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Effects of insecticide acetamiprid on photosystem II (PSII) activity of Synechocystis sp. were investigated
by a variety of in vivo chlorophyll fluorescence tests. Acetamiprid exposure increased the proportion of
inactivated PSII reactive centers (PSIIX) and led to loss of active centers (PSIIA). High concentration
(1.0 mM) acetamiprid decreased amplitude of the fast phase and increased the slow phase of fluorescence
decay during Q�A reoxidation. The electron transport after QA was hindered by high concentration acetam-
iprid and more QA had to be reoxidized through S2(QAQB)� charge recombination. Acetamiprid decreased
the density of the active reaction centers, electron transport flux per cross section and the performance of
PSII activity but had little effect on dissipated energy flux per reaction center, antenna size and the max-
imum quantum yield for primary photochemistry (Fv/Fm). The target site of acetamiprid toxicity to the
PSII of Synechocystis sp. was electron transfer on the acceptor side.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Acetamiprid is a systemic and contact insecticide belonging to
neonicotinoids group. Acetamiprid acts as an agonist of acetylcho-
line by binding to nicotinergic acetylcholine receptors (nAChR) on
the post-synaptic membrane [1,2]. Owing to its broad insecticidal
spectrum and relatively low acute and chronic mammalian toxic-
ity, acetamiprid is used widely in crop protection [3,4]. Though
the half life of aetamiprid in field was reported to be about 2.8–
14 days [5], the risk of its ambient pollution, principally in water,
is still present [2]. Acetamiprid exposure has been proven to have
adverse effect on greenhouse workers spraying acetamiprid [6],
soil microorganisms [4] and beneficial insects [3]. However, effects
of acetamiprid on the photosynthetic apparatus of aquatic micro-
organisms such as cyanobacteria are little known.

Cyanobacteria occupy the lower trophic levels within food
webs. Changes in their community may have indirect but signifi-
cant effects on the rest of the freshwater communities. Therefore,
toxicological effects of hazardous chemicals on cyanobacteria are
frequently studied. Photosynthesis is the principal mode of energy
metabolism in cyanobacteria. Photosystem II (PSII) is thought to be
the primary and sensitive site of inhibition induced by a wide
range of environmental pollutants [7–9]. Recent studies showed
ll rights reserved.
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that PSII activities of cyanobacteria were significantly inhibited
by some organic pollutants [10,11] and heavy metals [12,13]. In
the case of insecticides, it was found that dimethoate caused inhi-
bition of photosynthetic electron transport and photosynthetic car-
bon fixation but increase of PS II fluorescence of Synechocystis sp.
PCC 6803 [9].

This study aimed at investigating the effects of insecticide ace-
tamiprid on electron transport, energy flux and heterogeneity of
reaction centers in PSII of Synechocystis sp. by in vivo chlorophyll
a fluorescence tests.
2. Materials and methods

2.1. Culture of cyanobacterium

Synechocystis sp. (FACHB-898) cells were obtained from the
Institute of Hydrobiology, Chinese Academy of Sciences. The test
organism was grown in BG-11 medium [14] at 30 �C under contin-
uous fluorescent white light (55 lmol photons m�2 s�1) with a
16:8 h light–dark cycle. The cultures were agitated with hands
every 6 h. The growth of cultures was monitored every 12 h by
measuring cell optical density at 625 nm (OD625) with a spectro-
photometer (UV-2800, Unico, Shanghai, China). The growth phases
of algological cultures were determined using a graphical method.
The cells were harvested in exponential growth phase and then
transferred to 10 mm � 10 mm plastic cuvettes filled with acetam-
iprid bearing BG-11 medium at 15 lg chlorophyll per milliliter.
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Fig. 1. The fluorescence transient of Synechocystis sp. untreated and treated for 24 h
with various concentrations of acetamiprid. Each value was mean of 4 replicates.
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2.2. Acetamiprid treatment

The acetamiprid (97% of purity) was purchased from Dongfeng
Insecticide Factory, Shanghai, China. The suspension in each cuv-
ette was diluted to the same Chl density by addition of acetamiprid
solution and/or BG-11 medium, and the final acetamiprid concen-
tration ranged from 0.05 to 1.0 mM. The higher concentrations
than observed in the environment were also encompassed in order
to elicit measurable toxic responses. The sample with 0 mg L�1

acetamiprid was used as the control. All the samples untreated
and treated with acetamiprid were kept in suspension by stirring
and incubated at 25 �C under continuous fluorescent white light
(55 lmol photons m�2 s�1).

2.3. Chl a fluorescence measurement

A double-modulation fluorometer (FL3500, PSI, Inc., Brno,
Czech) was employed to measure the polyphasic fast fluorescence
induction, Q�A reoxidation kinetics, and the proportion of active and
inactive reaction centers. The sample concentration was about
15 lg chlorophyll per milliliter. All the samples were dark-adapted
for 1 min before each test.

2.3.1. Polyphasic fast fluorescence induction and JIP-test
The chlorophyll fluorescence transients were recorded up to 1 s

on a logarithmic time scale, with data acquisition every 10 ls for
the first 2 ms and every 1 ms thereafter. The saturating flash inten-
sity was set as 60% of the power. Each measured O–J–I–P induction
curve was analyzed according to the JIP-test [15,16]. The following
data were directly obtained from the fast rise kinetic curves: Fo, the
initial fluorescence, was measured at 50 ls, at this time all reaction
centers (RCs) were open; FJ and FI are the fluorescence intensity at J
step (at 2 ms) and I step (at 30 ms); Fm, the maximum fluorescence,
was the peak fluorescence at P step when all RCs were closed after
illumination; F300 ls was the fluorescence at 300 ls. The following
selected JIP-test parameters qualifying PSII behavior were calcu-
lated from the above original data [15]: VJ, relative variable fluores-
cence at the J-step; MO, approximated initial slope of the
fluorescence transient; ABS/CSO, absorption flux per CSO, approxi-
mated by FO; TRO/CSO, trapped energy flux per CSO; ETO/CSO, elec-
tron transport flux per CSO; DIO/CSO, dissipated energy flux per
CSO; RC/CSO, density of RCs Q�A reducing PSII reaction centers);
WO, probability (at t = 0) that a trapped exciton moves an electron
into the electron transport chain beyond Q�A ; WPO ¼ Fv=Fm, maxi-
mum quantum yield of primary photochemistry (at t = 0); uEO,
quantum yield of electron transport (at t = 0); uDO, quantum yield
(at t = 0) of energy dissipation; PIABS, performance index on absorp-
tion basis; PICS, performance index on cross section basis.

2.3.2. Measurement of QA-reoxidation kinetics
The measurement of QA-reoxidation kinetics was performed by

a single turnover flash. In this study, the Q�A reoxidation kinetics
curves after a single turnover flash were measured in the 200 ls
to 60 s range. Both actinic (30 ls) flashes and measuring (2.5 ls)
flashes were provided by red LEDs. The measuring flash intensity
was set as 100% of the power. The Q�A reoxidation kinetics data
were recorded with eight data point per decade.

The Q�A reoxidation kinetics curves were fitted by the three-
component exponential Eq. (1):

FðtÞ � F0 ¼ A1 expð�t=T1Þ þ A� 2 expð�t=T2Þ þ A3

� expð�t=T3Þ ð1Þ

where F(t) is the variable fluorescence yield at time t; F0 is the fluo-
rescence level before the flash; A1–A3 are the amplitudes; T1–T3 are
the time constants. The nonlinear correlation between the fluores-
cence yield and the redox state of QA was corrected for using the
Joliot model [17] with a value of 0.5 for the energy-transfer param-
eter between PSII units.

2.3.3. S-state test of inactive PSII (PSIIX) centers
The fluorescence decay is controlled largely by the reoxidation

kinetics of Q�A . In active PSII (PSIIA) centers the oxidation of Q�A is ra-
pid, whereas in inactive centers (PSIIX) the oxidation of Q�A is much
slower [18]. The number of inactive RCs in the whole cells can be
measured by the S-state test. The measuring flash intensity was
set as 50% of the power. The Fo fluorescence is measured during
the first 1 ms. 10 actinic flashes are fired 110 ms apart to advance
the S-states. After each actinic flash, the fluorescence decay is mea-
sured. The population of PSIIX centers was estimated by the different
between the fluorescence level 110 ms after the fourth flash and F0

(DF440 ms/F0-1) [11] because the fluorescence decay after the fourth
flash is controlled almost entirely by inactive centers [19].
3. Results

3.1. Effect of acetamiprid on the fast fluorescence rise

The fast fluorescence induction kinetics of the control and 24-h
acetamiprid treated samples was shown in Fig. 1. Effect of acetam-
iprid on the fast rise fluorescence of Synechocystis sp. was clearly
concentration-dependent. The fluorescence intensities of the OJIP
curve decreased almost in parallel with increasing acetamiprid
concentration. It was also observed that fluorescence rise slowly
from J step to I step for the control and low concentration acetam-
iprid stressed cells. At 1.0 mM of acetamiprid, the J–I phase rise al-
most disappeared.

More photochemical information was obtained using JIP-test
analysis of the OJIP curves, and the selected JIP-test parameters
were summarized in Table 1. It was found that the maximum
quantum yield for primary photochemistry (Fv/Fm) of Synechocystis
sp. was not significantly affected after exposure to acetamiprid. MO

decreased by about 4% after 24-h treatment with 0.05 and 0.1 mM
acetamiprid. However, after exposure to 1.0 mM acetamiprid, MO

changed little, with respect to the control. The values of ABS/RC,
TR0/RC and quantum yield of energy dissipation (uD0) changed lit-
tle under stress of various concentrations of acetamiprid, indicat-
ing that acetamiprid had little effect on energy flux per reaction
center (RC). Electron transport (uE0), probability that a trapped
exciton moves an electron into the electron transport chain beyond



Table 1
The JIP-test parameters of Synechocystis sp. cells cultured in various concentrations of acetamiprid for 24 h. All parameters were normalized to the control.

VJ M0 Fv/Fm wo uEo uDo ABS/RC TRo/RC ETo/RC RC/CSo ETo/CS PIcs PIabs

Control 1 1 1 1 1 1 1 1 1 1 1 1 1
0.05 mM 0.992 0.966 0.998 1.036 1.034 1.002 0.976 0.974 1.009 0.925 0.935 0.962 1.064
0.1 mM 0.978 0.962 1.024 1.104 1.129 0.977 0.961 0.984 1.087 0.907 0.987 1.069 1.222
0.5 mM 1.022 0.994 1.03 0.894 0.92 0.972 0.944 0.972 0.87 0.821 0.715 0.762 0.978
1.0 mM 1.074 1.038 1.007 0.652 0.657 0.993 0.959 0.967 0.631 0.763 0.481 0.469 0.639
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Q�A ðW0Þ (W0) and performance index (PICS and PIABS) were pro-
moted by lower concentration (0.1 mM and below) acetamiprid
but remarkably reduced by higher concentration acetamiprid
(0.5 mM and higher). However, on the basis of cross section, the ac-
tive photosynthetic reaction centers (RC/CS0), absorption flux
(ABS/CS), trapped energy flux (TR0/CS) and electron transport flux
per excited cross section (ET0/CS) clearly decreased with increasing
acetamiprid concentration.
3.2. Effect of acetamiprid on Q�A reoxidation kinetics

The Q�A reoxidation kinetics curves of Synechocystis sp. treated
with various concentrations of acetamiprid were shown in Fig. 2.
The amplitude of the variable fluorescence (Fv) decreased with
increasing acetamiprid concentration and the decay rate was slo-
wed down. The Q�A reoxidation kinetics parameters derived from
the curves were summarized in Table 2. Generally, the fast phase,
being 84.1–88.2%, dominated the reoxidation kinetics for both the
control and acetamiprid treated samples. Q�A reoxidation kinetics
was not significantly affected by lower concentrations (0.1 mM
or below) of acetamiprid. A slight rise in amplitude of the fast
phase and a slight decline in the slow phrase were observed at
0.1 mM acetamiprid with respect to the control. As acetamiprid
concentration exceeded 0.5 mM, amplitude of the fast phase de-
creased significantly, accompanied with the increase of amplitude
of the slow phase. For example, in the presence of 1 mM acetami-
prid, the fast phase decreased by 4.1% while the slow phase in-
creased by 3.14%. The amplitude of the middle phase changed
slightly under stress of various concentrations of acetamiprid.
3.3. Effect of acetamiprid on inactive PSII (PSIIX) centers

The S-state test curves for the control and acetamiprid treated
samples were shown in Fig. 3. Number of inactive PSII (PSIIX) cen-
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Fig. 2. The QA-reoxidation kinetics of Synechocystis sp. cultured for 24 h in BG-11
medium containing various concentration acetamiprid. Each value represented the
mean of four replicates.
ters increased linearly with increasing acetamiprid concentration
(Fig. 4). The proportion of PSIIX centers increased from 2.01% for
the control to 13.9% for the sample treated with 1.0 mM
acetamiprid.
4. Discussion

In the present study, we have demonstrated that high concen-
tration (0.5 mM or higher) acetamiprid had adverse effects on
the PSII activity of Synechocystis sp. Acetamiprid decreased the
density of active photosynthetic reaction centers per excited cross
and quantum yield of electron transport, resulting in the decline of
performance of PSII.

The Q�A reoxidation kinetics can be used for testing the effect of
environmental stresses on the function of the acceptor side of PSII
[20,21]. A single turnover saturating flash to dark adapted samples
produces a high fluorescence yield. The subsequent fluorescence
decay in the dark exhibits three main decay phases. The fast phase
indicates electron transfer from Q�A to Q�B site occupied with QB Q�B
before the actinic flash. The middle phase is typical for PSII com-
plexes where Q�A reoxidation is limited by diffusion of PQ mole-
cules to an empty QB-site [20]. The slower phase represents the
charge recombination from the S2Q�A state of water oxidation to
the S1QA [22]. In the present study, the fast phase is the over-
whelming majority for both the control and samples treated with
various concentrations of acetamiprid, indicating that the Q�A reox-
idation was mainly fulfilled by the electron transfer from Q�A to
QB=Q�B . In the presence of acetamiprid at 0.1 mM or below, the
amplitude of the fast phase and the middle phase rise slightly,
accompanied with a slight drop of the amplitude of the slow phase.
This means that low concentrations of acetamiprid may stimulate
electron transport from Q�A to QB=Q�B . High concentration (1.0 mM)
acetamiprid induced a decrease of the amplitude of the fast phase,
an increase of amplitude of the slow phase and a slight increase of
amplitude of the middle phase, implying that the contribution of
S2(QAQB)� charge recombination to Q�A reoxidation increased while
electron transfer from Q�A to Q�A was hindered. More Q�A were
forced to be oxidized with S2(QAQB)� charge recombination [11].

The slow rise of J–I phase for the control and low concentration
acetamiprid stressed cells suggests that reduced Q�A accumulated
by slowing of its reoxidation because of reduction of QB and the
quinone pool. The disappearance of this J–I phase rise at 1.0 mM
acetamiprid implies that the reduction of the secondary quinone
electron acceptor-QB, plastoquinone-PQ, cytochrome-Cyt and
plastocyanin-PC may be inhibited by high concentration acetami-
prid [23]. Besides, the effect on J–I phase might also be related to
the membrane potential changes may also affect the J–I phase [24].

The JIP-test analysis of the chlorophyll fluorescence transient
provides important information on the absorption, distribution
and utilization of energy [15]. The JIP-test analysis shows that ace-
tamiprid inhibits electron transport on the acceptor side of PSII of
Synechocystis sp. Acetamiprid decreased the density of active reac-
tion centers per cross section (RC/CS), resulting in the decrease of
absorption flux, trapped energy flux and electron transport flux
per excited cross section (ABS/CS, TR0/CS, ET0/CS). This was in
accordance with the increase of the number of PSIIX center. The



Table 2
Kinetic deconvolution of fluorescence decay kinetics of Synechocystis samples untreated and Acetamiprid treated. A1, A2 and A3 are the amplitudes. T1, T2 and T3 are the time
constants. Data represented mean ± SE of four replicates.

Treatment Fast phase Middle phase Slow phase

A1 (%) T1 (ls) A2 (%) T2 (ms) A3 (%) T3 (S)

Control 88.2 ± 0.5ab 611.2 ± 14a 9.95 ± 0.4a 3.86 ± 0.08a 1.83 ± 0.12a 12.1 ± 0.4a

0.05 mM 88.6 ± 0.5ab 587.9 ± 16ab 9.70 ± 0.4a 3.70 ± 0.11a 1.71 ± 0.11a 10.1 ± 1.1ab

0.1 mM 89.6 ± 0.5a 561.1 ± 19b 8.79 ± 0.4ab 3.52 ± 0.20a 1.65 ± 0.16a 8.06 ± 0.7b

0.5 mM 87.5 ± 0.7b 615.6 ± 13a 9.67 ± 0.4a 3.94 ± 0.10a 2.82 ± 0.31b 4.28 ± 0.5c

1.0 mM 84.1 ± 0.8c 701.1 ± 8c 10.9 ± 0.5b 4.60 ± 0.14b 4.97 ± 0.40c 2.66 ± 0.2c

abc Data were analyzed by ANOVA followed by comparison between groups using the Student–Newman-Keuls test. Different letters of superscript denoted significant
differences at p = 0.005. In the same columns with the same letters denoted no significant difference at p = 0.005.

Fig. 3. The fluorescence decay induced by a series of single-turnover flashes for the
control and samples treated for 24 h with various concentrations of acetamiprid.
Each value represented mean of four replicates.
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Fig. 4. Proportion of PSIIX of Synechocystis sp. untreated and treated with various
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same columns with the same letters denoted no significant difference at p = 0.005.
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decrease of the number of the active centers caused the decrease of
quantum yield for electron transport (uE0), probability that a
trapped exciton moves an electron into the electron transport
chain beyond Q�A ðW0Þ, and finally resulted in substantial decreases
of performance indexes (PICS and PIABS). Heavy metals [12,13], anti-
biotics [11,25] and herbicides [26] have also been reported to inac-
tivate the reaction centers and reduce the performance index. It is
necessary to noted that in these previous studies the decrease of
performance index was ascribed to a decrease of the density of
the active reaction centers and an increase of dissipated energy
flux and antenna size. However, in the present study, neither the
antenna chlorophylls per reaction center nor dissipated energy flux
(uD0) is significantly affected by acetamiprid treatment. The de-
crease of performance index is due to the decreases of energy flux
and electron transport per cross section. This indicates that the de-
crease of quantum yield (uE0) induced by high concentration ace-
tamiprid is only associated with inhibition of electron transfer
from Q�A to QB to PQ, which is confirmed by evidence from the
QA-reoxidation kinetics. In addition, MO was not significantly af-
fected by acetamiprid. MO reflects the initial slope of the O–J
growth phase on the fluorescence time course. This implies that
acetamiprid did not significantly affect light induced single reduc-
tion of QA, i.e., net rate of PSII closure [7,28].

Several insecticides such as dimethoate [7,9] and lindane [29]
were reported to significantly decrease the maximum quantum
yield of primary photochemistry (F0/Fm). However, in the present
study, acetamiprid did not have significant effect on Fv/Fm while
the value of performance index (PIABS or PICS) increased after expo-
sure to low concentrations of acetamiprid. Only high concentration
(1.0 mM) acetamiprid treatment resulted in a remarkable decrease
of performance index. Fv/Fm has been frequently used as one sensi-
tive index for PSII activity of photosynthetic samples treated with
freezing [30], heat [31] and pollutants [32]. However, Fv/Fm repre-
sented only amount of energy trapped in PSII RCs in relation to en-
ergy absorbed [33] and damage to photosynthetic apparatus
triggered by pool size of acceptors may not change Fv/Fm [34]. Un-
like Fv/Fm, PIABS or PICS integrates much more information on PSII
function including antenna, reaction center and energy fluctua-
tions [33]. In the present study, acetamiprid reduced the pool size
and inhibited electron transport on the acceptor side but had little
effect on energy absorption and energy trapped. Therefore, Fv/Fm

does not change significantly in response to acetamiprid while per-
formance indexes respond sensitively to acetamiprid treatment.

In summary, our study showed that high concentration acetam-
iprid reduces photosynthetic performance of Synechocystis sp. by
inhibiting its electron transport per cross section and inactivating
RCs. However, acetamiprid exposure had little effect on antenna
size, energy trap and dissipation of active RCs.
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