean crust. Previous research on
high-K arc magmatism in east China suggested that it was related
to subduction of the Paleo-Pacific plate beneath eastern China (Wu,
1985). However, this model has a number of inconsistencies and
problems (Shao et al., 2001): (1) Mesozoic magmatism in eastern
China does not have a subduction-related polarity; (2) the area of
Mesozoic magmatism extends more than 1000 km into the conti-
nental interior, suggesting an extremely low-angle subduction that
exceeds the geological confidence level (Zhao et al., 1998) and has
no modern analogue; (3) there is no tectonic evidence of this sub-
duction in eastern China (Miyashiro, 1973); and (4) the tectonism
related to the Paleo-Pacific plate in eastern China was dominantly
strike-slip rather than true subduction (Maruyama and Seno, 1986;
Maruyama et al., 1997). All of this evidence suggests that Mesozoic
subduction of Paleo-Pacific Ocean crust was not responsible for the
magmatism in eastern China discussed here (Liu et al., 2002).

Based on the above discussion, we suggest that the magmas
that formed the basaltic trachyandesites and trachyandesites were
Fig. 3. Total alkali vs. silica diagrams for the Niujiaogou basaltic trachyandesites
and trachyandesites samples analyzed during this study (LeMaitre et al., 1989).
generated from a region of mantle that was metasomatized by
fluids derived from dehydration of subducted Paleo-Asian Ocean
crust. Even though this ocean closed in the late Paleozoic, the
characteristics of the mantle were preserved for a significant
post-collisional period that recorded gradual formation of new
mantle source regions (Liu et al., 2002).
5.3. Source regions

Changes in lithospheric thickness can be determined by varia-
tions in the Nd isotope values of basaltic rocks that formed during
differing time periods (DePaolo and Daley, 2000), primarily
because experimental results indicate that, in plume-free environ-
ments, alkali basalt magmas are generated at greater depths
(>80 km) than tholeiitic magmas (50–60 km). Thus, alkali basalt
magmas with enriched lithospheric mantle isotope signatures
may have been generated at lithospheric depths of >80 km. The
basaltic trachyandesites and trachyandesites studied here are char-
acterized by high Na2O + K2O concentrations (8.23–9.68 wt.%) and
enriched isotope compositions ((87Sr/86Sr)i = 0.70536–0.70546,
143Nd/144Nd = 0.51186–0.51205, and eNd(t) = �12.2 to �8.5), indi-
cating genesis at a lithospheric depth of >80 km.

All of the analysed basaltic trachyandesites and trachyandesites
plot in the same field as samples from the Yixian Formation in a
(87Sr/86Sr) i vs. eNd(t) diagram (Fig. 6). Previous research indicates
that the majority of the Yixian volcanic rocks formed at 132–
120 Ma (Yang, 2007); the later stages of this magmatism may have
been contemporaneous with (120.7 ± 0.8 Ma). This suggests that
the Niujiaogou volcanic rocks and those of the Yixian Formation
may have formed during the same magmatic event. The existence
of voluminous high-Mg andesite and adakite rocks within the Yix-
ian Formation suggests that they formed from magmas generated
by partial melting of the delaminated lower crust. One potential
dynamic mechanism that may have induced these magmatic
events is large-scale strike-slip movements along the Tan-Lu fault
zone (Yang, 2007; Yang and Li, 2008).
5.4. Petrogenesis

The Tan-Lu fault zone is a major wrench fault in northeastern
Asia that extends from Nikolayevsk in Russia to the Yangtze Craton
in South China, with a strike length of more than 5000 km (Xu



Fig. 4. Selected major and trace element variation diagrams plotted against MgO concentrations for the whole-rock samples analyzed during this study.
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et al., 1987, 1993; Zheng et al., 1998). This fault cuts through the
eastern part of the NCC, and previous studies (Fan and Hooper,
1989; Peng et al., 1986; Xu et al., 1993, 1996; Zheng et al., 1998,
2007) have shown that it extends deep into the lithospheric man-
tle. The Tan-Lu fault zone locally formed transtensional segments
that led to magmatic activity, and as such may have played an
important role in the evolution of the sub-continental lithospheric
mantle (Xiao et al., 2010).

Geochronological research has indicated that strike-slip move-
ment along the Tan-Lu fault may have continued until 114 Ma



Table 3
Trace elements (ppm) for Niujiaogou basaltic trachyandesites and trachyandesites from western Liaoning Province.

Sample No. NJG-01 NJG-02 NJG-03 NJG-04 NJG-05 NJG-06 NJG-07 NJG-08 NJG-09 NJG-10 NJG-11 NJG-12 NJG-13 NJG-14 NJG-15

Sc 15.6 13.7 13.9 13.0 13.4 13.7 15.0 13.0 16.2 14.1 18.1 17.3 16.1 17.5 17.0
V 176 127 136 127 124 123 129 130 152 152 151 156 135 158 144
Cr 10.9 11.3 11.0 24.6 11.1 12.5 11.9 10.3 10.7 10.7 15.4 10.5 11.0 10.8 10.6
Co 26.7 26.9 26.7 28.3 28.1 29.5 27.9 25.4 42.3 30.0 29.2 32.4 32.3 33.5 28.0
Ni 18.9 19.1 18.4 20.2 19.8 21.6 18.6 17.1 21.4 18.7 25.6 19.9 21.8 21.6 22.8
Cu 23.5 20.1 20.3 20.0 20.1 21.1 20.4 20.0 23.2 23.1 23.6 23.9 23.1 25.1 22.6
Zn 84.1 94.1 90.6 92.3 88.8 89.5 89.8 90.6 84.8 89.0 86.2 89.0 81.3 91.6 85.4
Ga 17.3 18.2 18.4 19.6 18.1 18.8 18.5 17.5 16.9 17.6 17.4 17.9 15.8 18.4 17.7
Rb 44.6 63.2 72.8 86.5 91.0 90.8 71.7 68.4 41.5 44.1 47.2 44.1 48.1 45.1 43.1
Sr 332 577 445 366 283 286 258 421 425 397 676 302 995 335 385
Y 8.98 15.8 19.5 20.7 19.6 19.9 25.2 17.8 15.2 13.7 18.3 17.2 23.1 26.6 10.7
Zr 122 204 178 180 225 229 295 169 161 122 154 148 161 159 180
Nb 9.73 16.3 16.2 17.3 16.0 17.0 17.0 15.9 11.3 11.4 11.8 12.1 11.0 12.4 12.9
Ba 316 336 318 373 399 415 300 302 338 285 1280 319 890 398 352
La 28.9 25.5 30.2 30.6 28.7 28.5 30.1 28.9 21.2 26.4 23.8 25.8 28.1 30.1 20.3
Ce 51.9 46.9 57.8 58.2 54.8 55.8 54.9 54.4 41.0 52.5 45.4 47.7 55.1 58.0 40.1
Pr 5.34 5.08 6.56 6.69 6.21 6.45 6.15 5.93 4.86 6.22 5.15 5.28 6.80 6.87 4.43
Nd 18.4 18.5 26.0 26.1 24.3 24.6 22.8 22.8 18.6 25.6 20.8 20.1 28.7 28.6 16.9
Sm 2.81 3.45 4.82 4.61 4.64 4.58 4.17 4.11 3.22 4.65 3.57 3.07 5.38 5.43 2.98
Eu 0.90 0.83 1.24 1.22 1.19 1.17 1.08 1.06 1.05 1.68 1.18 0.95 1.82 1.96 0.91
Gd 2.61 3.37 4.72 4.64 4.41 4.56 4.59 3.98 3.13 4.69 3.80 3.05 5.83 5.95 2.61
Tb 0.35 0.48 0.69 0.67 0.66 0.66 0.75 0.56 0.44 0.63 0.55 0.44 0.76 0.89 0.37
Dy 1.76 2.81 3.57 3.62 3.48 3.56 4.39 3.18 2.50 2.87 3.09 2.72 4.15 4.54 1.98
Ho 0.35 0.60 0.77 0.80 0.77 0.77 0.98 0.67 0.52 0.55 0.71 0.63 0.87 0.93 0.40
Er 0.924 1.80 2.03 2.24 2.04 2.19 2.47 1.79 1.51 1.51 2.00 1.76 2.22 2.41 1.23
Tm 0.13 0.26 0.26 0.30 0.28 0.31 0.35 0.25 0.23 0.17 0.30 0.25 0.24 0.32 0.19
Yb 0.78 1.68 1.77 1.83 1.76 1.91 2.06 1.65 1.50 0.93 2.22 1.53 1.54 1.76 1.40
Lu 0.11 0.25 0.27 0.26 0.29 0.29 0.32 0.23 0.20 0.13 0.35 0.21 0.24 0.27 0.22
Hf 3.54 4.46 4.33 4.64 3.92 4.24 4.62 4.33 3.19 2.94 3.13 3.16 2.94 3.19 3.45
Ta 0.65 1.07 0.99 0.97 0.93 0.96 0.98 0.90 0.62 0.61 0.58 0.63 0.61 0.63 0.62
Pb 6.32 10.27 9.17 10.07 9.54 10.58 9.53 8.71 7.37 6.67 6.48 6.62 6.28 6.85 6.08
Th 1.69 3.30 3.29 2.62 2.70 2.83 2.36 2.76 3.58 1.83 3.45 3.43 4.77 6.34 1.99
U 0.32 1.36 0.70 0.56 0.64 0.69 0.92 0.62 0.95 0.14 0.96 0.78 0.49 0.97 0.57
RREE 115 112 141 142 134 135 135 130 100 129 113 113 142 148 94.0
LaN/YbN 26.6 10.9 12.2 12.0 11.7 10.7 10.5 12.6 10.1 20.4 7.7 12.1 13.1 12.3 10.4
dEu 0.99 0.73 0.79 0.80 0.79 0.77 0.75 0.79 1.00 1.09 0.97 0.94 0.99 1.05 0.98

Notes: RV* = recommended values, MV* = measured values; values for GBPG-1 and OU-6 are from Thompson et al. (2000) and Potts and Kane, 2005, respectively.

Fig. 5. Chondrite-normalized REE and primitive-mantle-normalized multi-element diagrams for the Niujiaogou basaltic trachyandesites and trachyandesites compared with
samples of Fangshengou (FSG) basaltic lavas from western Liaoning Province. Normalizing values are from Sun and McDonough (1989).

Table 4
Sr-Nd isotopic compositions of the NJG basaltic trachyandesites and trachyandesites in western Liaoning Province.

Sample
No.

Rb
(ppm)

Sr
(ppm)

87Rb/86Sr 87Sr/86Sr ±2r (87Sr/86Sr)i Sm
(ppm)

Nd
(ppm)

147Sm/144Nd 143Nd/144Nd ±2r (143Nd/144Nd)i eNd

(t)
TDM1

(Ga)
fSm/

Nd

NJG-01 44.6 332 0.3886 0.70612 10 0.705459 2.81 18.4 0.092316 0.512121 11 0.512049 -8.5 1.29 -0.53
NJG-03 72.8 445 0.4732 0.706190 10 0.705383 4.82 26.0 0.112058 0.511966 12 0.511878 -12 1.77 -0.43
NJG-06 90.8 286 0.9185 0.70692 10 0.705356 4.58 24.6 0.112538 0.511948 12 0.511860 -12 1.81 -0.43
NJG-11 47.2 676 0.2020 0.70575 10 0.705409 3.57 20.8 0.103748 0.512004 11 0.511923 -11 1.59 -0.47

Notes: Chondrite Uniform Reservoir (CHUR) values (87Rb/86Sr = 0.0847, 87Sr/86Sr = 0.7045, 147Sm/144Nd = 0.1967, 143Nd/144Nd = 0.512638) were used during isotoperatio
calculations as follows: kRb = 1.42 � 10�11 yr�1 (Steiger and Jäger, 1977); kSm = 6.54 � 10�12 yr�1 (Lugmair and Harti, 1978).
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Fig. 6. Initial 87Sr/86Sr vs. eNd(t) diagram for the Niujiaogou basaltic trachyandesites
and trachyandesites. Sr–Nd isotope compositions of the Middle Devonian Shui-
quangou alkaline complex and the dioritic Gushan pluton are from Jiang (2005) and
Zhang et al. (2007), and Yixian Formation volcanic rock Sr-Nd isotopic compositions
are from Yang (2007). MORB and OIB compositions are from Zhang et al. (2002) and
references therein, the mantle array lines are from Zhang et al. (2005b), and the
lower crust trend is after Jahn et al. (1999).
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(Niu, 2001; Zhu et al., 2001a, 2001b), at which time a change in the
tectonic regime, related to high-angle orthogonal subduction of
the western Pacific Plate, caused E-W-extension and a change
in the stress state of the Tan-Lu fault from compression to exten-
sion. This large-scale extensional activity also caused thinning
(to <80 km) of the NCC lithosphere (Yang, 2007).

These data suggest that the Niujiaogou alkaline basaltic trachy-
andesites and trachyandesites were genetically related to large-
scale, transtensional, strike-slip movement at 135–120 Ma along
the Tan-Lu fault. This movement resulted in the formation of a
NNE-trending tensile basin, and upwelling of the asthenospheric
mantle. This deep movement along the fault led to delamination
of the thickened lithosphere near the fault belt and rapid upwelling
of the decompressed asthenospheric mantle. The high heat flow
caused by the upwelling asthenosphere triggered partial melting
of the enriched upper mantle, which was metasomatized by fluids
liberated during subduction of the Paleo-Asian Plate. Around
120 Ma, these magmas ascended along the faults, undergoing frac-
tional crystallization of apatite, Ti-bearing minerals (e.g., rutile,
ilmenite, and sphene) and minor plagioclase, before being
emplaced in the upper crust, to form the Niujiaogou basaltic
trachyandesites and trachyandesites.
5.5. Geological significance

Numerous studies of Mesozoic volcanic and mafic–ultramafic
intrusive rocks have determined that major lithospheric thinning
of the NCC took place around 120–130 Ma. However, the majority
of the magmatic rocks in this period were derived from enriched
lithospheric mantle material, and only limited asthenospheric
mantle-derived magmatism took place at this time, suggesting that
the NCC lithosphere was thicker at 120–130 Ma than it is now (Wu
et al., 2003a,b). Additional studies have shown that asthenospheric
mantle-derived basaltic rocks appeared in Fuxin, Liaoning Province
at �110 Ma (Zhang et al., 2003), and that mantle peridotite xeno-
liths carried in these rocks have the same characteristics as the
mantle peridotite xenoliths in Cenozoic basalts of Eastern North
China (Zheng et al., 2007). This suggests that lithospheric thinning
in western Liaoning Province may have ceased before 110 Ma.
Detailed studies on Mesozoic volcanic rocks from western Liaoning
Province have identified four magmatic events; these events
formed the Xinglonggou (176 Ma), Lanqi (166–148 Ma), Yixian
(132–120 Ma), and Zhanglaogongtun (�106 Ma) Formations.
Given this, we suggest that significant lithospheric thinning
occurred at 120–110 Ma in western Liaoning Province, and that
such thinning may have continued to as late as 106 Ma.

The Triassic (223.3 ± 1.1 Ma; Feng et al., 2012) Fangshengou
basalts and the Cretaceous (120.7 ± 0.8 Ma) Niujiaogou basaltic
trachyandesites and trachyandesites of western Liaoning Province
have similar REE patterns and trace element characteristics (Fig. 5),
and nearly identical Nd isotope signatures (Fig. 6). This means that
the mantle region from which both parental magmas were sourced
remained constant between the Triassic and the Cretaceous. This is
consistent with the observation that the majority of volcanic rocks
in western Liaoning Province have intermediate-silicic composi-
tions. Thus, in turn suggests that the mantle sources for magma-
tism within the northern NCC changed only slightly over a long
period until delamination resulted in significant thinning of the
lithospheric mantle.
6. Conclusions

The geochronological, geochemical, and Sr-Nd isotope data pre-
sented here allow us to reach the following conclusions:

(1) Zircon U–Pb dating indicates that the Niujiaogou basaltic
trachyandesites and trachyandesites were formed at
120.7 ± 0.8 Ma; these rocks formed from magmas associated
with deep movements along the Tan-Lu fault.

(2) The geochemical data presented here suggest that the basal-
tic trachyandesites and trachyandesites were derived from a
common source area of within the lithospheric mantle. This
region of the mantle was metasomatized by fluids derived
from entrained Paleo-Asian Ocean sediment that were sub-
ducted beneath the NCC mantle lithosphere. The parental
melts of these rocks underwent variable degrees of crystal
fractionation but were not contaminated by crustal material.

(3) The extensive Mesozoic magmatism in western Liaoning
Province did not change the composition of the lithospheric
mantle. The mantle source region for magmatism within the
northern NCC changed abruptly between 120 and 106 Ma
due to delamination of the lower crust resulting in signifi-
cant lithospheric thinning beneath the NCC.
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