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ARTICLE INFO ABSTRACT

The Bilihe gold deposit in Inner Mongolia is situated in the Central Asian Metallogenic Domain. Its major ore-
body II is a porphyry-type body, spatially and temporally associated with granodiorite porphyry and granite
aplite. In this study, the timing of gold mineralization is precisely constrained by using the zircon U-Pb dating
for pre-mineralization intrusions and the molybdenite Re-Os dating for later molybdenite veins. Furthermore,
zircon Hf-O isotope analyses have also been carried out to decipher the nature of primary magma. Zircon U-Pb
dating shows that the granodiorite porphyry and the granite aplite were emplaced at 269 + 2Ma and
270 = 2Ma, respectively, indicating the gold mineralization occurring no earlier than 269 Ma. Meanwhile,
molybdenite veins are developed within the fractures and commonly cut across the auriferous veins. Thus,
combined with a molybdenite Re—Os isochron age of 268 *+ 1 Ma, the gold mineralization in the Bilihe deposit
can be precisely restricted to ca. 269 Ma. Zircon ey (t) values are mostly positive (1.6-11.3), along with high
880 values of 6.20-7.63%o, suggesting a mixed source between mantle materials and ancient continental crust
(such as the Bainaimiao Group) for the Bilihe magma. It is also supported by the presence of the captured detrital
zircons in these intrusions. Given a universally metallogenic environment for porphyry gold deposits, a thicken
crustal setting related to the collisional intermission of the Paleo-Asian Ocean is favored to interpret the for-
mation setting of the Bilihe deposit.
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1. Introduction

The porphyry gold-only deposit represents a relatively new type of
economic gold ore devoid of economically mineable copper and mo-
lybdenum and is commonly formed in subduction-related volcano-
plutonic arcs (Sillitoe, 1979; Sillitoe, 2010). So far, only tens of por-
phyry gold deposit have been found and reported worldwide (Fig. 1),
e.g., the Marte, Verde and Pancho deposits in the Maricunga Belt, Chile
(Vila et al., 1991; Muntean and Einaudi, 2000), the Colosa and Mar-
mato deposits in the Middle Cauca belt in Columbia (Sillitoe, 2008; Gil-
Rodriguez, 2010), the Biely Vrch deposit in the Javorie belt in Slovakia
(Hanes et al., 2010) and the Bilihe deposit in China (Ge et al., 2009).
Compared with the porphyry Cu * Au * Mo deposit, the type of
deposit is characterized by (1) ore-forming paleo-depth of less than

1km, (2) genetically related subvolcanic porphyry that is commonly
covered by coeval volcanic rocks, (3) extremely low content of sulfides
(2 wt%) but relatively higher content of oxides (5wt%), (4) gold ore
spatially associated with chlorite-magnetite-albite alteration, (5) the
presence of gold dominantly within banded quartz-magnetite veinlets,
and (6) gold precipitation in a high-temperature but low-pressure
subvolcanic setting. Considering its mineralization model, Sillitoe
(1979) argued an island arc magmas with higher oxygen fugacity
tending to be rich in gold and poor in molybdenum; Muntean and
Einaudi (2000) emphasized shallow episodic intrusion that permits loss
of sulfur and precipitation of gold-rich banded quartz veinlets, whereas
Richards (2009) favored partial melting of an exceptional magma re-
servoir characterized by hydrous, Au-rich, but relatively sulfur-poor
magmas. In addition, Kodéra et al. (2014) proposed a K-Fe-enriched
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Fig. 1. Porphyry gold distribution around the world. See text for detailed sources of the age data.

mantle-derived magmatic fluid responsible for the formation of the
Biely Vrch gold deposit in Slovakia.

Currently known porphyry gold deposits are mostly formed after the
Miocene (Fig. 1). In northern Chile, the Maricunga belt hosts porphyry
Au deposits of two discrete periods of 24-21 Ma and 14-11 Ma, which
are closely associated with fine-grained diorite to quartz diorite por-
phyry stocks emplaced into andesitic stratovolcanoes (Sillitoe et al.,

1991; Muntean and Einaudi, 2001; Gamonal, 2015). In Colombia, the
andesite to dacite rocks in the Cauca belt were dated between 6 and
8 Ma, providing significant time constraint on the Colosa and Marmato
porphyry Au deposits (Sillitoe, 2008; Santacruz Reyes, 2016). In the
western European Carpathian Mountains, the Javorie belt in Slovakia
owns several occurrences of porphyry gold mineralization and an eco-
nomic ore at Biely Vrch. There are hosted within the stocks of Middle
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Fig. 2. Tectonic map of central Inner Mongolia showing the tectonic belts and the Au-bearing distribution in the study area (after Xiao et al., 2003). Isotopic ages of

the gold deposits are from Lu et al. (2009), Li et al. (2012) and Liu et al. (2014).
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Miocene diorite-to-granodiorite porphyry (Szabd et al.,
et al., 2010; Kodéra et al., 2014).

In China, the Bilihe gold deposit in Inner Mongolia located in the
Central Asian Orogenic Belt (CAOB) is considered as the known oldest
porphyry gold deposit, although Yang et al. (2016) defined it as a new
type of Au deposit of magmatic origin based on its wide distribution of
high-temperature dendritic and comb-layered quartz. The Bilihe de-
posit represents an epithermal-porphyry system, consisting mainly of
two orebodies, that are the epithermal orebody I with 3.1t Au which
has been mined out and the newly discovered porphyry orebody II with
21.6t Au (Ge et al., 2009). Previous geochronological works indicate
that it was formed at the Permian and gave very discrete time ranges.
Lu et al. (2012) considered that the porphyry related to the orebody II
was formed 284 + 4 Ma, whereas Yang et al. (2016) obtained a zircon
U-Pb age of 261 + 2Ma. Liu and Nie (2015) argued that the magmatic

1992; Hanes
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and hydrothermal activities lasted for ca. 17 Ma from 272 Ma to 255 Ma
using ages of the peripheral intrusions of the orebody II. In addition,
Qing et al. (2011) applied 250-273 Ma molybdenite model Re-Os ages
from the orebody II to constrain the gold mineralization at 273 Ma. In
this paper, on the basis of occurrences of ore-related porphyry and
molybdenite selected from later hydrothermal veins, we present TIMS-
1280 zircon U-Pb and molybdenite Re-Os isotopic analyses to confine
the timing of the porphyry orebody II and use in situ zircon Hf-O iso-
topes to trace the magma source and to discuss the relationship between
the evolution of the Paleo-Asian ocean and the gold mineralization.

2. Regional geology

CAOB is one of the largest accretionary orogens on the earth (Sengor
et al., 1993; Windley et al., 2007); it is terminated by the Solonker
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Fig. 4. Photographs showing the occurrences of intrusions and auriferous quartz. a — Granite aplites show flat boundaries with granodiorite porphyry; b — Auriferous
quartz veins cut through an aplite along extensional fractures; ¢ — K-feldspar veins are distributed in the porphyry (upper part) and cracked by gray quartz (Q) veins in
the strongly altered porphyry (lower part); d — Dendritic quartz occurs in potassium (K-) alteration porphyry; e — Au grains cluster as droplet shapes in the dendritic
quartz; f — Chalcopyrite (Ccp) and pyrite (Py) are distributed along fractures in dendritic quartz, and the quartz was cracked into globular shapes when the fractures
cut through; g — Dendritic quartz is enclosed in chlorite-sericite (CS-) altered porphyry, and chlorite-sericite and potassium alterations are divided by gray auriferous
quartz veins; h — Auriferous gray banded quartz veinlets are injected into CS altered porphyry; i — Coexisting Au, scheelite, magnetite (Mag) and chalcopyrite in grey

quartz.

suture between the southern North China Craton and the northern Si-
berian Craton (Xiao et al., 2003). The Bilihe deposit tectonically be-
longs to the southern accretionary zone between the North China
Craton and the Solonker suture. This zone is composed of the Middle-
Ordovician-Early Silurian Ondor Sum subduction-accretion complex
and the Bainaimiao arc (Fig. 1; Xiao et al., 2003). The Bainaimiao arc,
hosting the Bilihe deposit, used to be considered as an island arc (Tang
and Yan, 1993), and was recently regarded as a subduction-related
continental margin arc, with the Mesoproterozoic Bainaimiao Group
consisting of two-mica schists and biotite-plagioclase schists (Nie et al.,
1995; Xiao et al., 2003). In the Late Silurian, southward subduction
resulted in a collision between the Bainaimiao arc and the North China
Craton bounded by the Chifeng-Bayan Obo fault (Xiao et al., 2003; Li
et al., 2009). The southern accretionary zone was finally consolidated
by the Carboniferous-Permian or even the Triassic, when it evolved into
an Andean-type magmatic margin above a south-dipping subduction
zone along the northern Solonker fault (Xiao et al., 2003; Zhang et al.,

2009a). Accordingly, the CAOB has experienced crustal evolution that
involved both juvenile material and abundant reworking of older crust
with varying proportions in the Paleozoic generation of the arc terranes
in Inner Mongolia (Kroner et al., 2014).

Several porphyry Cu-Au deposits and lode gold deposits are de-
veloped in the Bainaimiao arc, e.g., the Bainaimiao Cu-Au deposit, the
Hadamiao Au deposit and the Bilihe Au deposit (Fig. 2). The Bainai-
miao Cu-Au deposit and related porphyry intrusions were intensely
reworked by later EW-trending shear zones. Li et al. (2012) obtained
similar zircon U-Pb and molybdenite Re-Os ages of 445 Ma for the ore-
related porphyry and Cu-Au mineralization, respectively, and inter-
preted the Bainaimiao deposit as a Late Ordovician porphyry system
that has undergone intense deformation and metamorphism in the
Middle Devonian (Nie et al., 1994b). The Hadamiao Au deposit is 12 km
southeast of Bilihe and related to a 272 Ma granitic intrusion (Lu et al.,
2009; Liu et al., 2014). Given similar geological features between the
Hadamiao and Bilihe deposits Yang et al. (2016) further argued that
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these two belonged to one district. The Baiyinhaer lode Au deposit
occurs within the 427 Ma quartz diorite (our unpublished data), and
Xianglinxiangda and Bieluwutu lode gold deposits are genetically as-
sociated the Late Permian quartz diorite and 275Ma volcanics, re-
spectively (our unpublished data; Nie et al., 1994a). Clearly, at least
two periods of gold mineralization occurred in the Bainaimiao arc re-
lated with Ordovician-Silurian and Permian magmatic events.

3. Deposit geology

The Bilihe deposit is situated in the Durewuligi volcanic basin.
Outcropping strata are mainly of Permian volcanic sedimentary rocks
and overlying Cenozoic sedimentary rocks. These volcanic sequences
were considered to be deposited in the Jurassic. However, detailed
zircon U-Pb dating for andesitic rocks (281 + 4 Ma) and rhyolite
(273 = 3 Ma) in the Bilihe district indicates that the volcanics erupted
in the Permian; (Qin et al., 2012; Yang et al., 2016). The NW-trending
extensional faults, as secondary branches of regional deep faults, con-
trol the distribution of intrusions, whereas the NE-trending faults were
interpreted as post-mineralization with large effects on the gold ore-
body (Lu et al., 2009). The Bilihe deposit is composed of the porphyry
orebody II and vein orebodies of I and 22-26. The latter vein miner-
alization occurs in the andesite or tectonic breccia related with deeper
porphyry (Ge et al., 2009). Exposed intrusions in the south of the ore-
body II and the hidden intrusions below the orebody 22 have been
studied in detail by Liu and Nie (2015), who considered that these
255-271 Ma intrusions are generally high-K calc-alkaline, sourced from
mixing among the partial melting of subducted oceanic crust, depleted
mantle and lower crust in a collisional to extensional setting during the
late stage of closure of the Paleo-Asian Ocean.

The porphyry orebody II was overlain by andesite, tuff and Cenozoic
sedimentary rocks (Fig. 3). At the surface, andesite outcrops underwent
intense oxidation and were cut by discontinuous quartz veins. The
contact zone between the intrusion and andesitic lava is filled with the
breccia (Fig. 3c). The gold orebody is spatially and temporally asso-
ciated with porphyry intrusions (Fig. 3b), with geochemical composi-
tions changing from diorite in the lower part to granite in the upper part
(Yang et al., 2016). Additionally, the granite aplite dikes or fragments
are also present in the orebody II. The aplites are usually several to tens
of meters long (Fig. 4a), showing apparently unaltered boundaries with
the porphyry and possibly representing the fractionated product of the
porphyry. Auriferous banded quartz veins commonly crosscut the
aplites and porphyry along extensional fractures (Fig. 4b).

Overall, the gold orebody dips SE (Fig. 3b), indicating the upwelling
direction of the hydrothermal fluid. Quartz as the dominant mineral has
very different occurrences, including dendritic, agglomerated and vein
shapes. The former two probably represent a physical model of hy-
drothermal exsolution from magma (Harris et al., 2004) or quartz
phenocryst phases in magma (Yang et al., 2015). The sulfides are rare

Table 1
Sample information of molybdenite.
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(less 2%) and consist mainly of pyrite, chalcopyrite, molybdenite,
bornite, sphalerite and galena, whereas oxides account for ~5%, and
are composed mainly of magnetite and ilmenite. Magnetite is found
both in the porphyry and the hydrothermal veins, whereas the ilmenite
commonly occurs either mineral inclusions in pyroxene and plagioclase
or intergrowth with magnetite. The gold grains have different shapes
with approximately 11% of gold grains occurring as droplets or round
shapes and the rest as irregular or angular shapes (Bai and Qin, 2012).
Pervasive alterations include early potassic alteration and late super-
posed chlorite-sericite-illite, sericite-quartz-pyrite and advanced argillic
alterations, resulting in remnant potassic alteration found only at
depth. Tourmalinization is common in the intrusions and wall rocks,
indicating intensive magma degassing.

Based on gold occurrences and grades, two types of gold miner-
alization can be distinguished (Fig. 3b). One type is Au-rich orebody
(ca. 8t Au) with an average grade of 15.0 g/t (Bai and Qin, 2012),
occurring in a top “cap” section of the porphyry intrusion. This “gold
core” is genetically related with coarse-grained and dendritic quartz
and is almost mined out in an open pit (Fig. 3b and c). In the shallow
part, dendritic quartz is present in envelopes of sericitization and
kaolinization, whereas in the deep part, it can be found in potassic al-
teration zones (Fig. 4c and d). These quartz grains have irregular cur-
ving shapes and host droplet-shaped gold grains (Fig. 4e). Most Au
grains are native, euhedral or subhedral and cluster as beaded trails
along intersecting crystallographic planes of the hosted quartz, in-
dicating simultaneous precipitation with quartz (Yang et al., 2015).
Rare sulfides are distributed in the dendritic quartz, and only pyrite and
chalcopyrite can be found along the fractures (Fig. 4f). The other type is
gray banded quartz veinlets with an average Au grade of 2.7 g/t (Bai
and Qin, 2012), occurring in the intrusions and andesitic wall rocks and
overprinting the dendritic quartz (Fig. 4g and h). This gold miner-
alization is mainly associated with chlorite-sericite-illite alteration and
is thus later than the potassium alteration (Fig. 4c, g and h). The gold
commonly coexists with scheelite, magnetite and chalcopyrite (Fig. 4i),
indicating an intense redox transitional environment for gold pre-
cipitation.

4. Samples and analytical methods

Granodiorite porphyry and granite aplite samples for zircon U-Pb
and Hf-O analyses were chosen from ca. —1140m in the open pit
(Fig. 3c). Zircon grains were separated via a combination of heavy li-
quid and magnetic techniques, handpicked, and then mounted in epoxy
resin and polished to remove the upper one-third of the grains. The
mount was vacuum-coated with high-purity gold prior to SIMS analysis.
Cathodoluminescence (CL) and back-scattered electron (BSE) images
were obtained based on a LEO1450 VP SEM in order to identify internal
structures and inclusions, and choose potential target sites for U-Pb
analysis. Zircon U-Pb-O analyses were carried out on the Cameca IMS-

Sample Occurance (mine dump of No. II orebody)

host rock molybdente shape mineral association
B-Mo-101 weak-altered granodiorite porphyry thin film in fracture molybdenite
B-Mo-06 light-green altered granodiorite porphyry disseminated in quatz veinlet molybdenite + quartz + pyrite;
B-Mo-06-1 hornfelsed tuff sandstone thin film in fracture molybdenite
B-Mo-08 light-green altered granodiorite porphyry thin film in fracture molybdenite
B-Mo-401 light-green altered granodiorite porphyry cloddy in quatz-carbonate veinlet molybdenite + quartz + calcopyrite *+ pyrite + calcite
B-Mo-402 light-green altered granodiorite porphyry cloddy in quatz-carbonate veinlet molybdenite + quartz + calcopyrite + pyrite + calcite
B-Mo-403 light-green altered granodiorite porphyry cloddy in quatz-carbonate veinlet molybdenite + quartz + calcopyrite + pyrite + calcite
B-Mo-404 light-green altered granodiorite porphyry cloddy in quatz-carbonate veinlet molybdenite + quartz + calcopyrite *+ pyrite + calcite
B-Mo-405 light-green altered granodiorite porphyry cloddy in quatz-carbonate veinlet molybdenite + quartz + calcopyrite + pyrite + calcite
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1280 large-radius SIMS at the Institute of Geology and Geophysics,
Chinese Academy of Sciences (IGGCAS). The detailed analytical pro-
cedures can be found in Li et al. (2010a). The 2°*Pb and 2°’Pb correc-
tion methods were used for individual analyses, and an average
206ph, /238 age with 2 o or 95% confidence level was calculated using
ISOPLOT 3.0 (Ludwig, 2003). To monitor the external uncertainties of
SIMS U-Pb zircon dating calibrated against the Plesovice standard, an
in-house zircon standard Qinghu was alternately analyzed as an un-
known together with other unknown zircons. Nine measurements on
the Qinghu zircon yielded a concordia age of 160 = 1 Ma, which was
identical within error to the recommended value of 159.5 * 0.2 Ma (Li
et al., 2013). Measured 20/*°0 values were normalized to the Vienna
Standard Mean Ocean Water composition (VSMOW,
180,10 = 0.0020052). The instrumental mass fractionation factor
(IMF) was corrected using the Penglai zircon standard with a 8%
value of 5.3%o. A second zircon standard Qinghu was analyzed as an
unknown to ascertain the veracity of the IMF. Nineteen measurements
of the Qinghu zircon yielded a weighted mean §'%0 of 5.4 + 0.2%o,
consistent with the reported value of 5.4 + 0.2%o (Li et al., 2013).
Zircon Hf isotopic measurements were carried out in situ using a Nep-
tune MC-ICP-MS equipped with a 193 nm ArF excimer laser ablation
system at IGGCAS. Detailed analytical procedures were described in Wu
et al. (2006). The zircon Mud Tank was used as a standard reference
material during routine analyses; its weighted mean 7SHf/!””Hf ratio
of 0.282507 + 26(2 SD, n = 14) was indistinguishable from that ob-
tained by Woodhead et al. (2004) (*”®Hf/*77Hf = 0.282507 * 6); A
second zircon standard Penglai was analyzed as an unknown sample
yielding a '7®Hf/*7”Hf ratio of 0.282915 + 21 (2 SD, n = 7), consistent
with the reported value of 0.282906 = 0.0000010 within error (Li
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et al., 2010b). The Hf-O analyses for the zircons were obtained using
the same mounts as used for U-Pb dating. Generally, if the grain was
large enough, we ran the Hf-O analyses near the U-Pb spot; otherwise,
on top of the U-Pb site.

Nine molybdenite samples for Re-Os analysis were selected from
the mine dump of the orebody II. Molybdenite occurs in fractures or
quartz veins within various host rocks, from hornfels tuff sandstone to
granite aplite and weakly-strongly altered granodiorite (Table 1).
Molybdenite veins obviously cut the agglomerated and vein quartz
(Fig. 5), reflecting a later forming feature than the gold mineralization.
When controlled by fractures, molybdenite usually develops by itself,
but when it occurs in hydrothermal veins, associated minerals are
composed mainly of quartz and calcite, with minor chalcopyrite and
pyrite (Fig. 5). Molybdenite mineral separates were produced by rough
crushing and subsequent handpicking, approximately 40-60 mesh size
fraction. All Re-Os chemistry and analyses were performed at the
Re-Os Laboratory in the Key Laboratory of Mineral Resources, IGGCAS.
The details of the chemistry and measurement procedure are described
by Jin et al. (2010) and Jin et al. (2013).

5. Results
5.1. Zircon U-Pb dating

Most zircons in the granodiorite porphyry are relatively integrated,
with average diameters of 100 um. They also show typical oscillatory
zoning with variable CL intensity, indicating their magmatic affinity
(Fig. 6a). In addition, a few grains have relatively blurry and dark lu-
minescence, suggesting metasomatism, which was also confirmed by

Stronga ters d.
porph

* Mot vein._ .

s

Fig. 5. Molybdenite occurrences in the Bilihe deposit. (a) Thin film-shaped molybdenite (Mot) cuts through agglomerated quartz along with a fracture; (b)
Molybdenite-quartz vein cuts off an auriferous quartz vein in light-green strongly altered porphyry; (c) Thin film-shaped molybdenite is distributed in the granite
aplite; (d) Molybdenite—quartz vein crosscuts quartz veins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 6. Zircon U-Pb concordia diagrams for granodiorite porphyry (a) and
granite aplite (b).

U-Pb analyses. Zircons in granite aplite share similar features with
magmatic grains, showing typical oscillatory zoning (Fig. 6b). The
greatest difference compared with the former is the shape; most of the
grains are elongated columnar or fragmentary, with aspect ratios of
1:2-1:5.

A total of 23 analyses on 23 grains (Table 2) were determined for
granodiorite porphyry. They clustered into two populations on the
concordia diagram, although they had indistinguishable Th/U ratios
ranging from 0.40 to 1.03. Five zircon grains showing metamorphic CL
images define a concordia age of 445 + 6 Ma (MSWD = 1.3; not
shown), representing the age of ancient crustal rocks in this area. The
remaining grains yielded relatively concentrated apparent 2°°Pb/?%8U
ages and had variable concentrations of U and Th, ranging from 148 to
655ppm and 75 to 579 ppm, respectively, with an exception of
1152 ppm and 1190 ppm; Th/U ratios vary from 0.50 to 0.89, with an
average ratio of 0.67, with an exception of 1.03. A concordia age of
269 = 2Ma (MSWD = 0.4; Fig. 6a) should represent the crystal-
lization time of the granodiorite porphyry, which constrains the upper
limit time of gold deposition.

A total of 24 analyses on 24 grains were determined for granite
aplite and gave scattered U and Th concentrations of 279-2504 ppm
and 114-1318 ppm, respectively, with relatively concentrated Th/U
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ratios of 0.16-0.55, and almost without Pb loss. A concordia age of
270 = 2Ma (MSWD = 0.1; Fig. 6b) should represent the crystal-
lization time of the granite aplite, which is similar to the formation age
of the gold-related intrusion within error.

5.2. Zircon Hf-O analyses

Thirty-three in situ Hf-O isotope analyses were performed on the
same zircon zones as the U-Pb analyses. From the data set in Table 2,
445 Ma zircons from the granodiorite porphyry have lower '7®Hf/*””Hf
ratios than 270 Ma grains (0.282451-0.282701 VS.
0.282755-0.282934, respectively), but have no obvious distinction in
176Lu/Y7Hf. They all show positive ey values (3.1-6.9 vs. 5.2-11.3,
respectively), excepting one 445Ma grain with a value of -1.9. The
calculated Hf model ages (TDM1 and TDM2) for the 445 Ma zircons
range from 790 to 1136 Ma and 883-1136 Ma, respectively, and for the
270 Ma ones, from 465 to 694 Ma and 513-823 Ma, respectively. The
granodiorite porphyry has higher ey (t) values and younger model ages
than the 445 Ma crustal rocks, likely representing their different magma
reservoirs. Meanwhile, the granite aplite has relatively concentrated
176Hf/177Hf ratios of 0.282651-0.282766, corresponding to positive ey
(t) values of 1.6-5.6. The calculated Hf model ages (TDM1 and TDM2)
range from 680 to 838 Ma and 803 to 1011 Ma, respectively, similar to
the model ages for gold-related intrusions.

The investigation of O isotopes shows that from the 445 Ma cap-
tured zircons to the 270 Ma and 269 Ma crystallized ones, §'%0 values
have no obvious difference, ranging from 6.20%o to 7.63%o, which are
higher than the modern mantle-like 8'0 value of 5.3 *+ 0.6%o (Valley
et al., 1998). A 8'80,con-rich source should have been involved in the
evolution of the ore-forming magma.

5.3. Molybdenite Re-Os analyses

In the field, two occurrences of molybdenite can be recognized,
including thin films and coarse grains (Table 3). The former is con-
trolled by fractures in various host rocks, while the latter with a size up
to several centimeters is found in hydrothermal quartz veins where
sulfides (e.g., chalcopyrite and pyrite) are also present. As shown in
Table 3, the contents of Re in thin films molybdenite are obviously
lower than those in coarse grains of molybdenite (averages of 1005 ppm
vs. 2332 ppm, respectively), and similarly for '®’Re and '%”0Os (averages
of 632 ppm vs. 1466 ppm and 2830 ppb vs. 6551 ppb, respectively),
indicating a positive relationship between grain size and enrichment in
Re and Os. However, they all yield similar model ages from 266 to
271 Ma, with a weighted mean age of 268 + 1Ma (Fig. 7). When
plotted on the '870s vs. '®Re correlation diagram, an isochron age of
268 * 1Ma can be regressed, with a large error initial **”0s value of
5.1 = 5.9 (MSWD = 0.58, Fig. 7). Hence, we suggest that 268 Ma best
represents the age of molybdenite mineralization, constraining the
lower limit time of gold deposition.

6. Discussion

With regard to the genesis of the Bilihe deposit, Yang et al. (2015)
emphasized its magmatic origin by means of detailed petrographic
observation on gold occurrences and melt inclusions in the dendritic
quartz. There is no doubt that this high Au grade “gold core” indeed
existed in the orebody II likely related to the high-temperature den-
dritic quartz, yet it only accounts for nearly one third in terms of the
total Au reserve of orebody II, and most of the gold occurs within the
hydrothermal banded quartz veins. Additionally, a number of gold
grains in the dendritic quartz were found within micro-fracture that
only can be recognized under CL image (see Appendix A). Clearly, these
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Table 2 (continued)

Oxygen isotope

Hf isotope

Sample
No.

20

Tpmz2(Hf) 380 (%0)

Tow (HI)

fLu/ Hf

20

ep(t)

20

17613£/177.

Hf

17614,177.

Hf

176y}, 177

Hf

0.2
0.2

7.34
7.10
7.36
7.36
7.28
7.36

988
897
952
863
825
812

823
750
795
727
698
690

-0.98
-0.99
-0.98
-0.98
-0.98
-0.98

0.7

2.0
3.8
2.7

4.5

21

0.282665
0.282713
0.282684
0.282734
0.282755
0.282762

0.0006
0.0003
0.0005
0.0006
0.0007
0.0008

0.0189
0.0096
0.0164
0.0188
0.0218
0.0266

BL4-5-15

0.6
0.7
0.9
0.9

17
20
25

BL4-5-16

0.2

BL4-5-17

0.2
0.3

BL4-5-18

5.2
5.5

24
28

BL4-5-19

0.3

1.0

BL4-5-20
BL4-5-21

BL4-5-22
BL4-5-23
BL4-5-24

1.6 0.9 -0.99 838 1011 7.2 0.2

24

0.0004 0.282651

0.0142
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gold are secondary rather than primary, and thus, the reserve of this
“gold core” should be overestimated. Moreover, the potassic alteration
is developed in the deep part, forming secondary biotite and K-feldspar
(see Appendix A), and usually overprinted by the later alterations.
These features are typical of general porphyry Cu—Au-Mo deposits. On
the whole, the Bilihe deposit is supposed to be a porphyry Au deposit
and more attention should be paid to the formation process of mag-
matic Au as Yang et al. (2015) considered.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jseaes.2018.07.016.

Porphyry gold deposits as a special and potentially economic gold
type have attracted considerable attention. In general, Miocene is the
dominant period for porphyry gold deposits. For the Bilihe deposit, the
porphyry orebody II occurs in the inner contact zones of porphyry in-
trusions and is characterized mainly by net vein mineralization, with
minor dendritic, agglomerated auriferous quartz. In the open pit, two
types of intrusions have been identified, including granodiorite and
granite aplite, both of which have been cut across by the auriferous
quartz veins. Hence, the crystallization age of 269 Ma of these intru-
sions represents the upper limit of gold mineralization. Meanwhile,
molybdenite veins crosscut these intrusions and various auriferous
quartz veins and thus, the molybdenite Re-Os ages suggest that pre-
cipitation of gold was older than 268 Ma. Therefore, the gold miner-
alization age of the Bilihe deposit can be constrained at ca. 269 Ma.

Both zircon Hf and O isotopes are useful tools to trace the magma
source. Because zircon has very low Lu/Hf ratios (commonly < 0.002)
and virtually negligible 17°Hf/*77Hf isotopes due to 7°Lu decay, zircon
roughly preserves the initial 7SHf/'’’Hf ratio inherited from the
magma at the time of formation (Patchett et al., 1982; Wu et al., 2007).
Oxygen isotopes have been extensively employed to trace magma
sources and constrain the history of mixing with crustal material.
Magmas with no crustal input generally have uniform oxygen isotopes
that are distinct from magmas that assimilated or were generated di-
rectly from crustal sources.

The zircon ey (t) values of granite aplite (1.6-5.6) and granodiorite
(5.2-11.3) is suggestive of the involvement of older crust to mantle-
derived magmas. It should be noted that ey (t) values of the former are
more evolved than the latter, suggesting a greater input of a crustal
component to the magmatism. Moreover, the higher 8'80 values of
6.20-7.63%o relative to the mantle also reflect a contribution of crustal
material involved (Fig. 8a). Furthermore, the Hf-O isotope correlations
may be plausibly explained by the mixing of components between the
continental crust and mantle materials. In the 8'80 vs. g (t) diagram
(Fig. 8b), the samples lie on a mixing line between MORB and ancient
continental crust end members, showing that continental crust and
depleted mantle contributed ~50% of the zircon Hf and O isotope
values, respectively. Therefore, the Bilihe magma was likely generated
by partial melting of the metasomatized mantle coupled with the as-
similation of crustal materials (such as the Bainaimiao Group) during its
ascending.

It has been accepted that in the Central Asian Metallogenic Domain
(CAMD), there are multiple porphyry metallogenic events occurring
between 500 and 100 Ma, likely due to the subduction of the Paleo-
Asian and Paleo-Pacific oceanic slabs and the destruction of the North
China Craton (Gao et al., 2017 and references therein). In the 880 vs.
egr (t) diagram, including data from other mineralized porphyries in the
CAMD (Fig. 8a), it can be seen that much mantle material was involved
in the Cu-Au-Mo mineralization in the western CAMD, whereas in the
eastern to northeastern CAMD, older crustal contamination played an
increasingly important role in Cu-Mo-related magma. This difference
may imply that from west to east in the CAMD, more microcontinent
blocks were involved in the accretionary orogenic processes and the
metallogenic events.

Thus far, whether the late Permian represents the timing of the final
closure of the Paleo-Asian Ocean is still controversial (Xiao et al., 2003;
Zhang et al., 2009b and references therein). Based on geochemical
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Table 3
Molybdenite Re-Os isotopic results of the Bilihe gold deposit.

Journal of Asian Earth Sciences xxx (XxxX) XXX—-XXX

Sample Weight (g) Re (ppm) lo 87Re (ppm) lo 1870 (ppb) lo Age (Ma) lo
B-Mo-101 0.00032 1984 18 1247 11 5578 36 268 4
B-Mo-06 0.00697 202 2 127 574 4 271 4
B-Mo-06-1 0.00305 199 2 125 1 562 5 270 4
B-Mo-08 0.00017 1635 11 1027 7 4606 31 269 4
B-Mo-401 0.00044 2408 32 1514 20 6735 60 267 5
B-Mo-402 0.00060 2570 27 1615 17 7179 56 266 4
B-Mo-403 0.00023 740 6 465 4 2076 13 267 4
B-Mo-404 0.00025 3795 38 2385 24 10,744 71 270 4
B-Mo-405 0.00024 2148 16 1350 10 6022 39 267 4
7 20
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Fig. 7. Molybdenite Re-Os isochron and weighted mean plots of model ages . .
(insert) from the Bilihe deposit. T Ancient continental crust
O
characteristics of the porphyry intrusions at the Bilihe deposit, Liu and 8
Nie (2015) favored a late stage of closure of the Paleo-Asian Ocean,
whereas Yang et al. (2016) employed a southward subduction setting to o 8
interpret the formation of the Bilihe intrusions. By comparison with e
formation settings where other porphyry Au deposits were formed in
worldwide, it is noted that a series of gold mineralization in the Mar- 6 Lk
icunga belt was followed immediately by periods of crustal thickening MS)RB
. . X . Mantle value 5.3£0.6%o
associated with the dramatic tectonic changes as the Nazca plate sub-
duction in the Central Andes (Vila and Sillitoe, 1991; Kay et al., 1994;
Muntean and Einaudi, 2000), and that Harangi et al. (2007) considered 4 _— e
that the magmas ponded beneath the thick continental crust and in- -30 -20 -10 0 10 20
itiated melting in the lower crust accounting for the formation of the &y (1)

Javorie ore-related porphyry in Slovakia. Therefore, it seems that por-
phyry gold deposits favor a thickened crustal setting. This crustal
thickening model related to the collisional intermission of the Paleo-
Asian Ocean should also be useful to interpret the formation setting of
the Bilihe deposit, as well as the evidence of captured older zircons and
Hf-O isotopes, which imply older crustal contamination taking part in
the Bilihe gold mineralization.

7. Conclusion

This study demonstrates that the isotopic dating of porphyry gold
mineralization can place constraints on the ore genesis. The Zircon
U-Pb ages of the granodiorite porphyry and granite aplite indicate that
the gold mineralization was younger than 269 Ma. Molybdenite from
later molybdenite veins has a Re-Os age of 268 Ma. Hence, the
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Fig. 8. Zircon age vs. ey (t) (a) and ey (t) vs. 8'%0 diagrams (b). a-showing
Hf-O data of porphyry Cu-Au-Mo deposits in the central Asian metallogenic
domain (CAMD), compiled from Gao et al. (2017). Mantle 8'0 value of
5.3 = 0.6%o is after Valley et al. (1998).

porphyry gold mineralization can be precisely constrained at ca.
269 Ma. Hf-O isotopes show that the ore-forming magmas were derived
from partial melting of the metasomatized mantle coupled with ex-
tensive contamination by recycled crustal materials.
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