1000-0569 /2014 /030( 02) -0350-60 Acta Petrologica Sinica

Geochemical Sr-Nd isotope and zircon U-Pb geochronological constraints on the origin
of Early Cretaceous carbonatite dykes northern Shanxi Province China
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Abstract Carbonatite dyke swarms are widespread across the North China Craton ( NCC) in Shanxi Province. Here we present
new geochemical Sr-Nd isotope and U-Pb zircon age data for representative samples of the dykes. Laser ablation-inductively coupled
plasma-mass spectrometry ( LAACP-MS) U-Pb analyses yielded a Cretaceous age of 132.9 +0.6Ma for zircons extracted from one
dyke. Whole rock K-Ar ages for three samples range from 131. 3Ma to 132. 6Ma. The carbonatites have highly uniform major element
compositions and are enriched in light rare earth elements and large ion lithophile elements ( LILEs; e.g. Ba U Pb and Sr) and
depleted in K and high field strength elements ( HFSEs; e.g. Ta P and Ti). The carbonatite dykes have relatively uniform ( ¥’Sr/
%Sr) | values that range from 0. 7079 to 0. 7083 and negative values of £y,(#) ( —16.7 to —15.2). These data suggest that the dyke
magmas were derived from the partial melting of an enriched region of the lower lithospheric mantle with evident crustal contamination.
The carbonatite dykes within the northern NCC formed during the mixing of the continental crust with sub-continental lithospheric
mantle.
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1 Introduction

Carbonatite and mafic dykes develop during periods of
lithospheric extension ( Hall 1982; Hall and Fahrig 1987,
Tarney and Weaver 1987; Zhao and McCulloch 1993; Yan et
al.  2007) and have special geochemical features attracting the
attention of geologists’ worldwide ( Le Bas 1977; Bell 1989;
Bailey 1993; Yan et al. 2007) . Nowadays more than 530
known carbonate occurrences have been founded on all continent
and at some oceanic localities (e. g the East African Rift
Kontozero Graben in northwestern Russia Cape Verde Canary
archipelagos North and Central Alantic Ocean the NCC) ( Bell
and Tilton 2001; Bell and Rukhlov 2004; Yan et al. 2007;
Doucelance et al. 2010; Rukhlov and Bell 2010; Xu et al.
2011) . Since these rocks are important in understanding the
chemical evolution of the mantle over time and assessing
continental break-up carbonatites have been attended closely
(e g 1983; Bell and Blenkinsop 1989; Bell et al.
1999; Bell and Tilton 2002; Keppler 2003; Burke et al.

2003; Rukhlov and Bell 2010) . In addition

Bailey

there are three

about the origin of the carbonatites

2000;

principal hypotheses
( Harmer 1999; Lee and Wyllie 1997; Verhulst et al.
Xu et al. 2007) . However there are visible uncertainties on
the origin and age dating.

Mafic dykes are widespread throughout the NCC and more
than 600 dykes have been identified within swarms that trend
NESW NW-SE and E-W ( Liu et al. 2008a b 2009
2012a b 2013). These rocks provide important information on
the extensional tectonism of the area mantle composition
structures and the nature and evolution of dynamic processes in
the NCC. In contrast carbonatites distribute very little in NCC
( Bai and Li 1985; Yinget al. 2004; Yan et al. 2007) and
they are highly Si-undersaturated magma. They are very
important for investigation of the extensional history upper
mantle composition nature evolution and geodynamic processes
of NCC. The carbonatites in NCC were formed mainly at three
periods i.e.  Late PaleoproterozoicXarly Mesoproterozoic
early and late Mesozoic. Except the carbonatites in Laiwu and
Zibo other rocks were derived from enriched lithospheric mantle
( Yan et al. 2007). Nevertheless apparent controversy on the
dynamic mechanism still extent.

Generally zircon crystallizes from Si-saturated melt and it
is commonly used for U-Pb-Hf-O isotope analyses. However
zircon in carbonatites usually occurs as a xenocryst in carbonatite

due to crustal contamination and/or magma mixing ( Guo et al.

2013) . Thus we can select enough zircon from carbonatite and
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provide precise and convincing U-Pb age.

Accordingly more investigation on the carbonatite dykes of
the NCC is required. Here
obtained using laser ablation-inductively coupled plasma-mass
spectrometry ( LAICP-MS)

rock geochemical

we present new zircon U-Pb ages

as well as new petrological whole—
and Sr-Nd isotopic data for representative
samples of the carbonatite dykes in the northern NCC. These
data allow us to constrain the emplacement ages of these dykes

and discuss their petrogenesis.

2 Geological setting and petrography

The present study area located in northern Shanxi Province
( Tashan coalmine Datong) is part of the NCC the largest and
oldest craton in China. The NCC consists of eastern and western
blocks of Archean material and an N-S trending mid-continental

2001; Fig. la) .

orogenic belt of Proterozoic age ( Zhao et al.

There are numerous carbonatite dykes coexisting with
lamprophyre dykes and all the carbonatites are calcite
carbonatites. The country rocks in the study area include

Archean leptynites and Proterozoic Ordovician Carboniferous
and Tertiary sedimentary rocks including limestones ( Fig. 1b) .

Individual dykes are vertical trend between NE-SW and N-
S and range from 10m to 30m in width and 150m to 300m in
length ( Fig. 1b) . They intrude Carboniferous coal seams. The
carbonatites are mainly composed of calcite ( > 85vol. %) with
variable amounts of interstitial apatite and magnetite. A few
xenoliths from the coal measures are present in the dykes and
chilled margins can be observed at the dyke edges.

Fresh equigranular carbonatites in the study area are light
gray in color and weathered examples are light brown. Grain
sizes range from 0. 8mm to 2. 2mm. Porphyritic carbonatites are
dark green in color and they are sometimes massive sometimes
brecciated. The phenocrysts include phlogopites up to 1. 3cm in
and the micro—granular matrix is

size and occasional pyroxenes

made up of calcite olivine phlogopite plagioclase apatite

magnetite and zircon. The dykes also contain brecciated
material of gneiss limestone marble and basalt. The blocks in

the breccias range in size from several millimeters to 4. Scm.

3 Analytical techniques

3.1 Zircon LAACP-MS U-Pb dating

Euhedral zircons were separated from one sample ( TXO01)
using conventional heavy liquid and magnetic techniques at the
Langfang Regional Geological Survey Hebei Province China.

After separation and mounting the internal and external
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Fig. 1

structures of the zircons were imaged using transmitted light

reflected light and cathodoluminescence ( CL) at the State Key
Laboratory of Continental Dynamics Northwest University

China. Prior to zircon U-Pb dating the surfaces of grain-mounts
were washed in dilute HNO; and pure alcohol to remove any
potential lead contamination. Zircon U-Pb ages were determined
using LACP-MS ( Table 1; Fig.2) and an Agilent 7500a ICP-
MS instrument equipped with a 193nm excimer laser at the State
Key Laboratory of Geological Processes and Mineral Resources

Wuhan  China.
standard #91500 was used for quality control and a NIST 610

China University of Geoscience The zircon
standard was used for data optimization. A spot diameter of 24m
was used during analysis and we employed the methodology

described by Yuan et al. (2004) and Liu et al. (2010b) .

2014 30(2)

Acta Petrologica Sinica

Study area in China ( a) and geological map of the study area showing the distribution of carbonatite dykes ( b)

Correction for common Pb was undertaken following Andersen
(2002)
GLITTER and ISOPLOT programs ( Ludwig 2003; Table I;
Fig. 2).
quoted at the 95% (1¢) confidence level.

and the resulting data were processed using the

Uncertainties in the individual LA-ICP-MS analyses are

3.2  Whole+rock K-Ar dating

Fresh samples were selected and crushed to powder and
then K-Ar ages were analyzed at the K-Ar age laboratory of the
China Seismological Bureau. An MM-200

mass spectrograph was used for the K-Ar age determination and

Institute of Geology

its affiliated extraction system is produced by the VG corp. The
constants are adopted as A =5.543 x107%/a A, =0.58 x107"/a
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Table 1 LAHCP-MS U-Pb isotope data for zircons from carbonatite dykes of the NCC
( x107%) Isotopic ratios Age ( Ma)
TX01
Th/U  27py, 207py, 206 py, 207py, 207 py, 206 py,
Spot  Th U Pb B pp, lo Y lo e lo mp, 1o my o m; e
1.1 382 1509 37 0.25 0.0506 0.0015 0.1435 0.0093 0.0210 0.0002 222 48 139 4 134 1
2.1 185 1074 24 0.17 0.0510 0.0021 0.1444 0.0094 0.0210 0.0002 241 73 140 5 134 2
3.1 1053 1074 30 0.98 0.0496 0.0017 0.1442 0.0088 0.0211 0.0002 178 60 137 4 134 1
4.1 255 1459 33 0.17 0.0514 0.0015 0.1454 0.0093 0.0210 0.0002 256 46 140 4 134 1
5.1 301 1666 38 0.18 0.0528 0.0014 0.1458 0.0089 0.0206 0.0002 321 45 142 3 132 1
6.1 343 411 11 0.83 0.0504 0.0026 0.1450 0.0087 0.0211 0.0003 214 96 138 7 134 2
7.1 399 1792 42 0.22 0.0517 0.0015 0.1455 0.0091 0.0207 0.0002 271 48 140 4 132 1
8.1 199 1159 27 0.17 0.0468 0.0016 0.1451 0.0088 0.0206 0.0002 41 56 127 4 133 1
9.1 85 80 2.3 1.05 0.0481 0.0015 0.1438 0.0095 0.0207 0.0002 102 59 131 4 132 1
10. 1 232 1423 32 0.16 0.0513 0.0013 0.1456 0.0094 0.0208 0.0002 254 48 139 4 133 1
11.1 232 238 26 0.97 0.0526 0.0013 0.1435 0.0089 0.0209 0.0002 312 39 141 3 133 1
12. 1 185 1336 31 0.14 0.4750 0.0015 0.1443 0.0086 0.0205 0.0002 4165 39 128 4 132 1
Table 2 Whole—+ock K-Ar ages of the studied carbonatites
Sample No. Rock type Dating method K( %) O Ar,4( mol/g) OAr (%) Age( Ma £ 1¢)
TX3 1.76 4.31x107° 95.03 131.3 2.4
TX-6 carbonatite Whole rock ( K-Ar) 2.25 5.48 x10°° 86. 66 132.5+2.7
TX42 1.55 3.66 x10 ¢ 93.08 132.6 £2.5
using a PANalytical Axios-advance ( Axios PW4400) X-ray

Fig. 2 Zircon LACP-MS U-Pb concordia diagrams and CL
images of zircons separated from dykes of carbonatite in the

northern NCC  China

Ay =0.58 x107""/a “K/®*K =1.167 x 10 */mol/g ( Table
2).

3.3  Wholewrock geochemistry and Sr-Nd isotope analyses

Whole rock samples were trimmed to remove altered
surfaces and fresh portions were collected and then powdered in
an agate mill to about 200 meshes for analyses of isotopes and
major and trace elements.

Major element contents were determined in fused glass discs

fluorescence spectrometer ( XRF) at the State Key Laboratory of
Ore Deposit Geochemistry Institute of Geochemistry Chinese
Academy of Sciences Guiyang China. These analyses have a
precision of <5% ( Table 3) . Loss on ignition ( LOI) values
was obtained using lg of powder heated to 1100°C for 1 hour.
Trace element concentrations were determined using ICP-MS at
the State Key Laboratory of Ore Deposit Geochemistry Institute
of Geochemistry Chinese Academy of Sciences Guiyang
China using the procedures outlined in Qi et al. (2000) and
the analytical uncertainty is +5% ( Table 4) . Sample powders
used for Rb-Sr and Sm-Nd isotope analyses were spiked with
mixed isotope tracers dissolved in Teflon capsules with HF and
HNO, acids and separated by conventional cation-exchange
techniques. Isotopic measurements were performed using a
Finnigan Triton Ti thermal ionization mass spectrometer at the
State Key Laboratory of Geological Processes and Mineral
Wuhan China.

Procedural blanks yielded concentrations of <200pg for Sm and

Resources China University of Geosciences
Nd and <500pg for Rb and Sr. Mass fractionation corrections
for Sr and Nd isotopic ratios were based on **Sr/® Sr =0. 1194
and "*Nd/"* Nd = 0.7219 respectively
NBS987 and La Jolla standards yielded values of ¥Sr/* Sr =
0.710246 +16 (2¢) and ""Nd/" Nd =0.511863 =8 ( 2¢)
respectively ( Table 5) .

and analyses of the
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Table 3 Major element contents ( wt% ) for the carbonatite dykes of the NCC

Sample Sio, Al 0, Fe, 0,7 MgO Ca0 Na, O K,0 MnO P,0s TiO, LOI
XA 20. 37 11.35 6.32 1.93 28. 40 0.37 2.76 0. 14 1.26 1.06 27.60
TX=2 21. 84 10. 87 4. 84 0.83 29.70 0.14 2.53 0.13 1.31 1.05 26. 80
TX3 20. 65 11.18 3.87 1.27 29. 60 0.13 2.49 0.11 1.28 1.01 27.10
TX4 21.74 11.12 4.63 1.00 27.90 0.20 2.55 0.13 1.27 1.06 26. 90
TX5 20.53 11.48 3.20 0.35 30. 10 0.52 2.34 0.12 1.27 1.07 27.69
TX-6 20.75 11.25 4.24 0.65 28.73 0.28 2.71 0.12 1.30 1.05 26. 48
X4 19.31 10.93 7.89 2.36 22.42 0.36 2.80 0.17 1.37 1.06 32.73
TX-8 20. 69 11.62 3.42 0.77 30. 12 0. 14 2.63 0.11 1.28 1.05 27.31
TX9 19.70 11.73 2.57 0.38 31. 64 0.07 2.26 0. 10 1.31 1.06 28.00
TX40 21.25 10. 82 4.91 0. 96 28.27 0.09 2.55 0. 14 1.29 1. 04 26. 96
TXA1 19. 46 10. 84 7.83 2.37 22.38 0.35 2.83 0.16 1.39 1.05 31. 66
TXA2 20.78 11.22 4.23 0.63 27.76 0.25 2.63 0.11 1.28 1. 04 30. 62
TXA3 20. 55 11.43 3.16 0.33 29. 86 0.47 2.31 0.11 1.25 1. 06 28. 65
TX-4 21. 66 11.08 4.57 0.98 27. 84 0.22 2.54 0.13 1.26 1.08 28.16
TXA5 19. 67 11. 65 2.53 0.36 31.71 0. 06 2.22 0.12 1.28 1.07 29.12

Note: LOT = loss on ignition. Total iron is expressed as Fe, 03"

Table 4 Trace element compositions ( x 10 ™®) of the carbonatite dyke within the NCC

Sample TX- X2 TX3 X4 XS TX-6 TXF TX-8 TX9 TX40 TXd1 TXd42 TX43 TXd44 TX45

Sc 12.9 12.8 13.0 13. 4 12.8 14.5 23.1 13.7 13. 4 14.1 12.6 12.8 13.3 13.6 14.3
v 169 165 165 175 171 164 203 164 161 186 168 163 181 173 171
Cr 338 348 347 373 365 356 414 353 371 394 326 351 366 262 367
Ni 37.7 36.7 41.1 39.0 37.2 42.6 46.5 29.3 30.9 40.0 37.4 37.3 41.6 30.4 41.8
Rb 36.3 24.8 28. 1 33.4 29.5 36.3 38.9 38.7 32.0 35.6 36.5 24.5 32.7 38.6 36.5
Sr 978 956 980 995 1020 1010 1090 1140 1060 1040 986 961 988 1125 1016
Y 28.2 32.2 30.7 27.7 33.3 27.9 33.5 30.0 31.4 28.2 27.6 31.9 26.9 29.5 28.2
Zr 300 261 273 264 271 270 342 279 284 278 304 264 268 283 265
Nb 9.39 9.48 9.48 9.48 9.57 9.48 10.10 9.12 9.21 9.39 9.38 9.53 9.37 9.13 9.32
Ba 3220 2550 2670 3140 2050 2850 3950 2730 2630 3010 3190 2489 3132 2693 2839
La 41.1 39.6 41.5 38.0 40.0 39.7 40.7 43.6 42.4 39.3 41.7 38.7 37.5 43.5 38.9
Ce 82.0 81.7 83.9 1.7 79.6 78.4 81.3 82.3 81.8 77.2 84.2 82.5 78.3 81.6 78.2
Pr 10.6 10.8 10.8 10.2 10.7 10. 1 10.9 10.8 10.9 10.3 10.5 11.3 11.1 10. 4 10.3
Nd 43.6 45.3 45.8 43.4 44.8 42.6 46.3 43.1 46.5 43.0 44.5 46.2 42.5 42.3 43.2

Sm 8.31 9.13 9.20 8. 88 9.20 8.50 9.39 9.18 9.34 9.04 8.42 9.22 8.93 9.22 8.38
Eu 2.47 2.55 2.61 2.56 2.68 2.50 2.88 2.60 2.58 2.59 2.43 2.48 2.54 2.57 2.44
Gd 7.80 8. 14 8.51 7.83 8.44 7.27 8.33 7.62 8.35 7.85 8.23 8.16 7.69 8.13 7.16
Th 0.977 1.030 1.060 1.04 1.13 1. 00 1.13 1.01 1. 09 1. 00 1.02 1. 04 1. 06 1.02 0.96
Dy 4. 60 5.00 4.91 4.42 5.19 4.43 5.04 4.48 4.85 4.46 4.62 5.05 4.46 4.52 4.36
Ho 0.96 1.02 1.03 0.92 1.12 0.87 1.09 0.96 0.98 0.92 0.98 1.03 0.94 0.98 0.82
Er 2.56 2.72 2.70 2.47 2.97 2.48 2.88 2.57 2.58 2.57 2.54 2.74 2.49 2.49 2.37
Tm 0.36 0.38 0.36 0.32 0.41 0.31 0.36 0.32 0.35 0.31 0.35 0.37 0.31 0.32 0.31
Yb 2.29 2.41 2.39 2.10 2.61 2.10 2.37 2.24 2.29 2.12 2.27 2.45 2.14 2.26 1.98
Lu 0.33 0.38 0.36 0.31 0.36 0.33 0.33 0.31 0.32 0.29 0.32 0.42 0.28 0.33 0.32
Hf 6.78 6.90 6. 80 6.48 7.10 6.74 6. 86 6.52 6.48 6. 04 6. 84 6.95 6.51 6.53 6.56
Ta 0.33 0.34 0.34 0.35 0.36 0.34 0.32 0.31 0.30 0.32 0.35 0.36 0.36 0.34 0.36
Pb 23.4 10.3 16.5 24.2 21.2 24.7 19.7 16.2 13.2 24.3 23.6 10.7 23.8 16. 4 25.1

Th 4.20 3.91 4.23 4.18 4.27 4.22 4.97 3.84 3.82 4.03 4.18 3.96 4.19 3.78 4.26
U 0.61 0.79 0. 84 0.76 0. 66 0.57 1.33 0.75 0.78 0.71 0. 63 0.78 0.75 0.79 0.59
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Table 5 Sr-Nd isotopic compositions of the carbonatite dykes within the northern NCC
S, | Sm Nd Rb Sr $TRb Nj 5 ( Wi) 47g, 143N 5 ( 143 Nd) . ( 1)
PAIPIE L 107%) (x107%) ( x107%) ( x107)  $6gy 85y T\ ®s), WNg WNg T\ wNg), N
TX1 8.31 43.6 36.3 978 0.1073 0.708317 10 0.708114 0.1152 0.511788 8 0.511688 -15.2
TX2 9.13 45.3 24.8 956 0.0750 0.708147 10 0.708005 0.1218 0.511774 10 0.511668 -15.6
TX3 9.20 45.8 28. 1 980 0.0829 0.708143 12 0.707986 0.1214 0.511752 9  0.511646 -16.0
TX4 8. 88 43.4 33.4 995 0.0970 0.708204 10 0.708021 0.1237 0.511742 10 0.511634 -16.2
TX5 9.20 44.8 29.5 1020 0.0836 0.708013 10 0.707855 0.1241 0.511739 8 0.511631 -16.3
TX6 8.50 42.6 36.3 1010 0.1039 0.708245 12 0.708049 0.1206 0.511716 9 0.511611 -16.7
TX7 9.39 46.3 38.9 1090 0.1031 0.708268 10 0.708073 0.1226 0.511722 10 0.511615 -16.6
TX8 9.18 43.1 38.7 1140 0.0981 0.708477 12 0.708292 0.1288 0.511774 10 0.511662 -15.7
TX9 9.34 46.5 32.0 1060 0.0872 0.708284 10 0.708119 0.1214 0.511724 8 0.511618 -16.6
TX10 9.04 43.0 35.6 1040 0.0989 0.708267 10 0.708080 0.1271 0.511738 0.511627 -16.4
Note: using Chondrite Uniform Reservoir ( CHUR) values and decay constants of Ay, =1.42 x 10 =" year ' ( Steiger and Jiiger 1977) and A, =6. 54

%10 712 year = ( Lugmair and Harti 1978)

4 Results

4.1 Zircon UPb ages

Euhedral zircons in sample TXO01 are clear and prismatic
and have oscillatory magmatic zoning ( Fig.2) . Twelve zircons
from sample TXO1 yielded a weighted mean **Ph/** U age of
132.9 £ 0.6Ma (1o 95% confidence interval; Table 1;
Fig. 2) . These new data provide the best estimates of carbonate
dyke crystallization ages in the study area and no inherited

zircons were observed in either sample population.

4.2  Wholerock K-Ar ages

The K-Ar dating results are listed in Table 2. The results
show that the ages of three carbonatites range from 131.3 =
2.4Ma to 132. 6 £2. 6Ma implying that the studied carbonatites

were the products of early Cretaceous magmatism.

4.3 Major and trace elements

The results of major and trace element analyses of the
studied carbonatites are presented in Table 3 and Table 4. In a
Ca0-MgO~ Fe,0," + MnO) classification diagram ( Fig. 3) all
samples except two fall into the field of ferro-carbonatite and the
other two carbonatites straddle the region of calico-carbonatite.

The high SiO, content ( 19.31% ~21.84%) of the studied
carbonatites is reflected in the presence of phlogopite phenocrysts
2004)

element ( REE) patterns indicating an enriched source ( Ying et

( Ying et al. and the carbonatites have steep rare earth
al. 2004) . Carbonatites generally contain more REEs and have
higher ratios of light RREs to heavy REEs than any other igneous
1989; HornigKjarsgaard 1998) .
Fig. 4a shows that the chondrite normalized REE

rocks ( Woolley and Kempe

However

Fig. 3 Plot of the studied carbonatites on the CaO-MgO-
(Fe,0," + MnO) classification diagram ( after Woolley and

Kempe 1989)

patterns for the NCC carbonatites studied by us ( with very small
REE (86 x107° ~178 x 10 %) and steeper REE patterns) are
very different from those of most carbonatites worldwide ( Table
1989) .
normalized diagrams ( Fig. 4b)
enriched in Ba Th Sr and U and markedly depleted in Rb
K and Ti and this is in common with carbonatites elsewhere
( Nelson et al. 1988; Woolley and Kempe 1989). The Nb/Ta
and Zr/Hf ratios in the studied rocks are 26 ~32 and 38 ~ 50

3; Woolley and Kempe In the primitive-mantle—

the NCC carbonatites are

almost comparable with ratios of 17 and 36 in

1989) and

respectively
primitive mantle and OIB ( Sun and McDonough
consistent with most carbonatites elsewhere as summarized by

Thompson et al. (2002) .
carbonatites are listed in Table 5 and plotted on Fig. 5. All

The Sr and Nd isotope data of the

samples have relatively high and uniform initial *’Sr/® Sr ratios
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Fig. 4 Chondrite-normalized =~ REE

normalization values after Anders and Grevesse 1989) and

diagram ( a

primitive-mantle-normalized incompatible element
distribution diagram (b normalization values after Sun and
McDonough 1989) for the carbonatite dykes of the northern

NCC China

(0.70798 ~ 0.70829)
0.51169) and consequently low gy,( #) values ( from —16.7 to
—15.2). In a plot of (*Sr/*Sr), vs. ey (1)

low "*Nd/'" Nd ratios ( 0.51161 ~

the data from
the carbonatites fall in the enriched quadrant ( Fig. 5) and this
illustrates the sharp contrast between the Sr and Nd isotopic data
from the NCC Datong carbonatites and the data from other
carbonatites elsewhere ( e.g  at E’ maokou; Shao et al
2003) .

MORB and OIB data are from Zhang et al. (2002) and

the mantle array is from Zhang et al. (2005)

5 Discussion

5.1 Evidence of a magmatic origin of the NCC carbonatites
The occurrence of carbonatites as dykes sills and breccia
pipes as well as the clear-cut contact zones with the country
rocks lends overall support to a magmatic origin for the studied
carbonatites rather than remobilized limestones. Major element
studied

chemistry also provides clear evidence that the

Acta Petrologica Sinica
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Fig. 5

Variations in initial ¥ Sr/% Sr ratios vs. &y, (1)
values for the carbonatite dykes of the northern NCC  China
carbonatites are magmatic and not simply derived from
sedimentary limestones or metamorphic marbles. For instance
the carbonatites have much higher SiO, concentrations ( 19. 31%

~21.84% Table 3) The REE

distribution patterns and trace element spidergrams for the

than those of limestones.

studied carbonatites are similar to those for known carbonatites
2002;

all the evidence points

and are different from those of limestone ( Le Bas et al.
2004) .

convincingly to a magmatic origin for the studied carbonatites.

Ying et al. In summary

5.2 Mantle source

The carbonatite and mafic dykes are both associated with
lithospheric extension and the fact that the studied carbonatites
coexist with many other contemporaneous mafic dykes suggests
they may all have a similar source ( possibly the lithospheric
carbonatites are enriched in
Th Sr and U)

were derived by a low degree of partial melting of the mantle

( Shao et al.

mantle ) Generally  the

incompatible elements ( Ba implying they
2003) . As mentioned above a striking feature of
the studied carbonatites is their very negative gy, ( ¢) values
(from —16.7 to —15.2) and this coupled with the extremely
high initial ¥Sr/* Sr ratios (0.70798 ~ 0.70829) obviously
excludes the possibility that their primary isotopic ratios have
been changed by the large assimilation of crustal materials ( Shao

and Zhang 2002; Ying et al. 2004) .

carbonatites include crustal breccias and xenoliths their Sr and

Although some

Nd isotopic ratios are quite similar to those of the carbonatites
that are relatively pure and lacking crustal breccias ( Ying et al.
2004) .

To summarize the Sr-Nd isotopic ratios in the

carbonatites studied indicate derivation from an enriched lower
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lithospheric mantle source.

5.3 Crustal contamination

As mentioned above the extremely high abundances of Sr
and Nd in carbonatites can buffer their primary isotopic ratios
against crustal contamination during ascent of the magma which
is further supported by the absence of any inherited zircons.
However the fact that the carbonatites studied here are
characterized by high Sr isotope ratios and negative &y, ( )
values suggests that the magmas might have assimilated
significant amounts of crustal material. Furthermore it is
generally accepted that the carbonatites will be depleted in Zr
Hf Nb Ta and Ti. However
almost show no Zr-Hf depletion with respect to neighboring Sm

and Eu dykes

contamination or AFC processes by zircon—rich crustal rocks such

the studied carbonatite dykes

Implying these carbonatite experienced
as the wall granitic rocks and the contaminated magmas would
not show Zr-Hf depletion of the primary carbonatitic melts. In
summary there exists a certain amount of crustal contamination

during magma ascending.

5.4 Genetic processes

The carbonatites in NCC are widespread in Henan Province
Hebei Province ( Huai” an and Zhuolu)  Shanxi

Province ( Huairen and Zijinshan)  Shaanxi Province ( Huayin

( Fangcheng)

and Luonan) and Inner Mongolia Autonomous Region ( Banyan
Obo and Fengzhen) however the majority of the carbonatites
distribute in the north and south margin of the NCC. In addition
in central and eastern NCC carbonatites only were found in
Zijinshan ( Shanxi Province) and Laiwu-Zibo ( Shandong
2007) .

carbonatite are calcite carbonatite

Province) ( Yan et al. The main types of the
and most of them are
paragenetic with alkaline rocks. Furthermore the age of the

carbonatites in NCC has a wide distribution i e.
Mesoproterozoic ( 1.7 ~ 1. 2Ga)
Neoproterozoic ( 786Ma)  Early Paleozoic ( 433Ma)
Mesozoic (239 ~204Ma) and Late Mesozoic ( 132 ~ 124Ma)
( Bai and Yuan 1985; Yan et al. 2007; Mu and Yan 1992;
Qiu et al. 1993; Ren et al. 1999; Zou et al. 2000; Ying
and Zhou 2001; Shao et al. 2003; Fan et al. 2006; Yang et

al. 2006) . According to previous research the carbonatites in

Paleoproterozoic ( ~ 1. 8Ga)
Early

NCC especially during the Late Triassic were considered to be

related with extension due to crust rifting ( Mu and Yan 1992;

Mu et al. 2001) the subduction between Qinling Plate and the
NCC ( Ren et al. 1999) the control of different structure
(Shao et al. 2003) and the subduction between paleoasian

ocean plate Yangtze Craton and the NCC ( Yan et al. 2007) .
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In addition to carbonatites there are also other extension-derived
rocks in NCC such as alkaline rocks ( Mu and Yan 1992) and
mafic dykes ( Shao and Zhang 2002; Shao et al. 2003; Yang
et al. 2004; Hou et al. 2006 2008; John et al. 2010; Li et
al. 2010; Peng 2010; Peng et al. 2005 2007 2008
2010 201la b; Liu e al. 2006 2008a b 2009 2012a
b 2013).
Hence the genetic processes of the studied carbonatites
should be discussed. There are currently three representative
models for the origin of carbonatites: 1) direct partial melting
(< 1.0%)
fractional crystallization of nepheline magma; and 3) liquation

( Shao et al.

of asthenospheric or lithospheric mantle; 2)

2003) . With respect to the studied carbonatites
we note that feldspars and micas are visible in the carbonatites
and that the carbonatites are characterized by high contents of Cr
and Ni and low contents of Nb and Ta. These observations
indicate that the carbonatites were formed by liquation.
However a dynamic model is required to further decipher the
origin of these rocks.

Geophysical evidence suggests that the Datong area is in a
special tectonic location of apparent asthenospheric upwelling and
lithospheric thinning. In the Mesozoic following the collision of
the NCC with various other continental blocks (e. g.  the Siberia
Block) and after the closure of the ancient Pacific/Tethys

Ocean the regional stresses were reduced and the NCC

underwent a transformation in tectonic regime from compression
2004) .

uplift of the deep mantle as well as considerable extension of the

to extension ( Zhai et al. This resulted in large-scale
crust and the widely distributed extension-derived igneous

including numerous mafic alkaline and carbonatite
dykes in the NCC have been extensively studied ( Wu 1966;
1986; Zhang 1993; Shao and Zhang 2002; Chen
and Zhai 2003; Shao et al. 2003 2005; Yang et al. 2004,
Liu et al. 2005 2006 2008a b 2009 2010a 2011
2012a b 2013; Yan et al. 2007; Zhang 2007; Feng et al.

2010 2012) . This may be the tectonic context in which the

rocks

He et al.

carbonatite dykes in the study area were formed.

Based on the description above the studied carbonatites are
characterized by enrichment in LILE (e.g. Ba Th Sr U)
and LREE depletion in HREE and HFSE (e.g. Ta P Ti)
radiogenic isotopes (e. g  Sr and Nd) and contamination by
obvious crust materials. It is generally accepted that hydrous
melts from the subducting continental crust are commonly of
felsic composition. They have principally inherited the
continental crustdike signatures of trace elements and radiogenic

isotopes ( Zheng 2012) .

continental crust with sub-continental lithospheric mantle will

As a result the mixing of the
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result in the above characteristics. Likewise this can give a

reasonable interpretation for the existent crust contamination.

6 Conclusions

The geochronological — geochemical ~Sr-Nd isotopic and
whole—tocks K-Ar data presented here have allowed the following
conclusions to be drawn:

(1) Zircon LAACP-MS U-Pb and whole—ock K-Ar dating of

carbonate dykes in Shanxi Province China

Cretaceous ( 131.3 + 2.4Ma ~ 132.9 + 0.6Ma)

indicates the Early
ages of
crystallization.

(2) These carbonate dykes were derived from partial melting
of an enriched lower lithospheric mantle source emplacement of
the carbonatite dykes was accompanied with apparent crustal
contamination. The carbonatite dykes within the northern NCC
formed during the mixing of the continental crust with sub-

continental lithospheric mantle.

The authors thank Lian Zhou and
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