

**Inland Waters** 



ISSN: 2044-2041 (Print) 2044-205X (Online) Journal homepage: http://www.tandfonline.com/loi/tinw20

## Spatial variation of nitrogen cycling in a subtropical stratified impoundment in southwest China, elucidated by nitrous oxide isotopomer and nitrate isotopes

Fu-Jun Yue, Si-Liang Li, Cong-Qiang Liu, Khan M.G. Mostofa, Naohiro Yoshida, Sakae Toyoda, Shi-Lu Wang, Shohei Hattori & Xiao-Long Liu

**To cite this article:** Fu-Jun Yue, Si-Liang Li, Cong-Qiang Liu, Khan M.G. Mostofa, Naohiro Yoshida, Sakae Toyoda, Shi-Lu Wang, Shohei Hattori & Xiao-Long Liu (2018) Spatial variation of nitrogen cycling in a subtropical stratified impoundment in southwest China, elucidated by nitrous oxide isotopomer and nitrate isotopes, Inland Waters, 8:2, 186-195, DOI: 10.1080/20442041.2018.1457847

To link to this article: <u>https://doi.org/10.1080/20442041.2018.1457847</u>



Published online: 14 Jun 2018.

Submit your article to this journal 🗹

Article views: 46



View Crossmark data 🗹



# Spatial variation of nitrogen cycling in a subtropical stratified impoundment in southwest China, elucidated by nitrous oxide isotopomer and nitrate isotopes

Fu-Jun Yue <sup>(D)</sup>,<sup>a,b</sup> Si-Liang Li,<sup>c,d</sup> Cong-Qiang Liu,<sup>a</sup> Khan M.G. Mostofa <sup>(D)</sup>,<sup>d</sup> Naohiro Yoshida <sup>(D)</sup>,<sup>e</sup> Sakae Toyoda,<sup>e</sup> Shi-Lu Wang <sup>(D)</sup>,<sup>a</sup> Shohei Hattori,<sup>e</sup> and Xiao-Long Liu<sup>f</sup>

<sup>a</sup>State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; <sup>b</sup>School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK; <sup>c</sup>State Key laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China; <sup>d</sup>Institute of Surface-Earth System Science, Tianjin University, Tianjin, China; <sup>e</sup>Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; <sup>f</sup>Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China

#### ABSTRACT

Estimates of biogeochemical processes and the proportion of N<sub>2</sub>O production in the aquatic system of impoundments are important to quantify nitrogen cycling, particularly during stratification periods. In this study, we used the dual isotopes of nitrate (NO<sub>3</sub>) and nitrous oxide (N<sub>2</sub>O) to estimate the nitrogen dynamics and contributions to N<sub>2</sub>O production and reduction at varying zones in Lake Baihua, located in southwest China. The lake was strongly stratified during the sampling period, with the oxic zone from the surface to 12 m and the anoxic zone from 12 to 21 m. The assimilation shifted  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub> significantly in the epilimnion (0–4 m), and denitrification contributed to the shift in the low dissolved oxygen zone of the hypolimnion. The semiquantitative analysis showed that nitrification accounted for >67% of the N<sub>2</sub>O production between 0 and 4 m while higher nitrification between 15 and 21 m was >43%. The mechanism responsible for the vertical variations should be considered in the estimation of nitrogen cycling and N<sub>2</sub>O production in subtropical stratified impoundments.

### Introduction

Lakes are considered a large global sink for reactive nitrogen (Pearson et al. 2012, Finlay et al. 2013). Nitrogen (N) dynamics in lake ecosystems involve a series of complex processes, such as external inputs and internal biogeochemical cycles; however, the effects of freshwater N removal are still poorly understood (Mayer and Wassenaar 2012, Finlay et al. 2013, Wenk et al. 2014). In general, nitrate (NO<sub>3</sub><sup>-</sup>) is the dominant form of dissolved inorganic nitrogen (DIN) entering aquatic environments. Globally, concentrations of  $NO_3^-$  are steadily increasing in aquatic systems, which has been attributed to increasing surface run-off, river damming, aquaculture, N deposition, agricultural, and other landbased activities (Sterner 2011, Mostofa et al. 2013, North et al. 2013, Beusen et al. 2016). High levels of  $NO_3^-$  in freshwaters are detrimental to human and ecosystem health and sustainability (Ohte et al. 2010, Finlay et al. 2013, Beusen et al. 2016).

Lakes are most likely to become important N sinks under stratified conditions, especially for anoxic bottom water. Conditions in the surficial bottom sediments of lakes that favor denitrification processes are due to high organic matter inputs from the overlying water column and strong dissolved oxygen (DO) gradients. Denitrification processes in stratified lakes primarily occur in the redox transition zone, which is largely controlled by the oxygen supply via hydrodynamic processes and the consumption of oxidants due to organic matter degradation (Pearson et al. 2012, Wenk et al. 2014). Nitrous oxide (N<sub>2</sub>O) can be produced by the N cycle as a by-product of hydroxylamine (NH<sub>2</sub>OH) oxidation during nitrification processes as well as during incomplete denitrification processes (Sasaki et al. 2011, Wenk et al. 2016) and can contribute to global warming and stratospheric ozone depletion (Well et al. 2005).

Stable isotope analysis, particularly the dual isotope approach of  $NO_3^-$  and  $N_2O$ , is a powerful tool that can provide critical insights into N transformation dynamics in lakes (Spoelstra et al. 2001, Xiao and Liu 2004, Finlay et al. 2007, Ohte et al. 2010, Sasaki et al. 2011, Mayer and Wassenaar 2012, Wenk et al. 2014, 2016). For example, the values of dual  $NO_3^-$  isotopes would increase during biological processes in aquatic environments, such as

ARTICLE HISTORY

Received 18 July 2017 Accepted 1 February 2018

**KEYWORDS** denitrification; N<sub>2</sub>O isotopomer; nitrate isotopes; nitrification; stratified lake uptake by algae or denitrification by bacteria. Previous studies showed that the  $\delta^{15}$ N and  $\delta^{18}$ O isotopic ratio was maintained at 1:1 during assimilation (Granger et al. 2010, Mayer and Wassenaar 2012) but increased to ~2:1 during denitrification (Mayer and Wassenaar 2012, Wenk et al. 2014).

The <sup>15</sup>N-site preference (SP), namely the difference in isotopic <sup>15</sup>N between the central ( $\alpha$ ) and terminal ( $\beta$ ) positions within the asymmetric N<sub>2</sub>O molecule, can be defined as SP =  $\delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$  (Toyoda and Yoshida 1999). The characteristic isotopic signature of N<sub>2</sub>O can be used to determine different sources of N<sub>2</sub>O and its microbial pathways (Yoshida et al. 1989, Toyoda et al. 2005, Sutka et al. 2006, Yamagishi et al. 2007, Wenk et al. 2016). Previous studies have used SP as a diagnostic tool to elucidate source processes of N2O, such as nitrification and denitrification (Sutka et al. 2003, Baggs 2008, Frame and Casciotti 2010, Santoro et al. 2011, Heil et al. 2014). For example, the SP signature of  $N_2O$  via nitrite  $(NO_2^-)$  or  $NO_3^-$  reduction, whether by nitrifying or denitrifying bacteria, can be as low as -10.7%, clearly lower than that from N<sub>2</sub>O produced by nitrification (e.g., ammonia and hydroxylamine oxidation, up to 37.5‰; Sutka et al. 2006, Frame and Casciotti 2010). In addition, fungal denitrification yields N<sub>2</sub>O with an SP value of 37‰, which is close to nitrification but considerably different from that produced during bacterial denitrification (Sutka et al. 2008). Finally, pure culture studies provide compelling evidence suggesting that SP values of 0‰ or less are indicative of N<sub>2</sub>O produced by denitrifying bacteria while SP values of 30.6%-7.5% indicate N<sub>2</sub>O produced from hydroxylamine oxidation or fungal denitrification (Sutka et al. 2006, Frame and Casciotti 2010, Wu et al. 2016).

Hydroelectric impoundments are widely distributed in southwest (SW) China. High levels of N<sub>2</sub>O and its emission to the atmosphere have been found from those reservoirs (Liu et al. 2011). Constructed in 1966, Lake Baihua (BH) is a typical hydroelectric impoundment in SW China with a series of 8 dams along the Maotiao River, located in the upper reaches of Wujiang, a tributary of the Changjiang (Yangtze) River of China. BH is a eutrophic lake with a high content of dissolved organic matter (up to 330 µM C) and high primary production with chlorophyll concentration up to 66 µg/L (Fu et al. 2010). Previous studies showed that the production and consumption of N<sub>2</sub>O in BH strongly accord with the decomposition of organic matter during lake stratification, and the emission flux of N<sub>2</sub>O is high (2.4 µmolm<sup>2</sup>/h; Wang et al. 2004, Liu 2010). However, the proportion of N<sub>2</sub>O production from various processes is not well constrained in hydroelectric impoundments of SW China. Relatively high concentrations of NO<sub>3</sub>

and N<sub>2</sub>O along with high contents of dissolved organic matter in BH make it ideal for studying N processes in subtropical impoundments, which can provide vital information for understanding processes for many lakes with similar conditions around the globe. To understand the processes leading to the production of N<sub>2</sub>O, however, it is imperative to explore the N cycle in the whole water column. As such, the goal of this study was to assess NO<sub>3</sub><sup>-</sup> and N<sub>2</sub>O transformation in this subtropical lake during summer stratification periods. We report new measurements to estimate the concentration and isotopic composition of NO3 and N<sub>2</sub>O in the water column to assess their spatial variation as well as to identify their fate. The major transformations of nitrification and denitrification contributed to N<sub>2</sub>O production and reduction in different water depths were also estimated based on SP values.

### **Study site**

BH is located near Guiyang, SW China, at an altitude of ~1200 m a.s.l. The mean annual precipitation in the area is ~1200 mm. The valleys upstream and downstream of BH are both long and narrow, but the middle section of the lake is wide, with >100 islands distributed in the lake (Fig. 1). Another hydroelectric impoundment, Lake Hongfeng (HF) built in 1960, is situated upstream of BH. The water discharged from HF (30.2 m<sup>3</sup>/s) is the primary water source for BH (38 m<sup>3</sup>/s; Liu 2010). These 2 impoundments serve to control floods and provide water for electrical power generation, industrial and



**Figure 1.** Lake Baihua sampling sites, denoted by circles. The gray areas within the lake represent islands.

agricultural water supply, and recreation. The water level fluctuates between 1240 m (normal level) and 1227.5 m (storage level) a.s.l. in HF, and between 1195 m and 1188 m a.s.l. in BH, influenced by engineered water control and climate (Liu 2010). Stratification can be observed frequently between April and August in BH (Wang et al. 2004).

### **Methods**

Water sampling was conducted in BH during August 2013. To understand the spatial variations in N cycles within the entire lake system, 4 sampling sites were chosen along the lake (Fig. 1). Specifically, the first sampling site (BH<sub>1</sub>) was located at the upper reach, the second (BH<sub>2</sub>) was near one of the tributaries located in the middle section, the third (BH<sub>3</sub>) was located in the lower reach, and the fourth (BH<sub>4</sub>) was located  $\sim 0.5$  km upstream of the dam. Water flow was from BH1 to BH<sub>4</sub> (Fig. 1). Profiles of temperature (T), DO, and conductivity (EC) were obtained with an automated multiparameter monitoring instrument (Yellow Springs Instruments: YSI 6600 v2). A 5-L Niskin water sampler was used to collect water samples at the same depths at which T, DO, and EC were measured. Water samples were filtered through 0.45 µm membrane filters (Millipore) and kept at 4 °C in the dark until analysis. Concentrations of ammonium (NH<sub>4</sub><sup>+</sup>), NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, and total dissolved nitrogen for the filtered samples were analyzed using an automatic flow analyzer (SKALAR Sans Plus Systems) within 48 h. The concentrations of dissolved organic carbon (DOC) were analyzed as CO<sub>2</sub> by the wet oxidation method (Aurora 1030). Water samples were first acidified with 5% (vol/vol) of H<sub>3</sub>PO<sub>4</sub> to remove all inorganic carbon, and then 10% Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> was added to oxidize organic carbon to inorganic carbon.

The NO<sub>3</sub><sup>-</sup> isotopes of water samples were measured by the denitrifer method (McIlvin and Casciotti 2011). Four international NO<sub>3</sub><sup>-</sup> (USGS-32, USGS-34, USGS-35, and IAEA-N3) and 2 experimental reference materials were used for the calibration. The precision for the samples analyzed in duplicates was 0.3‰ for  $\delta^{15}$ N and 0.5‰ for  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup>.

Water samples for  $N_2O$  isotopomer analysis were directly sampled into 120 mL glass bottles sealed with butyl rubber stoppers. The samples were injected with 0.6 mL of HgCl<sub>2</sub> solution (5%) and stored at 4 °C until analysis. Bulk  $N_2O$  isotope and isotopomer analyses were conducted at the Tokyo Institute of Technology, Japan, using an online analytical system with a stainless steel gas transfer line, pre-concentration traps, chemical traps for removal of H<sub>2</sub>O and CO<sub>2</sub>, and a gas chromatograph/isotope ratio mass spectrometer (MAT 252; Thermo Fisher Scientific Inc.; Toyoda and Yoshida 2016). The detailed description of the calibrated method and process for measuring N<sub>2</sub>O concentrations and isotopomer can be found in Toyoda and Yoshida (2016). The  $\delta^{15}$ N and  $\delta^{18}$ O were reported relative to atmospheric N<sub>2</sub> and V-SMOW, respectively.

### Results

Because of the shallow depth at BH<sub>1</sub>, the depth profiles of T, DO, and DOC (Fig. 2) were limited to 10 m. The T profiles in the epilimnion zone were similar at all 4 sites (Fig. 2a); however, below the thermocline (~6-10 m), the depth-profiles of T remained similar between the 2 middle sites (i.e., BH<sub>2</sub> and BH<sub>3</sub>) but were notably different at the other 2 sites. The mixing discharge at site BH<sub>4</sub>, with a constant T value between 15 and 21 m, may be caused by continuous water flow at the suboxic hypolimnion zone toward the dam. The DO values ranged from 223 to 338 µmol/L (µM) from the surface to the depth of 4 m and then decreased rapidly between the depth of 4 and 8 m (Fig. 2b). Low DO (<20  $\mu$ M) was detected at 10 m at BH<sub>1</sub> and below 12 m at the other 3 sites. Thus, the oxic zone extended from the surface to about 12 m, and the anoxic zone was roughly from 12 m to the lake bottom. In addition, DO values between the surface and 6 m were higher at the upper section of the lake (i.e.,  $BH_1$ ) and gradually decreased toward the lower reaches (i.e., BH<sub>4</sub>). This decreasing trend in DO along the water flow direction was probably caused by O<sub>2</sub> degassing and consumption of oxygen by degradation of organic matter. As the major recharge source of BH, the water discharged from HF with low T (13.7 °C) can increase dissolution of O<sub>2</sub> into the water, but the increased temperature of water during the water flow may lead to O<sub>2</sub> degassing. Although DOC concentrations were relatively constant



**Figure 2.** Water column profiles of (a) temperature, (b) DO, and (c) dissoved organic carbon in Lake Baihua during August 2013.



**Figure 3.** Water column profiles of (a) dissolved NO<sub>3</sub><sup>-</sup>, (b) DON, (c) NH<sub>4</sub><sup>+</sup>, (d) NO<sub>2</sub><sup>-</sup>, (e)  $\delta^{15}$ N–NO<sub>3</sub><sup>-</sup>, and (f)  $\delta^{18}$ O–NO<sub>3</sub><sup>-</sup> in Lake Baihua during August 2013.

at  $BH_4$ , they varied greatly with depth at  $BH_2$  and  $BH_3$ , where higher DOC concentrations were found at deeper depths (Fig. 2c).

The depth profiles of NO<sub>3</sub><sup>-</sup>, dissolved organic nitrogen (DON), NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup>, and dual NO<sub>3</sub><sup>-</sup> isotopes at the 4 sampling sites (Fig. 3) show that the average concentration of NO<sub>3</sub><sup>-</sup> over the depth profile was highest at BH<sub>1</sub> (mean [1 SD] = 119 [24]  $\mu$ M) and decreased in the lower reaches with (86 [47]  $\mu$ M) at BH<sub>2</sub>, (81 [35]  $\mu$ M) at BH<sub>3</sub>, and (85 [17]  $\mu$ M) at BH<sub>4</sub> (Fig. 3a). NO<sub>3</sub><sup>-</sup> concentrations were relatively constant above 4 m, but in the deeper water its concentrations fluctuated greatly with depth and among sites (Fig. 3a).

The average concentration of DON over the depth profile was lower at BH<sub>1</sub> (10.8 [5.5]  $\mu$ M) and increased monotonically from BH<sub>2</sub> (15.9 [8.0]  $\mu$ M) to BH<sub>3</sub> (23.4 [27.6]  $\mu$ M) and BH<sub>4</sub> (33.3 [12.3]  $\mu$ M; Fig. 3b). DON at BH<sub>2</sub> showed the greatest fluctuation with depth among

all sampling sites, with higher values at 4, 12, and 21 m. Significant negative relationships between DON and  $NO_3^-$  existed at all sites except for BH<sub>2</sub>, which were indicative of the contribution of  $NO_3^-$  from degradation of organic N (Fig. 4a).

 $NH_4^+$  and  $NO_2^-$  were minor forms of DIN while  $NO_3^$ and DON were the dominant forms of dissolved N (Fig. 3c). The concentrations of  $NH_4^+$  and  $NO_2^-$  were low (<4  $\mu$ M) for most depth profiles. The  $NH_4^+$  concentration was highest at 6 m at BH<sub>1</sub> and 2 m at BH<sub>4</sub> (Fig. 3c), and  $NO_2^-$  concentration was highest at 12 m at BH<sub>2</sub> (Fig. 3d).

The isotopic composition of  $NO_3^-$  varied markedly with depth at all 4 sites (Fig. 3e). The average  $\delta^{15}N$  of  $NO_3^-$  over the depth profile increased from 15.2% (2.4‰) at BH<sub>1</sub> to 20.3‰ (5.1‰) at BH<sub>2</sub> and 23.0‰ (9.1‰) at BH<sub>3</sub> and then decreased slightly to 21.8‰ (5.8‰) at BH<sub>4</sub>. The average  $\delta^{18}O$  of  $NO_3^-$  over the



**Figure 4.** The relationship between (a) NO<sub>3</sub><sup>-</sup> and DON and between (b)  $\delta^{15}$ N-NO<sub>3</sub><sup>-</sup> and  $\delta^{18}$ O-NO<sub>3</sub><sup>-</sup> in Lake Baihua during the summer stratified period.

depth profile varied from 6.7% (1.6%) at BH<sub>1</sub> to 6.8%(6.1‰) at BH<sub>2</sub>, 7.8‰ (5.1‰) at BH<sub>3</sub>, and 6.1‰ (2.9‰) at BH<sub>4</sub>. The NO<sub>3</sub><sup>-</sup> isotope peaks occurred at the top of the anoxic zone (between 4 and 6 m). However,  $\delta^{18}$ O of  $NO_3^-$  tended to decrease with depth, and negative values were measured at 15 and 18 m at BH<sub>2</sub> and BH<sub>3</sub>, respectively. Increasing  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> with decreasing NO<sub>3</sub> concentrations were also observed in a few water samples taken from the epilimnion and in most of the water samples taken from the hypoxic hypolimnion. The highest  $\delta^{15}$ N value was 40.5‰ at 6 m at BH<sub>3</sub> and the highest  $\delta^{18}$ O value was also observed at the same depth at BH<sub>3</sub> with a value of 16.9‰. In addition, the  $\delta^{15}$ N and  $\delta^{18}$ O values of NO<sub>3</sub><sup>-</sup> were relatively stable from 0 to 8 m at BH1 and below 12 m at BH4, whereas those values fluctuated at BH<sub>2</sub> and BH<sub>3</sub>, closely resembling the trends in NO<sub>3</sub> and DON concentration profiles. A 1:1 slope line existed between  $\delta^{18}$ O of NO<sub>3</sub> and  $\delta^{15}$ N of  $NO_3^-$  for the water samples taken from the depths between 0 and 4 m (Fig. 4b).

The N<sub>2</sub>O concentrations varied substantially among the sampling sites ranging from 15 to 850 nmol/L (nM), and the average values increased from 33.9 (27.4) nM at BH<sub>1</sub>, to 77.1 (81.4) nM at BH<sub>2</sub>, to 213 (274) nM at BH<sub>3</sub> and then decreased to 45.4 (27.5) nM at BH<sub>4</sub> (Fig. 5a). Extreme oversaturation levels (e.g., 1.6–71-fold) of N<sub>2</sub>O with respect to atmospheric equilibrium were detected at different depths. Three water profiles had N<sub>2</sub>O peaks at 8 m, associated with the rapid decrease in DO concentrations (Fig. 5a and 2b). Although the N<sub>2</sub>O peak at BH<sub>4</sub> occurred at 11 m, it occurred at analogous DO concentrations to other depth profiles with high concentrations of N<sub>2</sub>O (Fig. 5a and 2b) and was associated with the lowest bulk  $\delta^{15}$ N (–8.3‰). The highest N<sub>2</sub>O concentration was detected at the bottom of BH<sub>3</sub>, which also had the highest DOC concentration. The stable isotopic composition of  $N_2O$  at BH<sub>1</sub> was relatively constant with depth, except that a peak value occurred at 8 m, which corresponded to the depth of the peak concentration of  $N_2O$  (Fig. 5a–b).

The bulk  $\delta^{15}$ N of N<sub>2</sub>O ranged from -8.3% to 26.9‰ for the 4 water depth profiles. The average values of bulk  $\delta^{15}$ N were 2.8‰ (1.8‰) at BH<sub>1</sub>, 6.8‰ (8.7‰) at BH<sub>2</sub>, 2.0‰ (2.9‰) at BH<sub>3</sub>, and 2.8‰ (9.2‰) at BH<sub>4</sub>. The bulk  $\delta^{18}$ O values of N<sub>2</sub>O ranged from 16.1‰ to 55.1‰ among the 4 depth profiles, and their average values were 26.7‰ (5.3‰) at BH<sub>1</sub>, 36.8‰ (6.8‰) at BH<sub>2</sub>, 31.8‰ (6.0‰) at BH<sub>3</sub>, and 32.9‰ (14.2‰) at BH<sub>4</sub>. The bulk  $\delta^{15}$ N and  $\delta^{18}$ O were higher at 12 m and then decreased to the bottom at BH<sub>2</sub>; however, the bulk  $\delta^{15}$ N decreased from 8 m to the bottom and  $\delta^{18}$ O decreased from 12 m to the bottom at BH<sub>3</sub>.

The average SP values of  $N_2O$  were higher in the upper (29.2‰ [11.1‰] at BH<sub>1</sub>) and lower (33.0‰ [16.8‰] at BH<sub>4</sub>) reaches compared to the 2 middle sites (26.9‰ [9.0‰] at BH<sub>2</sub> and 20.4‰ [9.7‰] at BH<sub>3</sub>). The SP values were higher at 8 and 15 m and subsequently decreased to the bottom for 3 profiles.

### Discussion

# Nitrate transformation and cycling along with its isotopic characteristics in Lake Baihua

Compared to other sites,  $BH_1$  showed higher  $NO_3^-$  concentrations and lower  $NO_3^-$  isotopes at almost all depths, indicating different  $NO_3^-$  sources or different processes. Degradation of organic N (e.g., organic N  $\rightarrow$   $NH_4^+ \rightarrow$   $NO_3^-$ ; mineralization and nitrification), which is primarily released from phytoplankton by both photochemical



Figure 5. Water column profiles of (a)  $N_2O$ , (b)  $\delta^{15}N_{bulk}-N_2O$ , (c)  $\delta^{18}O-N_2O$ , and (d) SP-N<sub>2</sub>O in Lake Baihua during August 2013.

and microbial respiration, can produce  $NH_4^+$  and then  $NO_3^-$ . Significant negative relationships between DON and  $NO_3^-$  at all sites except  $BH_2$  were indicative of the contribution of  $NO_3^-$  from degradation of organic N (Fig. 4a). The isotopic fractionation in these paths is likely to cause the nitrified  $NO_3^-$  to have a lower isotopic signature than that of the primary sources. The terrestrial inputs and high DON concentration in drainage water from the bottom of the lake might result in higher  $NO_3^-$  concentrations at  $BH_1$  than at the other 3 sites.

At the 3 other sites,  $NO_3^-$  isotopes decreased from 12 m to the bottom of the lake subsequent with increased DON concentration. The high concentrations of DON at greater depths might be the result of phytoplankton sinking out of surface waters (Mostofa et al. 2016). Low  $\delta^{18}$ O-NO<sub>3</sub> values might be caused by the oxygen exchange between water and NO<sub>2</sub><sup>-</sup> during nitrification or by the different isotopic value of water oxygen and atmospheric oxygen used during nitrification (Casciotti et al. 2010). N characteristics in deeper water layers (>12 m) suggested that  $NO_3^-$  at those depths was primarily derived from nitrification. Furthermore, dissimilation and denitrification processes may be also involved in the 3 depth profiles and result in higher  $NO_3^-$  isotopes. The 1:1 line between  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> and  $\delta^{15}$ N of NO<sub>3</sub><sup>-</sup> in the 0–4 m depth samples would represent assimilation along with the regeneration of  $NO_3^-$  via nitrification (Fig. 4a; Granger et al. 2010, Mayer and Wassenaar 2012).

Although mineralization and nitrification were the major N-transformations at BH<sub>1</sub>, the NO<sub>3</sub><sup>-</sup> characteristics at the bottom of BH<sub>1</sub> also indicated incomplete denitrification. The decrease in NO<sub>3</sub><sup>-</sup> concentration from 12 m to the bottom of the lake suggested dissimilation or denitrification processes. As one of the 2 reductive N reduction pathways, however, dissimilation mostly occurred in the epilimnion. More specifically, this decrease in NO<sub>3</sub><sup>-</sup> concentrations with depth was caused by denitrification. The mixing between denitrification and nitrification was the major reason for the vertical variation in the NO<sub>3</sub><sup>-</sup> concentration from 12 m to the bottom of the lake, subsequently with relatively low NO<sub>3</sub><sup>-</sup> concentration and isotopes and high DON.

### N<sub>2</sub>O cycling along with its isotopic characteristics in Lake Baihua

The  $N_2O$  concentration and its isotopic composition were the net result of mixing dissolved  $N_2O$  from the upper reaches (drainage water from the bottom of HF) with simultaneous production and reduction of  $N_2O$ .  $N_2O$ reduction has been thought to be more affected by low oxygen levels than other enzyme-regulated steps involved in denitrification. Moreover, enzyme-regulated steps could result in a lag phase between reduction and production of  $N_2O$ , which could possibly lead to a shortterm accumulation of  $N_2O$  (Wenk et al. 2016). High fluctuations of  $N_2O$  concentration in the oxic zone, oxic–anoxic interface, and the anoxic water at depth may be linked to enhanced denitrification rates and subsequent regulation of reduction (stimulated by increased organic matter inputs following spring algal blooms).

The SP values of  $N_2O$  varying between -1.5% and 47.7‰ showed a slight variation in the epilimnion and a more pronounced variation in the hypolimnion, the latter of which was larger than those for other lakes (Sasaki et al. 2011, Wenk et al. 2016). The simultaneous increases in NO<sub>3</sub> and N<sub>2</sub>O concentrations between the surface and 8 m in these 3 profiles, except for at 6 m at BH<sub>3</sub>, indicated N<sub>2</sub>O production by nitrification. Some features can be obviously identified for  $NO_3^-$  and N<sub>2</sub>O. For example, high SP values were found at 4 and 8 m at  $BH_2$  and at 8 m at  $BH_3$  with the  $N_2O$  peak and high SP value, which was interpreted as the result of nitrification processes and notably different from at 6 m at BH<sub>3</sub>. The N<sub>2</sub>O concentration at BH<sub>4</sub> was highest at 11 m, where a minimum bulk  $\delta^{15}$ N-N<sub>2</sub>O (i.e., -8.3‰) occurred, indicating that in situ N<sub>2</sub>O production could occur by either bacterial nitrification or nitrifier denitrification. The SP value was 43.6‰ at the depth of N<sub>2</sub>O production, however, similar to the N<sub>2</sub>O production at 8 m at BH<sub>3</sub>, suggesting an NH<sub>2</sub>OH-derived source of N<sub>2</sub>O rather than nitrifier denitrification. Nitrification was observed for all profiles with the highest peaks for both NO<sub>3</sub> and N<sub>2</sub>O concentrations at 8 m, suggesting a simultaneous occurrence of NO<sub>3</sub> regeneration and N<sub>2</sub>O production by nitrifying microorganisms. The amount of newly produced  $N_2O$  was expected to be controlled by the newly produced NO<sub>3</sub>, if nitrification was related to the N<sub>2</sub>O accumulation in the oxic zone.

Although the isotopic evidence implied that nitrification was responsible for the increased SP values, samples at 6 m at BH<sub>3</sub> with considerably increased NO<sub>3</sub><sup>-</sup> isotope values and decreased SP values could indicate that NO<sub>3</sub><sup>-</sup> and N<sub>2</sub>O mainly originated from denitrification processes. Denitrification was also observed in the anoxic hypolimnion (15 to 21 m) zone with decreased SP signatures and NO<sub>3</sub><sup>-</sup> concentrations, suggesting the increased contribution of denitrification to N<sub>2</sub>O production. The highest DOC concentration observed at the bottom of BH<sub>3</sub> and anoxic zones was conducive to denitrification. Low values of the N<sub>2</sub>O isotopomer (SP = -1.5% and  $\delta^{15}N_{bulk} = -2.1\%$ ) at 21 m at BH<sub>3</sub> indicated that denitrification was responsible for the highest N<sub>2</sub>O concentrations at this depth.

Elucidating the oxygen isotopic characteristics of N<sub>2</sub>O is particularly challenging because its isotopic

composition reflects both source and the tendency for intermediate compounds of N<sub>2</sub>O production (Sutka et al. 2006, Well and Flessa 2008, Zou et al. 2014). The  $\delta^{18}$ O of N<sub>2</sub>O derived from NH<sub>2</sub>OH decomposition might depend on the  $\delta^{18}$ O of O<sub>2</sub> during the first reaction of nitrification if the  $\delta^{18}$ O of N<sub>2</sub>O produced by nitrification and nitrifier–denitrification depended on both the  $\delta^{18}$ O-O<sub>2</sub> and  $\delta^{18}$ O-H<sub>2</sub>O, which would be proportionally affected by the amount of oxygen atom exchange between NO<sub>2</sub><sup>-</sup> and H<sub>2</sub>O. This pattern is consistent with relatively more N<sub>2</sub>O production by nitrifier–denitrification due to a significant decrease in O<sub>2</sub> concentration at deeper layers; thereby, a substantial contribution to the overall  $\delta^{18}$ O-N<sub>2</sub>O came from H<sub>2</sub>O.

# The contribution of nitrification, denitrification, and reduction to $N_2O$

Relatively stable  $N_2O$  concentrations and SP values between the surface and 4 m at BH<sub>1</sub>, BH<sub>2</sub>, and BH<sub>3</sub> implied the homogeneous distribution of  $N_2O$ . The dissolved  $N_2O$  in the upper reaches might partly come from denitrification owing to the outflow from the bottom of HF. The SP signatures at those depths suggested that  $N_2O$  between the surface and 4 m was a mixture of denitrified  $N_2O$  from the upper reaches and nitrified  $N_2O$  in *situ*. The discrepancy of SP signatures between the 2 production pathways can be used to back-calculate the relative contributions of nitrification and denitrification to the  $N_2O$  production according to the following equation:

$$\delta_{\text{measure}} = \delta_{\text{denitrification}} \times (1 - f) + \delta_{\text{nitrification}} \times f, \quad (1)$$

where  $\delta_{denitrification}$ ,  $\delta_{nitrification}$ , and f are denoted as the SP value for denitrification, the SP value for nitrification, and the nitrification contribution, respectively.

To further quantify the contributions of the 2 processes, the SP signature of endmembers should be determined. In this study, the high concentration of  $N_2O$  in the deep water (21 m) at the center of the lake  $(BH_3)$ suggested that denitrification was responsible for the accumulation. The low values of N<sub>2</sub>O isotopomers and the highest N<sub>2</sub>O concentrations in the deep water (21 m, SP = -1.5%) at the center of the lake (BH<sub>3</sub>), which was within the range of pure cultures from -4.0‰ to 1.9‰ (Stuka et al. 2006), can be used as a denitrification signature because of the relatively stable stratification. The SP value of hydroxylamine oxidation or nitrification from pure cultures ranged from 30.6‰ to 37.5‰, and the SP value of 33‰ was characteristic of nitrification (Stuka et al. 2006). We used an SP of -1.5‰ and 33‰ as the characteristic value of denitrification and nitrification, respectively. The contribution of N<sub>2</sub>O production by nitrification and denitrification at BH<sub>4</sub> was not calculated because this site location was close to the dam and the trend of N<sub>2</sub>O isotopic composition significantly varied compared to the other 3 sites. The contribution of nitrification in the epilimnion zone between the surface and 4 m (SP 20.2–27.8‰) was calculated to be between 70% (6.8%), 75% (9.3%), and 67% (5.8%) at BH<sub>1</sub>, BH<sub>2</sub>, and BH<sub>3</sub>, respectively.

As discussed earlier, the relatively low SP value in the hypolimnion zone (15 to 21 m) can be explained by a mixture of nitrification and denitrification processes. Using the same end member information, the portion of the denitrification contribution can be calculated. The results showed that 42% (3.6%) and 57% (41%) of N<sub>2</sub>O were produced by denitrification at BH<sub>2</sub> and BH<sub>3</sub>, respectively, whereas 58% (3.6%) and 43% (41%) of N<sub>2</sub>O were produced by nitrification at BH<sub>2</sub> and BH<sub>3</sub>, respectively. Because the SP value at 21 m at BH<sub>3</sub> was chosen as the end member of denitrification, the denitrification contribution should be responsible for the entire N<sub>2</sub>O production at this depth.

From 6 to 12 m, oxygen concentrations decreased with depth. This decrease may shift the N<sub>2</sub>O production process from nitrification to denitrification and also the increase in the ratio of N<sub>2</sub>O reduction to its production, which may induce an increase in SP value along with  $\delta^{15}N_{N2O}$  and  $\delta^{18}O_{N2O}$  values (Well et al. 2005, Yamagishi et al. 2007, Koba et al. 2009, Wenk et al. 2016). From the various reports of high SP values in aquatic systems, high SP values were characteristic of denitrifying aquatic environments, where N<sub>2</sub>O reduction is favored because N<sub>2</sub>O fluxes are restricted by low gas diffusivity (Well et al. 2005). In this study, no profiles showed a consistent increase in  $\delta^{15}N$ ,  $\delta^{18}O$ , and SP values. Although higher SP values than the pure culture results were observed, N<sub>2</sub>O reduction can be used to explore possible mechanisms for the high values. N<sub>2</sub>O between 6 and 12 m likely resulted from mixing processes, including nitrification and denitrification, and the increase in the ratio of N<sub>2</sub>O reduction. If the contribution of nitrification and denitrification between 6 and 12 m was the same as that between the surface and 4 m, the SP signature should have the same range as the signature between the surface and 4 m (SP 20.2-27.8%). The proportion of N<sub>2</sub>O reduction can be calculated using the following approximate Rayleigh linearization (Yamagishi et al. 2007, Sasaki et al. 2011):

$$\delta_{\text{measure}} = \delta_{\text{original}} + \varepsilon \times \ln(C/C_0), \qquad (2)$$

where  $\varepsilon = {}^{\text{SP}}\varepsilon = -16.4\%$ , which is calculated from the N<sub>2</sub>O reduction in the water column (Yamagishi et al. 2007, Sasaki et al. 2011), and  $\delta_{\text{original}} = \text{SP}_{\text{original}} = 22.9\%$ , which is the average SP signature between the

surface and 4 m at BH<sub>1</sub>, BH<sub>2</sub>, and BH<sub>3</sub>.  $C_0$  and C denoted the original, not reduced, N<sub>2</sub>O concentration and N<sub>2</sub>O concentration after reduction, respectively. Quantitative analysis showed that the pre-existing N<sub>2</sub>O could be reduced within the range of 24% to 77% at BH<sub>2</sub> and BH<sub>3</sub>.

Although we calculated the N<sub>2</sub>O contributions from nitrification, denitrification, and reduction based on the mixing model and Rayleigh linearization, uncertainties might still exist in those calculations. For example, unstable redox conditions between 6 and 12 m might impede the transformation of  $N_2O$  to  $N_2$  (Wenk et al. 2016). Thus, the  $N_2O$  reduction might be overestimated between 6 and 12 m because the SP signature of nitrification can reach up to 37.5% (Frame and Casciotti 2010). The high SP signature implied that nitrification contributions between 6 and 12 m should be higher than between the surface and 4 m. Furthermore, we could not exclude the possibility of contribution of N<sub>2</sub>O reduction between 15 and 21 m, meaning that the quantitative analysis from denitrification between 15 and 21 m might be underestimated. In addition, this calculation ignored the vertical and horizontal diffusion, which might influence the estimation based on the isotopic fractionation (Well and Flessa 2008).

### Conclusion

This study investigated N biogeochemical processes and N<sub>2</sub>O production in a typical stratified impoundment in SW China, located on a river with a large number of hydroelectric dams. The water temperature profile showed the thermocline occurred between a depth of 6 and 8 m. The DO concentration declined in the thermocline and continued to fall to <20 µM below 12 m. The DOC concentrations showed a larger variation, particularly at BH<sub>2</sub>, whereas high concentrations of DOC were detected at the bottom of the other 3 profiles.  $NO_3^-$  concentrations and its isotopic composition varied with depth and among locations. The positive relationship between  $\delta^{15}$ N and  $\delta^{18}$ O of NO<sub>3</sub><sup>-</sup> along with decreasing  $NO_3^-$  in the 0–4 m depth could be a signature of  $NO_3^$ assimilation. Denitrification and nitrification were responsible for the variation of various N species from 12 m to the bottom of the lake.

High N<sub>2</sub>O concentration and its extreme oversaturation were often detected for all depth profiles of Lake BH. Simultaneous increases in  $NO_3^-$  and N<sub>2</sub>O concentrations at BH<sub>1</sub> indicated that the N<sub>2</sub>O production could result from nitrification. The detected N<sub>2</sub>O peaks suggested N<sub>2</sub>O accumulation. The SP signature suggested that N<sub>2</sub>O in the oxic zone was produced by denitrified N<sub>2</sub>O from the upper reach and nitrified  $N_2O$  *in situ*. Low values of the  $N_2O$  isotopomers along with the highest  $N_2O$  concentrations at the bottom of this lake (SP = -1.5‰) can be used as a signature for denitrification. Although the calculation of SP gave semiquantitative analysis for  $N_2O$  dynamic processes, we concluded that nitrification contributed >67% of the  $N_2O$  production between the surface and 4 m, which was lower than that between 6 m and 12 m.  $N_2O$ reduction is <77% between 6 and 12 m. The contribution of denitrification between 15 and 21 m was >43%. Further studies on the vertical distribution of microorganism and hydrological conditions in the key zone will help to understand N dynamics and production of greenhouse gases in hydroelectric impoundments.

### Acknowledgements

This work was supported by the National Key R&D Program of China under Grant No. 2016YFA0601002; National Natural Science Foundation of China under Grant No.s 41571130072, 41403105, 41672351; and IAEA under Grant F32007. We thank Dr. Fadhlullah, Prof. Maberly, and Prof. Wang for improvement of quality. We also thank Drs. Jing Liu, Jun Zhong, Pan Li, Qiang-Sheng Huang, and Wei-Qi Lu for their help during the sample collection. We thank other members for their help for analysis assistance in Yoshida's laboratory in the Tokyo Institute of Technology, Japan. The authors declare no competing financial interests.

### ORCID

*Fu-Jun Yue* http://orcid.org/0000-0003-3733-7216 *Khan M.G. Mostofa* http://orcid.org/0000-0001-5203-2432 *Naohiro Yoshida* http://orcid.org/0000-0003-0454-3849 *Shi-Lu Wang* http://orcid.org/0000-0003-0945-8686

#### References

- Baggs EM. 2008. A review of stable isotope techniques for N<sub>2</sub>O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun Mass Sp. 22:1664–1672.
- Beusen AHW, Bouwman AF, Van Beek LPH, Mogollon JM, Middelburg JJ. 2016. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences. 13:2441–2451.
- Casciotti KL, McIlvin M, Buchwald C. 2010. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr. 55:753–762.
- Finlay JC, Small GE, Sterner RW. 2013. Human influences on nitrogen removal in lakes. Science. 342:247–250.
- Finlay JC, Sterner RW, Kumar S. 2007. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecol Appl. 17:2323–2332.
- Frame CH, Casciotti KL. 2010. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine

ammonia-oxidizing bacterium. Biogeosciences. 7:2695–2709.

- Fu PQ, Mostofa KMG, Wu FC, Liu CQ, Li W, Liao HQ, Wang LY, Wang J, Mei Y. 2010. Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem J. 44:99–112.
- Granger J, Sigman DM, Rohde MM, Maldonado MT, Tortell PD. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim Cosmochim Ac. 74:1030–1040.
- Heil J, Wolf B, Bruggemann N, Emmenegger L, Tuzson B, Vereecken H, Mohn J. 2014. Site-specific <sup>15</sup>N isotopic signatures of abiotically produced N<sub>2</sub>O. Geochim Cosmochim Ac. 139:72–82.
- Koba K, Osaka K, Tobari Y, Toyoda S, Ohte N, Katsuyama M, Suzuki N, Itoh M, Yamagishi H, Kawasaki M, et al. 2009. Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochim Cosmochim Ac. 73:3115–3133.
- Liu XL. 2010. The effects of cascade reservoirs on biogeochemical cycling of nitrogen in river-reservoir system – take Wujiang River and its branch Maotiao River in SW China for example. Guiyang (China): University of Chinese Academy of Sciences.
- Liu XL, Liu CQ, Li SL, Wang FS, Wang BL, Wang ZL. 2011. Spatiotemporal variations of nitrous oxide ( $N_2O$ ) emissions from two reservoirs in SW China. Atmos Environ. 45:5458–5468.
- Mayer B, Wassenaar LI. 2012. Isotopic characterization of nitrate sources and transformations in Lake Winnipeg and its contributing rivers, Manitoba, Canada. J Great Lakes Res. 38 (Suppl 3):135–146.
- McIlvin MR, Casciotti KL. 2011. Technical updates to the bacterial method for nitrate isotopic analyses. Anal Chem. 83:1850–1856.
- Mostofa KMG, Liu CQ, Vione D, Gao KS, Ogawa H. 2013. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems. Environ Pollut. 182:461–478.
- Mostofa KMG, Liu CQ, Zhai WD, Minella M, Vione D, Gao KS, Minakata D, Arakaki T, Yoshioka T, Hayakawa K, et al. 2016. Reviews and syntheses: ocean acidification and its potential impacts on marine ecosystems. Biogeosciences. 13:1767–1786.
- North RL, Winter JG, Dillon PJ. 2013. Nutrient indicators of agricultural impacts in the tributaries of a large lake. Inland Waters. 3:221–234.
- Ohte N, Tayasu I, Kohzu A, Yoshimizu C, Osaka K, Makabe A, Koba K, Yoshida N, Nagata T. 2010. Spatial distribution of nitrate sources of rivers in the Lake Biwa watershed, Japan: controlling factors revealed by nitrogen and oxygen isotope values. Water Resour Res. 46:W07505.
- Pearson LK, Hendy CH, Hamilton DP, Silvester WB. 2012. Nitrogen-15 isotope enrichment in benthic boundary layer gases of a stratified eutrophic iron and manganese rich lake. Aquat Geochem. 18:1–19.
- Santoro AE, Buchwald C, McIlvin MR, Casciotti KL. 2011. Isotopic signature of N<sub>2</sub>O produced by marine ammoniaoxidizing archaea. Science. 333:1282–1285.
- Sasaki Y, Koba K, Yamamoto M, Makabe A, Ueno Y, Nakagawa M, Toyoda S, Yoshida N, Yoh M. 2011. Biogeochemistry of nitrous oxide in Lake Kizaki, Japan,

elucidated by nitrous oxide isotopomer analysis. J Geophys Res-Biogeo. 116(G4):G04030.

- Spoelstra J, Schiff SL, Elgood RJ, Semkin RG, Jeffries DS. 2001. Tracing the sources of exported nitrate in the Turkey lakes watershed using  ${}^{15}\text{N}/{}^{14}\text{N}$  and  ${}^{18}\text{O}/{}^{16}\text{O}$  isotopic ratios. Ecosystems. 4:536–544.
- Sterner RW. 2011. C:N:P stoichiometry in lake superior: freshwater sea as end member. Inland Waters. 1:29-46.
- Sutka RL, Adams GC, Ostrom NE, Ostrom PH. 2008. Isotopologue fractionation during N<sub>2</sub>O production by fungal denitrification. Rapid Commun Mass Sp. 22:3989–3996.
- Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA. 2003. Nitrogen isotopomer site preference of N<sub>2</sub>O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* bath. Rapid Commun Mass Sp. 17:738–745.
- Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F. 2006. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microb. 72:638–644.
- Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y. 2005. Fractionation of N<sub>2</sub>O isotopomers during production by denitrifier. Soil Biol Biochem. 37:1535–1545.
- Toyoda S, Yoshida N. 1999. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Anal Chem. 71:4711-4718.
- Toyoda S, Yoshida N. 2016. Development of automated preparation system for isotopocule analysis of  $N_2O$  in various air samples. Atmos Meas Tech. 9:2093–2101.
- Wang SL, Liu CQ, Wang GJ, Tao FX, Li J, Zhu ZZ, Lv YC. 2004. Decmposition of organic matter and N<sub>2</sub>O cycling in Lake Baihua, Guizhou, during the late stratification. Quaternary Sci. 24:569–577. Chinese with English abstract.
- Well R, Flessa H, Jaradat F, Toyoda S, Yoshida N. 2005. Measurement of isotopomer signatures of N<sub>2</sub>O in groundwater. J Geophys Res-Biogeo. 110:G02006.
- Well R, Flessa H. 2008. Isotope fractionation factors of N<sub>2</sub>O diffusion. Rapid Commun Mass Sp. 22:2621–2628.
- Well R, Flessa H. 2009. Isotopologue signatures of N<sub>2</sub>O produced by denitrification in soils. J Geophys Res-Biogeo. 114:G02020.
- Wenk CB, Frame CH, Koba K, Casciotti KL, Veronesi M, Niemann H, Schubert CJ, Yoshida N, Toyoda S, Makabe A, et al. 2016. Differential N<sub>2</sub>O dynamics in two oxygendeficient lake basins revealed by stable isotope and isotopomer distributions. Limnol Oceanogr. 61:1735–1749.
- Wenk CB, Zopfi J, Blees J, Veronesi M, Niemann H, Lehmann MF. 2014. Community N and O isotope fractionation by sulfide-dependent denitrification and anammox in a stratified lacustrine water column. Geochim Cosmochim Ac. 125:551–563.
- Wu D, Koster JR, Cardenas LM, Bruggemann N, Lewicka-Szczebak D, Bol R. 2016.  $N_2O$  source partitioning in soils using  $^{15}N$  site preference values corrected for the  $N_2O$ reduction effect. Rapid Commun Mass Sp. 30:620–626.
- Xiao HY, Liu CQ. 2004. Discrimination between extraneous nitrogen input and interior nitrogen release in lakes. Sci China Ser D. 47:813–821.
- Yamagishi H, Westley MB, Popp BN, Toyoda S, Yoshida N, Watanabe S, Koba K, Yamanaka Y. 2007. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J Geophys Res-Biogeo. 112:G02015.

- Yoshida N, Morimoto H, Hirano M, Koike I, Matsuo S, Wada E, Saino T, Hattori A. 1989. Nitrification rates and  $^{15}N$  abundances of N<sub>2</sub>O and NO<sub>3</sub><sup>-</sup> in the western North Pacific. Nature. 342:895–897.
- Zou Y, Hirono Y, Yanai Y, Hattori S, Toyoda S, Yoshida N. 2014. Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (*Camellia Sinensis*) in Shizuoka, central Japan. Soil Biol Biochem. 77:276–291.