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Abstract. Building on the concepts of cohesion degree and local relaxation, we propose an integrated hierarchical
equilibrium parallel finite-element reverse time migration (HEP-FE-RTM) algorithm, which is a fine-grained central
processing unit (CPU) parallel computation method in two-level host-sub-processors mode. A single master process is
responsible for data reading and controlling the progress of the calculation, while each subordinate process deals with a part
of the depth domain space. This algorithm is able to achieve single source forward-modelling and inversion calculation
using more than 2000 CPUs. On the premise of controlling iteration times for convergence, sub-module/processors only
communicate with their adjacent counterparts and the host processor, so the level of data exchange is proportional to
cohesion degree. This HEP-FE-RTM algorithm has the distinct advantage that parallel efficiency does not decrease as
the number of processors increases. In two-level host-sub-processors mode, more than 2000 processors are used and one
billion unknowns are solved. By combining the finite-element implicit dynamic Newmark integral scheme, this approach
achieves a prestack reverse time migration (RTM) with high expansion. Making full use of the characteristics of high
accuracy and strong boundary adaptability of the finite-element method, through the optimisation of finite-element solving,
the HEP-FE-RTM algorithm improved the efficiency of parallel computing and achieved RTM implementation using finite
element. Model tests show that this method has a significant effect on both imaging efficiency and accuracy.
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Introduction

The reverse time migration (RTM) method was proposed
by Hemon (1978) and Baysal et al. (1983). Compared to the
Kirchhoff migration, this approach is able to simultaneously
solve multi-path and dip-angle problems to attain a variety of
complex underground structural images because it incorporates
a two-way wave equation. The RTM method and the full
waveform inversion algorithm are very similar. Mora (1989)
demonstrated that the inversion problem can be regarded as the
result of a series of migrations and consequently updated this
model, while Du and Qin (2009) applied the elastic wave multi-
component prestack RTM method to a horizontal isotropic
medium. In addition to this work, a variety of reverse time
imaging methods have subsequently been developed in order
to achieve higher imaging quality and reduce computation time.
For example, Hu and McMechan (1986) used a hybrid approach
that incorporated both the ray-tracing method to calculate first
break traveltimes during source-wavefield forward-modelling
and the finite-difference method (FDM), used when receiver
wavefield extrapolation is performed, to obtain the excitation
traveltime imagingconditionofprestackRTMimaging.Whitmore
and Lines (1986) later proposed the use of cross-correlation
imaging conditions integrating source and receiver wavefields.
Finally, as a result of high-performance hardware development
and parallel-computing technology, the finite-difference parallel
RTM method based on central processing units (CPUs) and

graphic processing units (GPUs) has emerged. With this in
mind, Liu et al. (2010) proposed a high-order finite-difference
seismic prestackRTMalgorithm based on aGPUparallel cluster.
GPU parallel computation constitutes fine-grained parallelism
where multiple GPUs process the same shot data, while CPU
parallel computation is coarse-grained parallelism used for
parallel computation of shots.

As for boundary condition, the most effective method is
the perfectly matched boundary method, which changes the
propagating wavefield into a decaying wavefield (Berenger,
1994). A second common technique is to introduce a damping
region at the edge of the computation domain (Cerjan et al.,
1985). This is often combined with techniques to kill plane
waves that are perpendicular to the computational boundary.
All of these techniques have proven effective for modelling
seismic data, but the equations used for the boundary and
internal domains are very different, which is not conducive to
parallel implementation and load balancing. Furthermore, the
RTM imaging condition requires simultaneous use of source
forward-modelling and recorded data reverse time extrapolation
wavefields. If the two wavefields are to converge at the same
time points, one propagation process must be stored, which
requires large storage resources. This requirement is hard to
meet in actual operation.

To reduce the storage requirement, Symes (2007) discussed
checkpointing methods where the source wavefield is stored at
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various intervals during forward propagation.When propagating
the receiver wavefield these checkpoints are read from disk
and re-propagated into a buffer to be correlated with the
receiver propagation. There are several undesirable features to
this approach. First, the source wavefield must be re-propagated.
Second, buffering of the re-propagated source wavefield
introduces a large memory requirement. Finally, reading the
snapshots from disk does make RTM input/output (IO) bound.
To further solve the storage and IO requirements problems,
Clapp (2009) proposed an alternative approach. He replaced
the conventional damped region with an increasingly random
velocity region. Rather than eliminate reflections, he distorted
them to minimise coherent correlations with the receiver
wavefield. By propagating the source wavefield to max time
and then reversing the propagation, the need for checkpointing
is eliminated. Although random boundary conditions will
affect the seismic wave forward-modelling results, these
have little impact on the imaging results, meaning boundary
reflection images cannot be realised. In terms of parallel
computing, the greatest benefit of this method is that there is
no additional computational burden and this process does not
affect load balancing.

Currently, wavefield forward-modelling algorithms are
divided into the FDM and the finite-element method (FEM).
The basic idea of the former is the use of a linear combination
of the physical values at nodes to approximate the derivative
term of the partial differential equation. To do this, a staggered-
grid finite-difference scheme is used, which has higher
computational efficiency. By increasing the approximation
order, the accuracy is enhanced at the expense of a decrease
in calculation efficiency. Although this approach can also be
easily extended to the use of GPUs to accelerate computation, it
is extremely difficult for this method to deal with irregular regions.

The FEM is an important approach for the calculation
mechanics of solids, as it can deal with any complex region
and generate high-precision numerical simulation results.
However, this approach requires high computational power.
This is because the basic idea of FEM is to discretely divide
the solution domain into finite elements that are non-overlapping
and inter-connected and then choose the interpolation function
for each element in order to approximate the true solution of
a problem using the linear combination of physical-node value
and interpolation function. Each element interpolation function
is assumed to constitute the overall function of the solution
domain; thus, the solution for the entire domain is composed
of the approximate solutions of all elements.

Recent studies have shown that while the implicit FEM
can be expected to achieve accurate imaging for irregular
topographies, complex structures and complex velocity-
distribution conditions (Zhang and Ning, 2002), the required
computational memory will be much larger, as the key to this
process is the solution of linear equations following FE
discretisation. Currently, in terms of solving parallel linear
equations, the classic triangular decomposition method,
conjugate gradient method with preconditioning and the
generalised minimum residual (GMRES) method have all been
extended to parallel platforms, and a series of highly efficient
solvers have been developed. In terms of parallel efficiency
and potential for development, the direct-solution method,
represented by the multi-frontal massively parallel sparse
approach, exhibits a lower solution scale due to inherent
limitations, while the iterative solution method, represented by
a conjugate gradient based on Krylov subspace and the GMRES
method, can reduce the amount of communication to a certain
extent. Nevertheless, some preprocessing measures need to be

taken if this approach is applied, including preliminary triangular
decomposition using direct solution to improve the robustness of
the algorithm. Thismethod, therefore, also has several limitations
(He et al., 2010). In summary, although current algorithms and
solvers have optimised and improved the parallel efficiency of
solving sparse linear equations at different technical levels, most
can so far only be applied with a computer cluster comprising
up to a few dozen (i.e. maximum200) processors, which severely
limits further expansion of calculation scale and constrains FEM
processing of seismic data.

Building on the idea of cohesion degree and local relaxation,
we propose here an integrated CPU fine-grained hierarchical
equilibrium parallel FE-RTM (HEP-FE-RTM) algorithm, which
enables calculation of the same shot data using more than 2000
CPUs. On the premise of controlling the iteration times for
convergence, sub-module/processors only communicate with
adjacent sub-modules/processors and the host processor, so
data exchange level is proportional to the degree of cohesion;
thus, this algorithm has the advantage that parallel efficiency
does not decrease with an increase in the number of processors.
Indeed, in two-level host-sub-processor mode, more than 2000
processors can be used and one billion unknowns solved. When
integrated with the highly efficient sparse linear equation solving
algorithm, preprocessing of the parallel FEM and implicit
finite element (IFE) dynamic Newmark integral method,
an IFE prestack RTM with high expansion can be achieved.
The high accuracy and strong boundary adaptability of this
FEM can then be applied to RTM. Finally, model tests show
that this method has a significant effect on the efficiency and
accuracy of imaging.

Theoretical background

In this paper, problems of computational efficiency and the
storage capacity of the FE-RTM are solved using the parallel
IFE method and random boundary conditions. We propose
the use of an integrated CPU fine-grained HEP-FE-RTM,
which is able to calculate the same shot data using more than
2000 CPUs.

Two-way wave equation FEM

The acoustic wave equation of second order partial differential
stress is simple in the case of homogeneous medium, as follows:

1
r

1
v2

q2

qt2
�r2

� �
uðx; tÞ ¼ sðxs; tÞ: ð1Þ

In this expression,r is the density, v = v (x, y, z) is the velocity
field of the medium (the quadratic term only appears in the
equation, scalar, irrespective of direction and refers in particular
to wave propagation velocity), u = u (x, y, z, t) is the scalar stress
distribution, r2 are the Laplace operators and s (x � xs, t) is
the source term. Building on this, if an inhomogeneous medium
is to be considered, then Equation 1 is modified, as follows:
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þ q
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� �
þ sðx; tÞ:

ð2Þ
In this expression, r = r (x, y, z) refers to the non-uniform

density distribution.
The RTM method includes source forward-modelling and

recorded data inversion. When both wavefields propagate to the
same point of the reflective layer, or the same traveltime, the
imaging condition is satisfied. This approach is a 4D problem
(x, y, z, t), including time. Applying space discretisation, the
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pressure distribution of the solution domain can be expressed on
the basis of a constructed interpolation function and node
pressure value, as follows:

uðx; y; z; tÞ ¼
Xn
i¼1

Niðx; y; zÞuiðtÞ: ð3Þ

In this expression, as Ni (x, y, z) is the interpolation function,
Equation 3 can be rewritten in vector form, as follows:

u ¼ Nae: ð4Þ
In addition, replacingEquation 4 into Equation 1, theGalerkin

formulation of equivalent integral form will be established, as
follows: ð

W

du
1
r

1
v2

u;tt �r2u

� �
dW�

ð
W

du� sdW ¼ 0: ð5Þ

Integration by parts of the second terms of Equation 5
generates:ð

W

du
1
r
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ð
W
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: ð6Þ

Taking into account the arbitrariness of dui replacement of
Equation 4 and Equation 6 into Equation 5 generates:

M€aðtÞ þKaðtÞ ¼ QðtÞ : ð7Þ
The terms in this expression are as follows:

M ¼PMe;Me ¼
ð
We

1
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v2

NTNdW

K ¼PKe;Ke ¼
ð
We

1
r
ðNTÞr � rðNÞdW

QðtÞ ¼PQeðtÞ;QeðtÞ ¼
ð
We

NT � sðtÞdW

: ð8Þ

It is noteworthy that in Equation 5, the boundary integral term
is pending. Semi-infinite boundary conditions can be formally
used to absorb reflection from all borders, as follows:ð

G

1
r
ðduruÞdG ¼ 0: ð9Þ

In this paper, we used flat triangular elements to determine the
discrete solution domain. These elements are shape-adaptable,
easy to split and have a ‘stiffness matrix’ and ‘quality circle’, as
follows:
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and

Ke ¼
ð
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ð11Þ

For calculations along a time axis, we used the implicit
Newmark scheme for time integration, as this method enforces
several basic assumptions in the time domain (Fang, 1992), as
follows:

_atþDt ¼ _at þ ½ð1� dÞ€at þ d€atþDt�Dt

atþDt ¼ at þ _atDt þ
��

1
2
� a
�
€at þ a€atþDt

�
Dt2:

ð12Þ

Equation 13 is obtained from Equation 12, as follows:

€atþDt ¼ 1
aDt2

ðatþDt � atÞ � 1
aDt

_at � 1
2a

� 1

� �
€at: ð13Þ

Resolving the motion Equation 13 generates:

K þ 1
aDt2

Mþ d
aDt
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� �
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� �
Dt€at

� � ð14Þ

However, in order to facilitate writing, we rearranged
Equation 14 as follows:

c0 ¼ 1
aDt2

c1 ¼ d
aDt

c2 ¼ 1
aDt

c3 ¼ 1
2a

� 1

c4 ¼ d
a
� 1 c5 ¼ Dt

2
d
a
� 2

� �
c6 ¼ Dtð1� dÞ c7 ¼ dDt

:

ð15Þ
Thus, the rearrangement generates:

K̂atþDt ¼ Q̂tþDt: ð16Þ
The solution of Equation 16 is as follows:

€atþDt ¼ c0ðatþDt � atÞ � c2 _at � c3€at
_atþDt ¼ _at þ c6€at þ c7€atþDt

: ð17Þ

Finally, to calculate the start, €a0 is unknown but can be
obtained, as follows:

€a0 ¼ M�1ðQ0 � C _a0 �Ka0Þ: ð18Þ
In order to compute Equation 18, calculations usually

proceed directly after diagonalisation of M, but in the
Newmark method, K̂ has the same matrix structure as both
K and M, so solution can be achieved without diagonalising
M. In this way, we cannot only guarantee the accuracy of
the mass matrix result, but also use a unified approach to solve
Equations 18 and 16 because the mass and stiffness matrices
have the same row and column number.

As there is no damping term C in calculation involving the
actual use of random velocity boundary conditions, Equation 16
can be simplified, as follows:

K̂ ¼ K þ c0M

Q̂tþDt ¼ QtþDt þMðc0at þ c2 _at þ c3€atÞ
€a0 ¼ M�1ðQ0 �Ka0Þ

: ð19Þ

Blocking and the FE parallel meshing principle

The basis of this idea involved the development of a fine-grained
CPU parallel-computing method in master-slave mode. In
this formulation, a single master process is responsible for
data reading and controlling the progress of the calculation,
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while each subordinate process deals with a part of the depth
domain space. These dispersed depth domain spaces are
referred to as blocks and are distributed as a checkerboard as
shown in Figure 1.

In the case of the HEP-FE-RTM, the numbers of blocks
and meshes will jointly determine computational efficiency
and computing time. Especially when using a parallel
algorithm, there will be an obvious Buckets effect; if the
number of element in block I is significantly more than in
others, calculation time will be determined entirely by this
group. Thus, this algorithm requires matched block-element
relationship to balance the load, provided the lengths of the
depth domain velocity model in the x- and z-axes directions
are Lx and Lz, respectively. In order to suppress regular-
boundary reflection, a random velocity field was respectively
augmented to the true velocity model along both the positive and
negative directions of the x- and z-axes at lengths of dLx

–, dLx
+, dLz

–

and dLz
+. The combined velocity model area is as follows:

S ¼ ðLx þ dL�x þ dLþx Þ � ðLz þ dL�z þ dLþz Þ: ð20Þ
In order to simplify this relationship, the whole solution

domain was first sub divided into uniform rectangular grids
with sizes of hx and hz, as follows:

modðLx þ dL�x þ dLþx ; hxÞ ¼ 0

modðLz þ dL�z þ dLþz ; hzÞ ¼ 0

nxGrid ¼ ðLx þ dL�x þ dLþx Þ=hx
nzGrid ¼ ðLz þ dL�z þ dLþz Þ=hz

: ð21Þ

When block information was set, we assumed that both the x-
and z-axes can be divided into nx

Set and nz
Set blocks, respectively.

In addition, in order to ensure balanced parallel-computing load,
these blocks must conform to the following requirements:

modðnGridx ; nSetx Þ ¼ 0

modðnGridz ; nSetz Þ ¼ 0
: ð22Þ

However, in the case of a 2D problem, especially involving
an irregular topography area, a triangular element has better
adaptability as shown in Figure 2a. For consistency, we retained
the same triangular element in the regular solution domain
(Figure 2a), equivalent to addition of a discrete point in the
centroid position of a rectangle (Figure 2b), forming 1–3–2,
2–3–5, 3–4–5 and 4–3–1 triangular elements (i.e. counter-
clockwise in a plane), and constructed a physical distribution
that conforms to a coordinate quadratic function and thus
achieves higher computing accuracy. From a computational
point of view, the position of nodes 1–5 are the same as in
Figure 2b, but in order to facilitate recognition output, we take
into account that rectangular corner points 1, 2, 4, and 5 (solid
circles) have corresponding ground nodes in the vertical
direction, so only results at rectangular corner point positions
correspond to outputs.

As a result, the element number within each block can be
expressed, as follows:

NGrid
Set ¼ 4� nGridx

nSetx

� nGridz

nSetz

: ð23Þ

In reference to Figure 2b, the total number of nodes within the
block is as follows:

NNode
Set ¼ nGridx

nSetx

� nGridz

nSetz

þ nGridx

nSetx

� 1

� �
� nGridz

nSetz

� 1

� �
: ð24Þ

According to RTM theory and the Newmark time integration
scheme, as far as scalar wave is concerned, each node only has
one degree of freedom, so the time required for computing is
proportional to the number of block nodes, NSet

Node.
Thus, the general form of linear equations in a FE simulation

can be written as follows:
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Fig. 1. Diagram of blocking scheme of the local Marmousi velocity model
in depth domain after random boundary extension. In actual calculations,
this extended model is evenly divided into 4� 4 blocks (sixteen in total)
along the x- and z-axes. The red line represents the block boundary with
the external interface.
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Fig. 2. Comparison diagram of (a) mesh and (b) triangular elements. For consistency, we retained the
same triangular element in the regular solution domain (a), equivalent to addition of a discrete point in the
centroid position of a rectangle (b), forming 1–3–2, 2–3–5, 3–4–5 and 4–3–1 triangular elements (i.e. counter-
clockwise in a plane).
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XN
j¼1

kij � uj ¼ pi; i ¼ 1; 2; ::;N : ð25Þ

In this expression,N refers to the number of nodes. Assuming
that the number of degrees of freedom of each node is s, the
total number of unknowns is sN. kij is the overall stiffness
matrix, and pi and uj refer to the load and unknown
displacement vectors, respectively. Equation 25 is established
using the principle of minimum potential energy, and the
expression for the total potential energy is as follows:

P ¼ 1
2

XN
i;j¼1

ui � kij � uj �
XN
i¼1

ui � pi: ð26Þ

On the basis of the principle of minimum potential energy,
we designed an iterative format algorithm, which constantly
decreases the value of the function in Equation 26 and
definitively solves Equation 25.

For parallel computing, we first divided N nodes into M
blocks (or sets) according to their initial location (corresponding
toM processors); thus, the number of degrees of freedom within
each block is about sN/M. Segmentation was then used to set
a dividing plane within each element, rather than on the nodes
as shown in Figure 3b. This is a different concept from domain
decomposition. Thus, an element crossed by a dividing plane
is defined as the interface element is shared with adjacent blocks
in order to ensure displacement continuity. Another important
difference between this approach and the domain decomposition
method is that it is unnecessary to introduce either a penalty
function or Lagrange multipliers, but in the process of iteratively
solving equations, each block needs to communicate with
adjacent ones to obtain the solutions of external nodes on each
interface element.

Inside each block, a linear combination of displacement
incremental mode was used to represent node displacement.
Thus, the node displacement value of block I (SetI) can be
written as follows:

ui ¼ uoldi þ
Xq
k¼1

aðIÞk ûðIÞki ; i 2 SetI : ð27Þ

In this expression, ui
old is the approximate solution of the

last iteration, q is the number of displacements incrementalmode,
while ûðIÞki and ak

(I) refer to the kth displacement incremental
mode and coefficient of the Ith block, respectively. We
condensed sN/M numbers that had inherent degrees of

freedom in the block into a total of q higher-order degrees of
freedom. In general, q is about ten orders of magnitude. The
above blocking method, distinct to the substructure method,
makes the degrees of freedom of block boundary points into
an upper level calculation. Thus, replacing Equation 26 into
Equation 27, we obtain potential energy in the form of ak

(I).
Thus, according to the principle of minimum potential energy
(i.e. functional extreme conditions), we derive:

qP
qaðIÞm

¼
XM
J¼1

X
i2SetI
j2SetJ

ûðIÞmi � kij � uoldj þ
Xq
l¼1

aðJ Þl ûðJÞlj

 !

� P
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pi � ûðIÞmi

¼ PM
J¼1

Pq
l¼1

K
aðIÞm aðJÞl

aðJ Þl � P
aðIÞm

¼ 0:

ð28Þ

From this expression, the following addition derivations are
possible:

K
aðIÞm aðJÞl

¼ P
i2SetI
j2SetJ

ûðIÞmi � kij � ûðJÞlj

P
aðIÞm

¼ P
i2SetI

ûðIÞmi � ðpi �
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J¼1

P
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kij � uoldj Þ
: ð29Þ
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Fig. 3. (a) 2D finite-element problem segmentation method diagram.
(b) Adjacent block share element. The dividing plane falls inside the element.
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These expressions comprise the stiffness matrix and imbalance
force vector that corresponds with the highest order degree of
freedom ak

(I), respectively. The overall balance equation that
expresses the cohesion degree of freedom is therefore:

XM
J¼1

Xq
l¼1

K
aðIÞm aðJÞl

aðJ Þl ¼P
aðIÞm

; m¼ 1;2; ::;q; I ¼ 1;2; ::;M : ð30Þ

This expression is an equation for overall balance control.
For ease of operation, we applied a specialised (master)
processor to solve Equation 30, while Equations 27–30
show that the HEP-FE-RTM algorithm does not require
assembly of the overall stiffness matrix. However, taking
it into account the fact that we need fewer displacement
increment modes to express inherent degrees of freedom,
equivalent to the introduction of additional restrictions, ,
displacement increment modes in the iteration process must
be self-adaptive within the block and adjusted via a relaxation
calculation. In FE analysis, because each node is connected
with a very small number of surrounding nodes, and the
obtained stiffness matrix is usually banded and sparse, each
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block in Figure 3 needs to only exchange interface information
with its neighbours (Figure 3b) and most communication is
local. This avoids large-scale information exchange overall,
so the burden of communication is low. Application of
this method also enables the establishment of hierarchical
equilibrium solving format through multi-level cohesion
degrees of freedom and achieves simulation of larger-scale
problems.

Method performance analysis

HEP-FE-RTM algorithm convergence analysis

The HEP-FE-RTM algorithm applied in this study for solving
linear equations is as follows:

K þ 1
aDt2

M

� �
atþDt ¼ Q̂tþDt: ð31Þ

In this expression, the stiffness matrix, K, is usually
a non-positive definite because it has a zero eigenvalue, while
the mass matrix, M, is a positive definite. Thus, the coefficient
matrix on the left of the upper formula is a positive definite
matrix. Because of this, functional II obtained via cohesion
degree of freedom after each blocking must contain an
extreme value, equivalent to Equation 32, which enables
convergence of the solution through an iterative calculation:

P ¼ PM
I¼1

PM
J¼1

P
i2SetI
j2SetJ

�
uoldi þPq

l¼1
aðIÞl ûðIÞli

�
� kij�

�
uoldj þPq

l¼1
aðJÞl ûðJ Þlj

�

�PM
I¼1

P
i2Set

pi �
�
uoldi þPq

l¼1
aðIÞl ûðIÞli

�
: ð32Þ

In terms of linear equations possessing definite coefficient
matrices, convergence of the HEP-FE-RTM algorithm has been
demonstrated from a numerical point of view. In this study, to
ensure precision of the time integration scheme, the HEP-FE-
RTM algorithm uses a higher convergence accuracy by default
and thus meets the requirements of:

K þ 1
aDt2

M

� �
aitþDt � Q̂tþDt

����
����
1

jQ̂tþDtj1
� 10�9

jDaitþDtj1
jDa1tþDtj1

� 10�15

8>>>>><
>>>>>:

: ð33Þ

In this expression,Dat+Di represents the incremental amplitude
vector of the ith iteration:

jDaitþDtj1 ¼ �
XN
l¼1

jDailtþDtj: ð34Þ

This expression is the first-order norm of incremental
amplitude vector. Indeed, on the basis of model tests, we were
able to determine that between two and four iterations of the
solving equations are sufficient to meet the convergence criteria
of Equation 34.

Accuracy analysis of the implicit dynamic Newmark time
integration scheme

The accuracy of this time integration scheme directly affects
the effectiveness of computed wavefield and further impacts
imaging results. To address this issue, we applied the implicit

dynamic Newmark time integration scheme. First, we applied
a simple model with three velocity layers to analyse the accuracy
of the integration scheme above. The depth domain velocity
model profile extended by random boundary layers is shown
in Figure 4a. Our meshing generation scheme was 2� 2m and
a total of 864 000 triangular elements were used. Thus, a virtual
source was applied at the centre of the surface and a forward-
modelling wavefield profile of 2.0 s was recorded. We also
reversed the forward-modelling wavefield along the time axis.
This approach enabled a direct impression of the effectiveness
of our time integration scheme by comparing the forward-
modelling and inversion results at the same point along the
time axis. The instant wavefield profile at the end of the
forward-modelling time (2.0 s) is shown in Figure 4b; due to
the existence of a random velocity layer, the wavefield (2.0 s) is
completely transformed to diffuse reflection. In principle, if the
time integration scheme meets the accuracy requirement, the
simultaneous instant wavefield profile of forward-modelling
and inversion will have the same amplitude distribution.

Different forward-modelling and inversing wavefield times
are shown in Figure 5. On the basis of these comparisons, it is
clear that these two groups of wavefields conform very well
at different times, which shows that the implicit dynamic
Newmark time integration scheme meets the requirements of
this study and is of reliable accuracy. The difference between
forward-modelling and inversing wavefields (0.8 s) as shown
in Figure 5i, further exhibits the reliability of the accuracy.

HEP-FE-RTM algorithm scalability and parallel efficiency
analysis

We selected a portion of the Marmousi velocity model as our
test object for this analysis. The depth domain velocity model
treated with a random velocity boundary approach is shown
in Figure 6. For the test we used a cluster of ten nodes, each
containing eight cores (i.e. 80 cores in total). This test was
applied for a single-shot imaging calculation, set in the
midpoint of the horizontal direction in Figure 6.

Initially, we tested the scalability of the HEP-FE-RTM
algorithm. To do this, the blocking scheme in the depth
domain velocity model was fixed into 4� 4 blocks in horizontal
and depth directions and 17 processes were used. Grid density
was increased by adjusting the grid size. Figure 7a shows the
time consumption variation of single-shot imaging computation
with an increase in the number of elements in the block.
Although the fitting result is a quadratic curve, the magnitude
of the quadratic term coefficient is much lower than of the
linear term, which indicates that the HEP-FE-RTM algorithm
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exhibits very good scalability. Figure 7b shows that the
required average number of iterations changes as the number
of elements increase because the HEP-FE-RTM algorithm
achieves convergence in the imaging procedure. The results of
this analysis (Figure 7b) show that when the number of elements
is large enough (i.e. greater than 40 000), iteration times are
almost the same; this also confirms that the parallel efficiency
and scalability of our algorithm is very good.

Second, we fixed the number of triangular elements in the
depth domain velocity model to 2 560 000, and then increased
the number of blocks (i.e. processes). The biggest number of
blocks we applied was 100 (corresponding to 101 processes),
and the speed-up situation of the HEP-FE-RTM algorithm is
shown in Figure 8a. The results of this analysis show that, from
a parallel efficiency point of view, the best blocking scheme
is 5� 5, which is the turning point. Figure 8b shows the results
of variability in the required average iteration number to achieve
convergence with the HEP-FE-RTM algorithm as block
number increases. It is well known that, after fine blocking,
a decrease in parallel efficiency is mainly due to increases in
iteration. However, the blocking scheme has a turning point as
well. Therefore, from the perspective of parallel efficiency, we
need to test the best blocking scheme with regard to different
scale data.

In order to test the scalability and efficiency of the HEP-FE-
RTM algorithm in detail, we used the same triangular element
to test the BP model (Figure 9). This model is much more
complex and is treated similarly with a random velocity
boundary. We used the HEP-FE-RTM algorithm and the IFE
time integral scheme to calculate the BP model; this test uses
up to 2001 processors to compute the wavefield propagation
problem of one billion unknowns.

We tested two cases to investigate scalability. First, we
divided the solution domain into 64 blocks with an 8� 8 form
and increased the number of unknowns in each block from 400
to 980 000 (Figure 10a). The results of this approach show that
although the number of unknowns in each block and the whole
problem changes a great deal, the number of required iterations
to achieve algorithm convergence no longer increases if the
problem is large enough (i.e. greater than 100 000 degrees of
freedom). Second, we enforced 500 000 degrees of freedom
within each block and increased the block number from 2 to
2000 (i.e. up to one billion unknowns). The results from this

approach (Figure 10b) again show that the required iteration
times for algorithm convergence do not change if the problem is
large enough.

Last, we applied test cases comprising eight and 32million
unknowns to test the parallel speed-up of the HEP-FE-RTM
algorithm (Figure 11). In the first of these cases, speed-up
begins to decrease after 625 processors, while in contrast, the
larger the number of unknowns the later the speed-up decrease.
In other words, these results corroborate the good parallel
efficiency of the HEP-FE-RTM algorithm.

These results show that by optimising both structure and
algorithm, the HEP-FE-RTM approach enables computation
of more than 2000 processors and one billion unknowns.

Numerical examples

A synthetic data test (Sigsbee2)

In order to test the performance of our method, we investigated
synthetic data from the standard Sigsbee2 model. The global
Sigsbee2 velocity model is 9144m in depth and 24 384m in
length (Figure 12a) and contains a sedimentary sequence
broken up by several normal and thrust faults. Additionally,
there is a complex salt structure found within the model that
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results in illumination problems when processing and migrating
data. In contrast, migration imaging results using the one-way
wave equation migration (WEM) are shown in Figure 12b.
However, as a result of the disadvantage of imaging dip-angle
limits using the one-way wave equation, the images of the areas
where lateral velocity changes greatly (red arrow) are seriously
distorted, while the subsalt complicated structural areas (bright
green box) are also inaccurately imaged.

Figure 12c shows migration imaging results using the finite-
difference RTM method (FD-RTM); because this method uses
a two-way wave equation without dip limitation, the image
of the subsalt complicated structural areas (bright green box)
is improved greatly. However, because finite-difference mesh
forms are usually rectangular or hexahedron, it has proved
difficult to cope with these dramatic changes in structure, and
images of the areas where lateral velocity change greatly (red
arrow) are still not ideal. Figure 12d shows migration imaging
results obtained using the HEP-FE-RTM method proposed in
this paper; as this approach incorporates a variety of elements
and can deal with any complex region, images of the areas
where lateral velocity change greatly (red arrow) and the

subsalt fault blocks (bright green box) are all very clear.
Comparing the results presented in Figure 12b–d, it is clear
that the method presented in this paper exhibits a high level of
computational accuracy, as it captures almost all stratigraphic
characteristics.

The analysis domain size of each shot in the Sigsbee2
imaging test is 9144m in depth and 24 384m in length, while
the computational domain after random velocity boundary
extension is 10 668m in depth and 27 432m in length. At
the same time, the rectangular grid size is 30.48� 15.24m, the
blocking scheme applied was 5� 5 and there are 630 000
triangular elements within each block. We used 26 processors
for parallel computations within a cluster system, and the
comparison of the computational elapsed time for WEM, FD-
RTM and HEP-FE-RTM methods is shown as in Table 1.
Compared to the 18.95min per shot required by FD-RTM,
the HEP-FE-RTM approach took 19.05min to complete the
imaging computation of single shot. Therefore, although the
HEP-FE-RTM approach took less than an hour longer than
the FD-RTM method, imaging accuracy is improved significantly.
In addition, the average required iteration time for each time
step was 1.0865 before the HEP-FE-RTM algorithm equations
achieved convergence.

Synthetic data test from the Subei Basin

We also tested our method using 2D data from the Subei Basin,
located within the Jiangsu Oilfield, SINOPEC. This basin is well
known for several small, complex fault block reservoirs (Mao
et al., 2006). A typical fault block geological model for the Subei
Basin is shown in Figure 13a, encompassing a model grid of
10� 10m. This model consists of a large steep fault, many

Table 1. Comparison of the computational cost for WEM, FD-RTM
andHEP-FE-RTM for Sigsbee2modelmigration imaging using the 5� 5

blocking scheme.

Elapsed time
Method Single shot (min) Total 500 shots (h)

WEM 11.25 93.75
FD-RTM 18.95 157.92
HEP-FE-RTM 19.05 158.75
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smaller faults and seven reflectors: T23, T24, T25, T30, T31, T33
and T40 from top to bottom.

This forward-modelling seismic dataset contains a total of
672 shots. The migration velocity model encompasses a total
of 2278 traces, each of which comprise 501 sampling points
spaced at 10m intervals, and the computational model size
is 12 000� 5000m. For imaging computations, the random
velocity boundary was arranged around the original velocity
model, with the exception of the free-boundary surface, and
the final size of the solution domain was 14 000� 7000m. Our
parallel processing approach used an 8� 8 blocking scheme and
65 processes. Comparison between imaging results obtained
using WEM, FD-RTM and the HEP-FE-RTM advocated in
this paper are shown in Figure 13b–d, respectively.

The comparison of the computational elapsed time for WEM,
FD-RTM and HEP-FE-RTM methods on Subei Basin model
migration imaging using the 8� 8 blocking scheme is shown
in Table 2. Compared to the 1.655 h per shot required by FD-
RTM, the HEP-FE-RTM approach took 1.741 h to complete the
imaging computation of single shot. Similarly, theHEP-FE-RTM

approach took only less than two days longer than the FD-RTM
method, but obviously improved imaging accuracy.

Conclusions

A complete HEP-FE-RTM method is proposed in this paper.
Compared with traditional approaches, this method incorporates
an algorithm in a fine-grained parallel CPU scheme, applies
the implicit Newmark time integration method to achieve
exact parallel numerical integration computation of the two-
way wave propagation equation to strictly ensure integration
convergence and makes use of the HEP-FE-RTM to integrate
CPUs and process super-large-scaled linear equations. This
algorithm can use more than 2000 processors and analyse
more than one billion elements (i.e. grids) simultaneously.

However, design of this algorithm could still be improved.
First, it would be possible to design a multiple shot coarse-
grained parallel algorithm on the basis of single shot parallel
computation to process multiple shots simultaneously and
complete data stacking. At the same time, an IFE imaging
algorithm based on GPU could also be developed. Second,
because actual underground media are significantly anisotropic,
a scalar wave equation applied based on isotropic theory
cannot effectively solve the problem of seismic wave
migration in anisotropic media, affecting imaging accuracy.
Thus, introduction of an anisotropy vector wave equation is
necessary. In terms of the FE method, as the discrete physical
quantities of the FE method load onto all nodes, vector wave
propagation computation can be easily achieved by increasing
degrees of freedom. Third, in the process of wavefield reverse
time extrapolation imaging, both the source and receiver
wavefields include upgoing and downgoing waves, which will

Table 2. Comparison of the computational cost for WEM, FD-RTM
and HEP-FE-RTM for Subei Basin model migration imaging using the

8� 8 blocking scheme.

Elapsed time
Method Single shot (h) Total 672 shots (days)

WEM 0.982 27.5
FD-RTM 1.655 46.34
HEP-FE-RTM 1.741 48.75
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Fig. 13. (a) Velocity model based on Subei Basin in China. (b) WEM. (c) FD-RTM. (d) HEP-FE-RTM.
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produce a non-zero correlation coefficient on the entire travel
path. In this case, by applying the downgoing component of
the source wavefield, as well as the upgoing component of the
receiver wavefield to make related calculations, imaging noise
suppression can be realised.
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