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Abstracts 1

greater than 97% under the noise free condition.
Tests with different noise levels indicate that the
proposed method is more stable than the amplitude
ratio method and can improve the inversion accura-
cy. Finally,real data tests in an oil field show that
the proposed method achieves good results in ap-
plication.

Keywords: downhole microseismic monitoring sys-
tem,focal mechanism,wave energy,grid search
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Strong tolerance random forest algorithm in seismic
reservoir prediction. Song Jianguo'”, Yang Lu', Gao
Qiangshan’ and Liu Jong'. OGP, 2018, 53(5); 954-
960.

Since it is difficult to effectively define noise
and signal on seismic and logging data, seismic re-
servoir prediction needs good noise tolerance algo-
rithms. The random forest (RF ) algorithm with
strong noise tolerance is proved by adding noise to
training samples. However this does not mean RF
has good noise tolerance in seismic reservoir pre-
diction as well. First we extract noise samples from
original seismic data with strong noise in the Sur-
vey F3,and extract denoised samples from the data
processed by the dip-steered median filter. Then we
establish random forest regression models between
seismic attributes and the porosity parameter. Af-
ter processing the original seismic data and the fil-
tered seismic data with the noise sample model and
denosied sample model, we estimate four different
porosity parameter cubic data. The results reveal
that the two data sets obtained with the noise mod-
el are more disturbed by noise, and the other two
data sets obtained with the denoised model are
much less affected by noise. On these data sets,
reservoir geological characteristics can be effective-
ly characterized which proves the random forest
model has strong robustness and perfect tolerance
to abnormal data differing from the sample data.
The key issue in the application of the random for-
est algorithm to seismic reservoir prediction is that
the training data does not contain noise. In other
words, the input variable of sample data being de-
noised is much more significant, whereas whether
seismic data were denoised or not has less effects
on the prediction result.

Keywords: seismic attribute, random forest algo-
rithm, noise tolerance,reservoir prediction, noise
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Seismic sparse spike inversion based on L, norm ap-
proximation. Liu Baihong', Li Jianhua’ and Zheng
Silian' .OGP,2018,53(5):961-968.

Under the assumption that the reflectivity is a
series of sparse spike, a sparse spike inversion for
seismic reflection coefficients is proposed. First the
inversion is accomplished by minimizing an objec-
tive function which includes a quadratic error term
(L, norm ) combined with a sparseness-inducing
regularization term (L, norm ). Then the L, norm is
approximated by a smoothing function.so that the
L, penalty becomes differentiable, and the minimi-
zation algorithm for continuous functions based on
derivative is used to solve the problems. The pro-
posed method is tested on both model data and real
field data,and the results show this method is fea-
sible.

Keywords: seismic exploration, reflectivity, impe-
dance, sparse spike inversion, L, norm
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AVO types discrimination based on a proximal sup-
port vector machine.Li Wenxiu''*’ , Wen Xiaotao'*,
Li Tian®, Li Leihao', Liu Songming' and Yang Jix-
in' .OGP,2018,53(5):969-974.

AVO is an important approach for reservoir
oil and gas analysis. It can qualitatively describe oil
reservoirs. The AVO conventional classification de-
pends mainly on human discrimination so that the
discrimination result is often inaccurate and the
workload is heavy.In this paper,we extract feature
parameters from four types of AVO curves as a
training set, and introduce the proximal support
vector machine method to AVO types discrimina-
tion. Based on the shape of four types of gas AVO
curves, taking the morphological features of pre-
stack seismic data as input parameters, AVO types
of the reservoir in a survey area are obtained. This
method is applied to the automatic identification of
AVO types in a clasticrock gas field in the South
China Sea,and more accurate results are obtained.
The proposed method provides a reliable and con-
venient tool for AVO types discrimination in reser-
VOoIrs.
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