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Sulfate concentrations and sulfur isotopic compositions were measured in rainwater in Guiyang
city in Southwest China betweenOctober 2008 and September 2009 to identify sulfur sources and
their impacts on sulfur isotopic composition. The δ34S values of 1235 samples collected during this
period ranged from−12.0 to+9.4‰, with a volume-weightedmean of−2.8 ± 9.8‰, suggesting
that rainwater sulfate in Guiyangwasmainly derived from SO2 produced during coal combustion.
The δ34S values of rainwater sulfate increased from 1987 to 2009, with an increment of
about +0.16‰ per year, reflecting a gradual reduction in 34S-depleted SO2 emitted during coal
combustion. Seasonal variations in δ34S values were pronounced, with higher values in winter
than in summer. Long-distance transport of SO2 from coal burned in northern cities (which was
higher than the component fromsouthern cities), andmore importantly, the aqueous oxidation of
SO2 during transport affected the seasonal variation of rainwater δ34S values in Guiyang.
Temperature-dependent aqueous oxidation of SO2 suggested that lower rainwater δ34S coincides
with higher temperature.
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1. Introduction

The global sulfur cycle has caused widespread concern
among international environmental scientists, because it
affects global atmospheric pollution, acid deposition, and
climate (Kellogg et al., 1972; Andreae et al., 2005). Major
inputs of anthropogenic SO2 into the atmosphere occur in
heavily industrialized areas, and are mainly due to the
combustion of oils or coals (Kellogg et al., 1972; Li et al.,
1999; Mukai et al., 2001; Szynkiewicz et al., 2008). Other
minor sulfur sources for rainwater sulfate (SO4

2−) include sea
spray and biogenic emissions (Rees et al., 1978; Pan et al.,
2008; Zhang et al., 2010). In coastal regions, biogenic H2S
and dimethylsulfide (DMS) are both important atmospheric
sulfur sources and their emission concentration ratio is about
1:5 (Andreae, 1990).
),
Rainwater is the main removal mechanism for sulfate
(SO4

2−) in the atmosphere (Wadleigh et al., 1996; Xu and
Carmichael, 1999; Xiao et al., 2013; Xiao and Liu, 2004),
accounting for N90% of its removal (data from Xiao and Liu,
2004; Xiao et al., 2013). SO4

2− is incorporated into rainwater
by in-cloud scavenging (including rainout, nucleation of
cloud particles, and formation of SO4

2− from absorbed SO2;
Scott and Hobbs, 1967; Scott, 1978) and below cloud
scavenging (washout). Generally, in urban areas, formation
of SO4

2− from anthropogenic SO2 is the largest contributor
(Wadleigh et al., 1996).

Studies have been carried out all over the world on the
sulfur cycle within the atmosphere, using sulfur isotope as a
tracer (Saltzman et al., 1983; Mcardel and Liss, 1995; Xiao
and Liu, 2002; Xiao et al., 2011). Moreover, sulfur isotopic
signatures give us a better understanding of mixing process-
es, transport, removal, and oxidation pathways in this cycle
(Novák et al., 2000, 2001; Xiao and Liu, 2002; Xiao et al.,
2009). Both SO2 and SO4

2− have long residence times in the
atmosphere, of about 1 to 2 days and 2 to 4 days, respectively
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(Berglen et al., 2004; Rotsayn and Lohmann, 2002; Tsai et al.,
2010). Hence, sulfur-containing aerosols can be transported
thousands of kilometers downwind from their origin
(Karnielli et al., 2009). Sulfur is one of the major components
of fine aerosol particles over continental areas (Quinn and
Coffman, 1998). SO2 sources have different sulfur isotope
compositions, depending on the isotopic values of their
source materials (Mukai et al, 2001). The δ34S of sea salt
sulfate is +21.0‰, δ34S of H2S is−30‰ to−6‰, δ34S of DMS
is +19.8% (Rees et al., 1978; Krouse and Van Everdingen,
1984; Calhoun and Bates, 1989; Herut et al., 1995; Amrani et
al., 2013), while the δ34S of anthropogenic SO2 has a wide
range of values (Calhoun and Bates, 1989; Hong et al., 1994).
Thus, the δ34S in rainwater is mainly controlled by the
composition of its sulfur source (Wadleigh et al., 1996).

The rapid growth of both industrial and agricultural
production during the last two decades has resulted in
serious acidic rain problems in many cities in China, e.g.,
Guiyang (Xiao et al., 2013). Anthropogenic SO2 emissions are
very different among Chinese provinces, with higher emis-
sions in north and east China, and lower emissions in south
and west China (Fig. 1), related to different economic
development in these regions. Atmospheric SO2 in China is
mainly derived from coal combustion (Galloway et al., 1987;
Liu et al., 2011). Despite a decreasing trend of SO2 emissions
Fig. 1. Map showing sampling location in Guiyang, anthropogenic SO2 emission (μg
clusters ended at Guiyang with polluted trajectory number (the number of different
of SO2 emission from China Environment Statistical Yearbook, 2010).
(Fig. 2), it is still the most important factor contributing to
acidic rainwater in Guiyang (Xiao et al., 2013). Hence, sulfur
isotopic composition has been studied within the city to
constrain the sources of sulfur in the atmosphere. Hong et al.
(1994) found that summer rainwater δ34S values were the
lowest, reflecting the presence of biogenic sulfur in the
atmosphere. Xiao and Liu (2002) suggested that negative
δ34S values of light rainfalls were associated with local
sources, while sulfur in heavy rainfalls was derived from
maritime sources and had positive δ34S values in Guiyang.
Values of δ34S in atmospheric particulate matter in Guiyang
were measured by Liu et al. (1996a, 1996b); they reported
that coarse particles derived from soil averaged−2.2‰;
while fine particles derived mainly from coal combustion
averaged−2.3‰.

However, the mechanisms underlying the seasonal vari-
ation in rainwater δ34S in this city are still unclear. Guiyang
has a high rainfall (about 1200 mm per year), so it is an ideal
location to study sulfur isotope fractionation in rainwater. In
this study, we investigated SO4

2− concentrations and δ34S
values in rainwater in Guiyang from October 2008 to
September 2009. Since acid rain is a common occurrence in
this city, we investigated: (1) sources of atmospheric sulfur,
and (2) how and why atmospheric sulfur isotopic composi-
tion changes with time.
/m3) in different provinces in China in 2009 and three-day mean trajectory
color dotted lines means the number of trajectory from this cluster; the data
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2. Experiment

2.1. Description of study area

Guiyang city, capital of Guizhou Province (106.43°E,
26.35°N, 1250 m above MSL), is located on the eastern
slope of the Yunnan–Guizhou Plateau, within the highland
transition zone in China, surrounded by mountains (Fig. 1). It
has a subtropical monsoon climate, with an annual average
temperature of 15.3 °C, annual rainfall of 1174 mm, and
relative humidity of about 77%. More than a half of the total
rainfall occurs in the summer, while less than 10% of the
annual rainfall occurs in winter. During the study period, the
longest time without rain was 14 days. The dominant wind
direction was from the northeast in winter, and from the
southeast in summer, with an annual average wind speed of
2.2 m/s from October 2008 to September 2009.

Pollution related to coal combustion has been reduced to
some extent in recent years (Xiao et al., 2013). For example,
coal-fired household stoves were phased out from 1998, and
power plants were moved away from the city (Xiao et al.,
2013). These changes led to a 42.1% reduction (from
31 × 107 kg to 17.95 × 107 kg) in total SO2 emissions (Fig. 2;
the data of SO2 emission from China Environment Statistical
Yearbook, 2010), and 59.8% reduction (21 × 107 kg to
8.45 × 107 kg) in industrial SO2 emissions from 2002 to 2009.
This has resulted in a 43.7% decrease in atmospheric SO2

concentrations (from 0.103 mg/m3 to 0.058 mg/m3) (Fig. 2).
Despite this reduction, acid rain still frequently occurs in
Guiyang.
2.2. Sampling and chemical analysis

Rainwater samples were collected using two aluminum
sheets (7.14 m2) as a collection device, fixed 1.5 m above the
roof of a building located at the State Key Laboratory of
Environment Geochemistry. The device was cleaned with
Milli-Q water and dried before use. The device was kept
covered with a large clean polyethylene sheet until it started to
rain. Rainwater was collected directly from the device into
1.5 L acid-cleaned plastic bottles. As each bottle was filled, it
was replaced manually with a new bottle until the conclusion
of the rain. All rainfall eventswere sampled from the beginning
to endover the study period. Thus, a total of 1235 sampleswere
collected between October 2008 and September 2009.
Fig. 2. Anthropogenic SO2 emission and atmospheric SO2 concentration from
2002 to 2009 at Guiyang (the data from Guiyang Environment Bulletin,
2003–2010).
After collection, the pH, electrical conductivity (EC), and
temperature (T) were immediately measured in a 20 mL
subsample from each bottle. The remainder of the sample
was passed through a 0.45 μm acetate membrane filter, and
refrigerated at 4 °C. A 10 mL subsample was used for SO4

2−

concentration analysis and another 1.2 L was used for
isotopic analysis (after being treated with HgCl2). SO4

2−

concentrations were measured by ion chromatography
(DIONEX ICS-90, Thermo Fisher Scientific Inc., USA), with a
0.1 mg/L detection limit for various ions.

2.3. Isotopic analysis

Sulfur isotopic composition was determined after SO4
2−

was separated from the rainwater by anion exchange using
anion resin (Dowex® 1-X8, 200-mesh OH− form) at the
laboratory. The procedure is described in detail by Xiao and
Liu (2002). SO4

2− was eluted with 40 mL of 2 mol/L KCl
solution. The sorption efficiency of sulfate was greater than
99.9% (Xiao and Liu, 2002). About 10 mL of this eluent was
transferred to a 15 mL centrifuge tube for sulfur isotope
analysis. After acidifying with pure HCl solution, the SO4

2−

was precipitated as BaSO4 with 2 mol/L BaCl2 solution. This
mixture was filtered through 0.22 μm acetate membrane
filters after 24 h. The precipitate was cleaned with sufficient
Milli-Q water to remove Cl− on the filter. The precipitate
(BaSO4) was quickly transferred into crucibles, with the filter,
and combusted at 800 °C for 40 min in air.

Sulfur isotopes were determined at the State Key Labora-
tory of Environment Geochemistry, Institute of Geochemistry.
Samples (~500 μg BaSO4) were accurately weighed into small
tin cups (φ3.5 × 5) for analysis. A Eurovector elemental
analyzer (EA3000, Eurovector, Italy) was used for on-line
combustion of BaSO4 at 1030 °C and on-line separation of SO2

to an IsoPrime isotope ratio mass spectrometer for 34S/32S
analyses (IsoPrime Continuous Flow Isotope Ratio Mass
Spectrometer, GV Instruments Ltd, UK). This method is
described in Grassineau et al. (2001). Each sample was
analyzed at least twice. The standard deviation for the δ34S
analysis of reference standard NBS127 (BaSO4) was ±0.2‰
(n = 5). Sulfate concentrations of some samples were lower
than 2 mg/L, and thus too low for δ34S analysis. Thus, only
about 64% of samples were measured for sulfur isotopes. In
summer, fewer samples were analyzed than for other seasons
due to greater precipitation amounts, and consequently lower
SO4

2− concentrations in rainwater.

2.4. Back-trajectory and concentration weighted trajectory
analysis

To identify the influence of long-distance transport of
atmospheric SO2 on the concentration of SO4

2− in rainwater
in Guiyang, air mass back trajectories were estimated using
TrajStat software (http://www.arl.noaa.gov/HYSPLIT.php),
with Global Data Assimilation System (GDAS) data provided
by the National Oceanic and Atmospheric Administration
(NOAA). For each day, a 3-day (72 h) back-trajectory of the
air mass arriving at Guiyang, 500 m above ground level, was
investigated with time ending at 0 a.m. A cluster analysis was
carried out on these back-trajectories (Cape et al., 2000).

http://www.arl.noaa.gov/HYSPLIT.php
image of Fig.�2
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To identify impacts of regional source areas on atmo-
spheric SO4

2− concentrations in Guiyang, the concentration
weighted trajectory (CWT) or Concentration Field model was
used (Stohl, 1996). This model is frequently applied in
pollution studies to detect polluted regions that affect the
composition at a specified site (Salamalikis et al., 2014). Our
CWT model was a function of the SO4

2− concentrations for
each rainy day, and one air mass back-trajectory generated
for the same day, yielding 144 back-trajectories between
October 2008 and September 2009 (Fig. 1). Based on the
longest distance traveled by the air mass back-trajectories
over the study period, a geographic region from 90 to 130°E
and from 15 to 45°N was defined as the source domain. This
domain was divided into 2400 grid cells, each covering an
area of 0.5° by 0.5°. The CWT for SO4

2− for the grid cells (i, j) in
this domain is a measure of the source strength of a grid cell
with respect to Guiyang and is defined by (Eq. (1); Cheng et
al., 2013):

Cij ¼
1

XM

l¼1

τijl

XM

l¼1

Clτijl ð1Þ

where Cij is the average weighted concentration of SO4
2− in

the ijth cell; l is the index of the trajectory; Cl is the
volume-weighted mean SO4

2− concentration from rainwa-
ter samples, corresponding to the arrival of back-trajectory
l at the sampling site; τijl is the time spent in the ijth cell by
trajectory l; and M is the total number of back trajectories.

Although CWT is a powerful tool for atmospheric source
identification and has been widely used in many previous
studies (e.g. Cheng et al., 2013), there are no studies for sulfur
isotopes. Hence, we also tried to use CWT for δ34S values in
this study. This calculation is analogous to the weighting
method used for daily δ34S, where the weighting factors are
the precipitation amount, and SO4

2− concentration. In this
calculation, Cl becomes the volume-weighted mean δ34S from
rainwater samples in Eq. (1) (instead of SO4

2− concentration),
and Cij is the average weighted δ34S in the ijth cell. CWT plots
for SO4

2− and δ34S were determined for each season in the
2008 and 2009. The CWT method provided a spatial pattern
of the potential sources that contributed to the observed
Table 1
Temporal variations of weather conditions at Guiyang.

Month Sampling number SO4
2−

(mg·L−1)
δ34S
(‰)

δ34S (A
(‰)

2008.10 159 17.4 −4.1 ± 1.7 −4.2
2008.11 63 8.1 −3.7 ± 2.3 −3.9
2008.12 24 50.2 −0.9 ± 1.8 −1.0
2009.1 25 45.2 −0.8 ± 1.3 −0.9
2009.2 49 28.8 −2.4 ± 1.6 −2.4
2009.3 43 23.5 −1.7 ± 1.4 −1.7
2009.4 156 6.1 −2.6 ± 2.4 −2.7
2009.5 112 14.4 −5.3 ± 3.7 −5.4
2009.6 139 19.8 −2.6 ± 1.9 −2.6
2009.7 238 7.8 −4.1 ± 2.2 −4.2
2009.8 140 10.6 −2.7 ± 3.5 −2.9
2009.9 87 12.4 N.D. N.D.
Average 12.8 −2.8 ± 9.8 −2.9

The data of temperature, humidity, and sunshine is from Xiao et al., (2012). AF: an
N.D. means no data.
SO4
2− and δ34S at the sampling site. The weighted values at

each grid cell obtained from Eq. (1) represent SO4
2− and δ34S

values that can be expected at the receptor site, if an air
parcel would have traveled through the spatial grid. The CWT
model was intended to identify regional source areas, but not
global or local ones. One of the major sources of uncertainty
in the CWT model is the back-trajectory modeling. Wind
field errors, modeling of vertical motion, turbulence, and
starting position all contribute to trajectory uncertainties
(Cheng et al., 2013). Furthermore, the CWT model cannot
differentiate between source areas associated with surface
emissions and those associated with point sources (Cheng
et al., 2013).

2.5. Meteorological parameters

Meteorological data, including air temperature, relative
humidity, wind direction and wind speed were measured per
minute at the sampling site over the study period.

3. Results and discussion

3.1. General characteristics of rainwater sulfate

The SO4
2− concentrations in rainwater ranged from0.7 mg/L

to 414.6 mg/L (Supplementary material), with a volume-
weighted mean of 12.8 mg/L over the study period (Table 1).
The SO4

2− concentrations showed obvious seasonal variation
(Fig. 3a); they were about 8.2 times higher in winter than in
summer. This seasonal variation may be linked to rainfall
volume (Xiao et al., 2013), since a negative natural logarithmic
relationship was found between SO4

2− concentrations and
precipitation (y = −(13.1 ± 2.7)lnx + (71.9 ± 10.8); R =
0.85, P b 0.01). However, the amount of wet-deposited sulfate
was anti-correlatedwith sulfate concentration,with high values
in summer and low values in winter (Fig. 3a).

The SO4
2− concentrations in rainwater decreased from

19.7 mg/L to 12.8 mg/L over the time period from 1982 to
2009 (Zhao et al., 1988; Xiao et al., 2013), mainly due to
phasing out of traditional and industrial coal-combustion
pollution in the city in recent years (Xiao et al., 2013). The
average SO4

2− concentration was still much higher in
F) Temperature
(°C)

Humidity
(%)

Precipitation
(mm)

Sunshine
(hr·day−1)

16.6 82 57.1 2.1
10.5 72 61.6 2.3
6.4 76 14.0 1.9
3.8 73 11.2 1.5
7.7 77 24.2 2.3

11.4 71 31.5 2.6
14.6 77 225.0 1.4
18.6 76 81.8 2.3
21.6 73 116.2 2.1
22.8 76 158.5 3.1
23.7 69 80.7 4.9
21.7 67 31.7 5.3
15.0 74 74.5 2.6

thropogenic fraction.
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Guiyang, than in other southern Chinese cities, as well as
other countries, e.g., 3.1 mg/L in Shenzhen and 8.0 mg/L in
Guangzhou, both in South China; 2.5 mg/L in Tokyo, Japan;
1.9 mg/L in Swargate, India; 0.05 mg/L in Cuiabá, Brazil; and
1.8 mg/L in Adirondack, USA (Cao et al., 2009; Okuda et al.,
2005; Ito et al., 2002; Huang et al., 2010; Budhavant et al.,
2011; Dias et al., 2012). However, it was lower than those in
northern Chinese cities, such as Xi'an (24.0 mg/L; Lu et al.,
2011), and Beijing (15.4 mg/L; Yang et al., 2012).

The δ34S values in rainwater samples ranged from−12.0‰
to+9.4‰ (Supplementary material), with a volume-weighted
mean of−2.8 ± 9.8‰ (Table 1). The higher δ34S values were
Fig. 3. a: Monthly concentration of sulfate and sulfate wet-deposition per month
(n means the number of δ34S in rainwater). The lower boundary of the box indicate
upper boundary of the box indicates the 75th percentile. Whiskers (error bars) abo
associated with higher SO4
2− concentrations in winter, and

lower δ34S values with lower SO4
2− concentrations in summer

(Fig. 3b, Xiao et al., 2013). Seasonal variation had a strong
sinusoidal pattern ( y ¼ −2:7þ 1:5 sin 2π

8:7 x−1:6
� �

; Fig. 3b).
The volume-weighted means of samples collected at night
(18:00–6:00) and during the day (6:00–18:00) were similar
(−2.9 ± 2.6‰ and−2.8 ± 2.2‰, respectively). Although,
there was a slight difference between day and night samples
for summer rain, with−3.6 ± 2.4‰ (n = 100) for night
and−2.8 ± 2.1‰ (n = 159) for day samples. The average
δ34S value of all 1235 samples in Guiyang was close to that for
Guilin and Liuzhou Guangxi Provinces in South China (−3.5‰
. b: Monthly variations of δ34S in rainwater from Oct. 2008 and Aug. 2009
s the 25th percentile, a line within the box marks the average value, and the
ve and below the box indicate the 90th and 10th percentiles.

image of Fig.�3
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and−2.8‰, respectively; Zhang et al., 2002), suggesting that
they may have a similar sulfur source. Previous studies (e.g.
Xiao and Liu, 2002; Zhang et al., 2010) reported that the largest
contributor to SO4

2− in rainwater was SO2 emissions from coal
combustion in most of Chinese cities. Mukai et al. (2001) also
reported that in Guiyang, the δ34S values of atmospheric SO2

and SO4
2− were close to those for coals used in these regions.

The same observation was made in Fukuoka, Japan, where the
δ34S value of atmospheric SO2 was close to that of local fossil
fuel (Kawamura et al., 2001). Comparedwith southern Chinese
cities, the δ34S values in northern China cities were more
positive, e.g., Xi'an (+13.4‰, Bai andWang, 2014) and Beijing
(+6.8‰, Hong et al., 1994). These differences in δ34S values
were ascribed to the different δ34S values of regional coals, e.g.,
themean δ34S values of northern regional coals were: +12.5‰
in Shaanxi Province, +10.0‰ in Shanxi Province, +12.1‰ in
Hebei Province, and +10.7‰ in Gansu Province (Xiao et al.,
2011); while the mean δ34S values of southern regional coals
were−7.5‰ in Guizhou Province, −5.7‰ in Jiangxi Province,
and +1.8‰ in Hunan Province (Hong et al., 1992; Xiao et al.,
2011). In this study, the δ34S values of SO4

2− in rainwater were
slightly higher than those for local coals (−7.5‰; Hong et al.,
1992), suggesting that in addition to sulfur derived from the
local combustion of coal, there are other sources, such as
biological sources, sea spray or regionally-transported sources
from North China that affect the δ34S values of SO4

2− in
rainwater in Guiyang.

Fig. 4 shows an increase in δ34S values of rainwater SO4
2−

of about +0.16‰ per year in Guiyang from 1987 to 2009,
whereas the local anthropogenic SO2 emissions from
34S-depleted coal combustion have gradually decreased by
about 10,000 tons per year since 1987 (Figs. 2 and 4).
Interestingly, the same trend was observed in the north-
western region of the Czech Republic (Novák et al., 2001),
where local SO2 emissions were reduced, and other unknown
sources had higher δ34S values than those of local coals.
Fig. 4. Relationship between δ34S in rainwater and emission of SO2 from
1987 to 2009 at Guiyang (n means the number of δ34S in rainwater;
emission of SO2 from Guiyang Environment Bulletin, 2001, 2003, 2004, 2006,
2008, and 2009; δ34S in 1987–1989, in 2001, in 2003–2004 and in 2006 from
Hong et al., 1994; Xiao and Liu, 2002; Liu, 2007 and Xiao et al., 2009,
respectively).
3.2. Seasonal variation of sources

Winter months were associated with isotopically heavier
sulfur than summer months (Fig. 3b). Similar results were
reported in Jiangxi, China (Pan et al., 2008), USA (Zhang et al.,
1998), Japan (Ohizumi et al., 1997), and Canada (Nriagu and
Coker, 1978). The difference in δ34S values for winter and
summer months was about 3.3‰ in Guiyang. Nriagu and
Coker (1978) also found that the δ34S values during cold
months were higher by about 4‰ in the Great Lakes Basin
(USA and Canada). In Central Europe, however, lower δ34S
values were found in winter months, because there was a
higher demand for electricity for heating during the cold
season, leading to higher anthropogenic SO2 (isotopically
lighter sulfur) emission rates (Novák et al., 2001). Seasonal
variation of δ34S values in rainwater reflected seasonal
changes in sulfur sources, oxidation pathways, scavenging
ratio and/or sulfur isotope fractionation taking place in the
atmosphere (Harris et al., 2013a; Nriagu and Coker, 1978). It
cannot be caused by the seasonal variations in coal combustion
in Guiyang (Hong et al., 1994), since therewere no differences in
the isotopic composition of SO2 during summer (−4.5 ± 4.0‰)
and winter (−4.1 ± 2.0‰) (Mukai et al., 2001).

3.2.1. Sea salt and crust fractions
Since contributions of sulfur from volcanic sources were

negligible (there are no volcanoes near Guiyang), the sulfur
sources in rainwater must be derived from anthropogenic
sources, sea spray, and terrestrial dust (Zhang et al., 2007;
Cao et al., 2009). To derive these fractions, Na+ and Ca2+

were taken as reference elements, assuming that all Na+

originates from marine sources and all Ca2+ from terrestrial
dust (Zhang et al., 2007; Cao et al., 2009). The sea salt fraction
(SSF), crust fraction (CF), and anthropogenic fraction (AF)
were calculated using Eqs. (2), (3) and (4), respectively:

SSF %ð Þ ¼ 100 X=Naþ
� �

sea
= X=Naþ
� �

rainwater
ð2Þ

CF %ð Þ ¼ 100 X=Ca2þ
� �

soil
= X=Ca2þ
� �

rainwater
ð3Þ

AF %ð Þ ¼ 100−SSF−CF ð4Þ

where X represents the SO4
2− concentration.

The approximate contributions of sea salt and crust
sources to rainwater SO4

2− are shown in Fig. 5. The SSF for
Guiyang samples was 0.60 ± 0.22%, with no obvious season-
al variation, indicating that the contributions of sea salt were
consistently very low. This was comparable to other local
cities, such as Chengdu, which had a SSF of 0.8% (Wang and
Han, 2011). In contrast, total SO4

2− in Erzgebirge and Freiberg
regions of Germany comprised 95–99% non-marine SO4

2−

(Zimmermann et al., 2006). These inland cities showed very
different SSF to cities close to the coast with a large maritime
contribution (Xiao et al., 2014). The CF for Guiyang samples
was 1.87 ± 0.52%; it was slightly higher in winter and spring
than in summer and autumn, suggesting that there was a
small contribution to the seasonal variation from crustal
sources. The low CF was consistent with the low sulfur
content of local soils (Guan et al., 2013). Contributions of SO2

from biomass burning in Guizhou and biogenic sulfur were

image of Fig.�4


Fig. 5. Monthly percentage of SSF (sea salt fraction) and CF (crust fraction)
sources of SO4

2− in rainwater.
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neglected (Streets et al., 2003; Yang et al., 1996). Biomass
burning in Guizhou accounted for only about 250 tons
(Streets et al., 2003) and biogenic sulfur for about 322 tons
(Yang et al., 1996), compared with 19.5 × 104 tons for
anthropogenic sulfur per year. Thus, anthropogenic sources
accounted for about 97.53% of the total SO4

2−. Since δ34S of
seawater was +21.0‰ (Rees et al., 1978) and the δ34S of
crust in Guiyang was−2.2‰ (Liu et al., 1996a, 1996b), the
δ34S of the anthropogenic fraction (AF) was calculated by
subtracting from these components.
Fig. 6. Different seasonal CWT (concentration weighted trajectory) plots for daily
3.2.2. Trajectory clusters and CWT results
The daily sulfate concentrations (volume-weighted

mean concentrations of every day) ranged from 2.9 mg/L to
316.3 mg/L, with an arithmetic average of 41.0 mg/L. Fig. 1
shows the results of the cluster analysis of anthropogenic
SO2 emissions in 2009. Cluster 1 from northwest Hunan
Province accounted for 38.8% of trajectories; cluster 2 from
the junction of Guangxi Province and Guizhou Province
accounted for 12.5% of trajectories; cluster 3 from west
Guangxi Province accounted for 28.5% of trajectories; while
clusters 4, 5, and 6 accounted for less than 10% of all
trajectories. These clusters suggest that the external source of
sulfur in Guiyang was from the region covered by Guizhou–
Guangxi–Hunan Provinces. These three provinces had similar
SO2 emission intensities, with 6.7 × 103 kg/km2 in Guizhou,
and 3.8 × 103 kg/km2 in Guangxi and Hunan Provinces (data
from China Environment Statistical Yearbook, 2010, Fig. 1).
Among these three provinces, the SO2 emission intensity
in Guizhou was highest, about 1.76 times greater than that in
Guangxi and Hunan Provinces. The SO2 concentrations in
the capital cities of these provinces were 0.058 mg/m3 in
Guiyang (Guizhou), 0.032 mg/m3 in Nanning (Guangxi), and
0.039 mg/m3 in Changsha (Hunan) (data from China
Environment Statistical Yearbook, 2010). Again, values in
Guiyang were 1.81 and 1.49 times higher than that in the
other two cities, respectively.
weighted average concentrations of daily weighted average values of SO4
2−.

image of Fig.�5
image of Fig.�6
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The CWT plotted for SO4
2− is shown in Fig. 6. The winter

CWT plots for SO4
2− indicate that east Guizhou, north

Guangxi, and northwest Hunan are likely source regions of
rainwater SO4

2− in Guiyang. In addition, there is a component
of long-distance transported SO4

2− from north and northwest
regions of China with high SO4

2− (Bai and Wang, 2014). In
winter, the daily SO4

2− concentrations in Guiyang varied
greatly, reaching concentrations higher than 60 mg/L on
some days. The spring CWT plots show that the source
regions were likely a large area formed by central and eastern
Guizhou, west Guangxi, and west Hunan Provinces. The
summer CWT plots indicate that central and eastern Guizhou,
northwest Hunan and north Guangxi Provinces, as well as the
northern region of the South China Sea were likely source
regions in this season. The autumn CWT plots show that the
source regions were likely a region formed by central and
eastern Guizhou and Hunan Provinces.

To identify sulfur sources, seasonal CWT plots for δ34S
were also calculated (Fig. 7). They show that that high δ34S
values were generally from the north in winter, and low δ34S
values from the south in summer. Hong et al. (1994) reported
that the rainwater SO4

2− was 34S-enriched north of the
Yangtze River, while 34S-depleted south of the Yangtze River;
they attributed these isotopic differences to the differences in
δ34S of local coals. In Guiyang, we found a relationship
between δ34S and 1/SO4

2− in winter (R = 0.5, P = 0.01), but
no correlation was found in other seasons (R = 0.3,
P ≫ 0.05 for spring; R = 0.1, P ≫ 0.05 for summer; R =
0.1, P ≫ 0.05 for autumn, respectively), suggesting that the
δ34S and SO4

2− concentrations were significantly affected by
the sources in North China during winter.

3.3. Seasonal variation in isotopic composition

Both isotopic fractionation and seasonal variation in
sulfate source were important factors affecting the seasonal
variation in sulfur isotopic composition in the atmosphere.
The isotopic composition of secondary sulfates depended
largely on the isotopic composition of the precursor SO2,
as well as oxidation processes in the atmosphere. Thus,
oxidation of SO2 to SO4

2− had a significant effect on isotopic
composition (Novák et al., 2000, 2001; Harris et al., 2012a,
2013a).

Oxidation of SO2 has two pathways, involving homoge-
neous or heterogeneous oxidation (Novák et al., 2001).
Homogeneous oxidation only involves kinetic fractionation,
whereas the heterogeneous pathway involves both equilib-
rium and kinetic fractionation (Harris et al., 2012a, 2013a).
The product, H2SO4, formed from homogeneous oxidation
can stick to the surfaces of existing particles or nucleates to
form new particles in the atmosphere, which grow to act as
cloud condensation nuclei (Eq. (5); Benson et al., 2008;
Harris et al., 2012a; Kulmala et al., 2004). Heterogeneous
oxidation occurs under aqueous or dry conditions; dry
heterogeneous oxidation is rare under most atmospheric
conditions (Usher et al., 2002; Ullerstam et al., 2002;
Al-Hosney and Grassian, 2005; Harris et al., 2012b). Aqueous
oxidation takes place within solutions or fluid films on
wetted surfaces of particles; it involves dissolution of SO2 by
acid-base dissociation of SO2·H2O(l) to HSO3

−(l) and SO3
2−(l),

followed by oxidation of SO3
2− and/or HSO3

2− to SO4
2− by
major oxidants, such as H2O2, O3, O2 or transition metal ions
(Eqs. (6) and (7); Eriksen, 1972a, 1972b; Herrmann et al.,
2000; Harris et al., 2012c; Harris et al., 2013a; Savarino et al.,
2000).

SO2 þ OHþM→HOSO2 þM
HOSO2 þ O2→H2Oþ SO3
SO3 þH2OþM→H2SO4 þM

ð5Þ

34SO2 gð Þ þH32SO3
− lð Þ⇌32SO2 gð Þ þH34SO3

− lð Þ
H34SO3

− lð Þ þ 32SO3
2−⇌H32SO3

− lð Þ þ 34SO3
2− ð6Þ

SO3
2− lð Þ→H2O2 ;O3 ;O2 ;TMI SO4

2− lð Þ ð7Þ

In Guiyang, the pH value of cloud water was low (about
4.6; Huang et al., 1995); hence, oxidation was likely
dominated by H2O2 (Harris et al., 2013a, 2013b). Oxidation
by transition metal ions (TMI) results in products depleted in
34S relative to their SO2 source (Harris et al., 2013a). The
catalysis of SO2 to SO4

2− by TMI is probably underestimated in
many cities (Alexander et al., 2009; Harris et al., 2013a).
Aqueous oxidation produces SO4

2− on the surface of particles
or in droplets, changing their cloud condensation nuclei
activity, lifetime, and growth due to their increased hygro-
scopicity (Mertes et al., 2005). We surmise that aqueous
oxidation will be more important in winter than in summer
for two reasons: (1) photochemical production of gaseous
oxidants is greatest during summer, and (2) SO2 solubility
decreases with increasing temperature (Eriksen, 1972a,
1972b; Saltzman et al., 1983). Therefore, aqueous oxidation
likely played a dominant role during winter (Saltzman et al.,
1983).

Fractionation with respect to the source SO2 was given by
8.9 ± 0.7 − (4 ± 5) × 10−2 T (°C) for homogeneous oxida-
tion (involving OH), and (16.7 ± 1.9) − (8.7 ± 3.5) × 10−2 T
(°C) for aqueous oxidation (involving H2O2 or O3) (Harris et al.,
2012a); hence, both oxidations by OH and H2O2 were
temperature-dependent. Furthermore, temperature-dependent
isotopic fractionation was also found for oxidation via the
catalysis pathway (with a fractionation factor: (−5.039 ±
0.044) − (0.237 ± 0.004) × T (°C; Harris et al., 2013a).

3.3.1. Temperature effects on oxidation pathways
Saltzman et al. (1983) compared δ34S values of atmospheric

SO2 and particulate SO4
2−, deducing that mainly homogeneous

oxidation of SO2 occurred in Hubbard Brook Environmental
Forest, USA. In South China, aqueous oxidation of SO2 was
believed to occur in the atmosphere (e.g. Zhang et al., 2010)
because of its high relative humidity (Xiao et al., 2012).
Aqueous-phase reactions in cloud and fog droplets, or in films
on wetted particle surfaces, were also described using the
aqueous oxidation pathway (Tichomirowa and Heidel, 2012).
However, seasonal temperatures have a strong sinusoidal
pattern in Guiyang (y ¼ −2:7þ 1:5 sin 2π

8:7 x−1:6
� �

; R = 0.99,
P b 0.0001; Xiao et al., 2012), opposite to the δ34S seasonal
variation ( y ¼ −2:7þ 1:5 sin 2π

8:7 x−1:6
� �

; Fig. 3b). Thus, a
negative linear relationship was found between temperature
and δ34S (Fig. 8), not only in Guiyang (data from Hong et al.,
1994, and 2008–2009), but also in Guangzhou (data from
Zhang et al., 2002), indicating that enrichment was low under
high summer temperatures in South China. Some scientists
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suggest that temperature could affect sulfur isotopic frac-
tionation, and oxidation pathways (Eriksen, 1972a, 1972b;
Saltzman et al., 1983; Harris et al., 2013b). Under low
temperatures, dissolution of SO2 is the rate-limiting step
between gaseous and aqueous phases (Eq. (6)), and results
in isotopic fractionation with a fractionation factor N1
(Harris et al., 2013b). This sulfur equilibrium fractionation
leads to a heavier product with decreasing temperature,
with enrichment of 0.08–0.145‰ per 1 °C (Saltzman et al.,
1983; Caron et al., 1986; Harris et al., 2012a). Thus, 34SO2

would preferentially join the aqueous-phase, resulting in
depletion of 34S in the remaining atmospheric SO2 and
enrichment of 34S in SO4

2− (Eq. (6)). Under higher temper-
atures, the catalytic chain reaction is the rate-limiting step
with strong kinetic fractionation favoring the lighter isotope
(Harris et al., 2013b).
Fig. 8. Relationship between monthly δ34S values and monthly temperature
in 1987 (data from Hong et al., 1994) and 2008–2009 at Guiyang (Oct. 2008
to Aug. 2009), and in 1996 at Guangzhou (monthly δ34S values of
Guangzhou from Zhang et al., 2002; temperature of Guangzhou from
Guangzhou Bureau of Statistics, http://www.gzstats.gov.cn/).
3.3.2. Oxidation in summer
In summer, homogeneous oxidation by OH involves

preferential oxidation of the heavy isotope, causing atmo-
spheric SO2 to be 34S-depleted by nearly 3‰ (Harris et al.,
2013b). In summer, the δ34S values of atmospheric SO2 in
Guiyang were−4.5 ± 4.0‰, which is lower than those of
SO4

2− in particulate aerosols by about 3.2‰ (Mukai et al.,
2001). In our study, summer δ34S was higher during the day
(−2.8 ± 2.1‰) than at night (−3.6 ± 2.4‰), suggesting
Fig. 7. Different seasonal CWT (concentration weighted trajectory) plots for daily
that oxidation by OH mainly took place in daylight hours
(at higher temperatures); oxidation by TMI played a more
important role at night (at lower temperatures), resulting in
a higher proportion of oxidized SO2 (Harris et al., 2013b).
weighted average concentrations of daily weighted average values of δ34S.

image of Fig.�7
image of Fig.�8
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Both processes and sources caused the δ34S of atmospheric
sulfate in summer to be lighter than that inwinter. This pattern
also has been reported from sites in the USA (Zhang et al.,
1998), Japan (Ohizumi et al., 1997), and Canada (Nriagu and
Coker, 1978).
3.3.3. Isotopic fractionation during washout processes
Few studies have been carried out on sulfur isotopic

fractionation during washout processes, involving the re-
moval of aerosol particles and soluble gases by raindrops
below cloud. Xiao et al. (2010) reported that coarse mode
particles were first removed by rain droplets, followed by
fine mode particles, and SO2 in Guiyang. Sulfur in these
coarse particles was mainly primary SO4

2−, formed before
being released into the atmosphere, e.g., from weathered
soils or combustion processes (Liu et al., 1996a, 1996b;
Tichomirowa and Heidel, 2012). Fig. 9 shows that during a
13.4 mm rain event on 31 October 2008, SO4

2− concentra-
tions were much higher in the initial 4.5 mm of precipitation
than in those that followed, suggesting that the removal of
coarse aerosol particles was immediate and effective. Gener-
ally, sulfur in the coarse particles, fine particles, and SO2 had
different δ34S values (Liu et al., 1996a, 1996b). Since coarse
aerosol particles in Guiyang were derived from soils and
coal combustion, δ34S values of sulfur in these particles
were−2.2‰ and−2.3‰, respectively, (Liu et al., 1996a,
1996b; Zhang et al., 2010). In our study, an average δ34S
value of−3.6‰was found for rainwater SO4

2− (Fig. 9), which
was lower than that for coarse particles, possibly because it
also captured fine particles and SO2 at the same time. In the
later stage of this rain event, we surmise that more fine
particles and SO2 were captured by rain droplets, since they
had a lower removal efficiency than coarse particles (Xiao et
al., 2010). The sulfur isotope equilibrium fractionation factor
was 1.0165 in the aqueous phase at 25 °C (Winterholler et al.,
2008), so 34S was preferentially incorporated into raindrops by
exchange reactions, leaving the lighter isotope in the atmo-
sphere (Fig. 9). Compared with other rain events recorded in
Fig. 9. Variations of δ34S and SO4
2− in a 13.4 mm rain event on 2008.10.31

(The solid line and the dashed line mean the trends of δ34S and SO4
2−

concentrations, respectively.) The average temperature, intensity, wind
direction and wind speed were 13.1 ± 0.4 °C, 2.4 ± 1.6 mm/h, 44.2 ± 14.0
and 2.8 ± 0.7 m/s, respectively. And every sample was divided by 1.5 L
volume.
this study, relatively more stable meteorological conditions for
temperature (13.1 ± 0.4 °C), intensity (2.4 ± 1.6 mm/h),
wind direction (44.2 ± 14.0) and speed (2.8 ± 0.7 m/s)
occurred for the 31 Oct. 2008 rain event, suggesting that the
washout effect was more pronounced under stable meteoro-
logical conditions.

4. Conclusions

Volume-weighted mean SO4
2− concentrations and δ34S

values in rainwater in Guiyang over the year-long study
period were 12.8 mg/L and−2.8‰, respectively; both vari-
ables were higher in winter than in summer. Seasonal
variation in δ34S values was strongly sinusoidal, suggesting
that changes to sources, isotopic fractionation mechanisms,
and oxidation pathways took place. In winter, some of the
isotopically heavy sulfur in the rainwater was derived from
North China, while in summer isotopically light sulfur came
from South China. However, the dominant sulfur in rainwater
in Guiyang was isotopically light, mainly derived from local
coal combustion sources. Isotope signatures suggest that
temperature-dependent aqueous oxidation was the major
oxidation process of SO2 in Guiyang, resulting in lower
rainwater δ34S values under higher temperatures. Further-
more, both washout processes and precipitation volumes
were important factors, affecting the seasonal variation of
rainwater δ34S in Guiyang.
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