Revised: 7 January 2017

RESEARCH ARTICLE

Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China: Evidences from geochronological, geochemical, and Hf isotopic studies

Yunlong Liu^{1,2} 🗅 | Hui Zhang¹ | Yong Tang¹ | Xin Zhang^{1,2} | Zhenghang Lv¹ | Jingyu Zhao^{1,2}

¹Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China

²University of Chinese Academy of Sciences, Beijing, China

Correspondence

Hui Zhang, Key Laboratory of Hightemperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China. Email: zhanghui@mail.gyig.ac.cn

Funding information

National Natural Science Foundation of China, Grant/Award Number: 41372104; National Science Foundation of China, Grant/Award Number: 41073051

Handling editor: M. Santosh

The Jiangjunshan and Dakalasu alkali-feldspar granites are located in the central part of the Chinese Altay orogen. In this paper, we present detailed geochemical, zircon U-Pb, and Hf isotopic data of these granites. The Jiangjunshan and Dakalasu alkali-feldspar granites show a high content of SiO₂ (72.05-73.27 and 69.55-71.04 wt%, respectively), total alkalis (Na₂O + K₂O = 8.41–8.71 and 7.24–8.66 wt%, respectively), and high-field strength elements (Zr + Nb + Ce + Y = 400.3-482.9 and 156.7-339.3 ppm, respectively), as well as high Ga/Al ratios (10,000 × Ga/Al = 3.46-4.19 and 2.62-3.28, respectively) and depletion in Ba, Nb, Sr, and Ti, showing geochemical characteristics similar to those of A-type granites. Zircon U-Pb dating of the Jiangjunshan and Dakalasu alkali-feldspar granites yielded weighted mean dating 206 Pb/ 238 U ages of 268.3 ± 1.9 and 270.4 ± 1.9 Ma, respectively, indicating that these granites intruded during the Permian. The Jiangjunshan and Dakalasu alkali-feldspar granites show highly variable zircon $\epsilon_{Hf}(t)$ values ranging from -7.0 to +5.6, implying that these granites originated from a mixing of mantle-derived magma with crustal materials. Our data on the Jiangjunshan and Dakalasu alkali-feldspar granites, coupled with previous studies of Permian magmatism and metamorphism, suggest that the tectonic regime was in a postcollisional extensional environment in the Chinese Altay orogen during the Permian. Therefore, the change in stress from compression to extension and asthenospheric upwelling triggered by slab break-off plays a significant role in the generation of Jiangjunshan and Dakalasu alkali-feldspar granites.

KEYWORDS

Altay, A-type granite, Hf isotope, petrogenesis, tectonic setting, U-Pb dating, Xinjiang

1 | INTRODUCTION

The Central Asian Orogenic Belt is one of the largest and longest-lived accretionary orogenic belts on Earth, representing a typical region of massive continental crust growth (Jahn, 2004; Jahn, Wu, & Chen, 2000a; Jahn, Wu, & Chen, 2000b; Sengör & Natal'in, 1996; Sengör, Natal'in, & Burtman, 1993; Windley, Alexeiev, Xiao, Kröner, & Badarch, 2007). During its evolutionary history, numerous allochthonous materials, such as island arcs, seamounts, subduction–accretion complexes, ophiolites, and microcontinents, have been incorporated (Khain et al., 2002; Kovalenko et al., 2004; Kröner et al., 2011; Kröner et al., 2014; Wilhem, Windley, & Stampfli, 2012; Windley et al., 2002; Windley et al., 2007; Xiao & Santosh, 2014; Xiao et al., 2004; Zhang et al., 2015). The Chinese Altay is situated along the southwest margin of the Mongolian collage system and is juxtaposed with the

Kazakhstan collage system to the south. Because of this key tectonic position, the Chinese Altay is considered an important region for studying the convergent processes and amalgamation between the Mongolian and Kazakhstan collage systems. Previous investigations have confirmed that the Chinese Altay constitutes a subductionaccretion complex built on the margin of Mongolian collage systems in the Early Paleozoic (Cai, Sun, Yuan, Zhao, Xiao, Long, & Wu, 2011b; Cai et al., 2014; Long et al., 2007; Long et al., 2010; Sun et al., 2008; Xiao et al., 2008; Xiao et al., 2009). However, there is much debate about its tectonic scenario in the Carboniferous to Permian, which is a critical period for its final amalgamation. Several models have been proposed for the Late Paleozoic tectonic evolution of the Chinese Altay, including oceanic subduction (Chen et al., 2006; Wan, Xiao, Windley, & Yuan, 2013; Xiao et al., 2011; Zhang et al., 2015), postcollisional extension (Gao & Zhou, 2013; Han, Ji, Song, Chen, & 528 WILEY

Li, 2004; Su et al., 2011; Tong, Wang, Jahn, Sun, Hong, & Gao, 2014b; Tong, Wang, Siebel, Hong, & Sun, 2012; Zhang, Zhou, Kusky, Yan, Chen, & Zhao, 2009b), slab break-off (Gao & Zhou, 2013; Li, Zhang, Fu, Qian, Hu, & Ripley, 2012a), and mantle plume (Pirajno, Mao, Zhang, Zhang, & Chai, 2008; Tong, Xu, Cawood, Zhou, Chen, & Liu, 2014a; Zhang, Zou, Yao, & Dong, 2014a). Therefore, more systematic research is needed to unravel the tectonomagmatic events that have determined the tectonic evolution of the region.

Recently, we identified two A₂-type granites on the southern part of the Chinese Altay orogen. A-type granites were first catalogued by Loiselle and Wones (1979) and have been extensively studied due to their unusual origins and tectonic settings (Bonin, 2007; Collins, Beams, White, & Chappell, 1982; Creaser, Price, & Wormald, 1991; Dall'Agnol & de Oliveira, 2007; Eby, 1992; Frost & Frost, 1997; King, White, Chappell, & Allen, 1997; Whalen, Currie, & Chappell, 1987). Eby (1992) subdivided A-type granites into two subtypes and suggested that they may have different origins and tectonic settings. The A₁-type granites represent differentiates of magmas derived from ocean-island basalt (OIB)-like sources but emplaced in continental rifts or during intraplate magmatism. The A₂-type granites are derived from partial melting of continental crust or underplated mafic crust that has been through a cycle of continent-to-continent collision or a subduction zone; these granites originate in a postcollisional extensional setting.

In this paper, we present zircon U–Pb dating and Hf isotope, major and trace-element geochemistry of the Jiangjunshan and Dakalasu A₂-type granites. These results can be used to constrain their possible emplacement ages, source, and petrogenesis and thus provide important insights into understanding the postcollisional extensional environment of the Chinese Altay orogeny.

2 | REGIONAL GEOLOGY

The Chinese Altay orogenic belt is situated between the southern margin of the Siberian Block and the northern margin of the Kazakhstan-Junggar Block, bounded to the northwest by the Rudny Altay of Kazakhstan and the Gorny Altay of Russia, to the southeast by Gobi Altay of Mongolia, and separated from the Junggar Basin by the Erqis Fault (Li, Yang, Li, Santosh, Chen, & Xiao, 2014b; Xiao & Santosh, 2014; Zhang, Chen, Zheng, Qin, & Li, 2014b; Zheng et al., 2014). Northwest (NW)-trending faults are widely developed in the Chinese Altay orogen, such as the Hongshanzui Fault, Abagong Fault, Tesibahan Fault, and Erqis Fault. Based on the context of stratigraphic, metamorphic, deformation, and magmatic features, five or six terranes or tectonic units have been distinguished in the Chinese Altay, which are separated by these NW-trending faults (Figure 1; Windley et al., 2002).

Terrane 1 largely comprises Middle to Late Devonian andesite and dacite and Late Devonian to Early Carboniferous lower greenschist facies metasediments, including shale, siltstone, greywacke, sandstone, and limestone. Terrane 2 consists predominantly of thick Neoproterozoic to Middle Ordovician sedimentary rocks that include turbidites of the Habahe Group, with minor Early Devonian sedimentary and volcanic rocks. Rocks of the Habahe Group are isoclinally folded and metamorphosed at lower greenschist facies. Terrane 3 constitutes the central part of the Chinese Altay orogen and is mainly formed from Neoproterozoic to Middle Ordovician turbidite and continental sedimentary rocks metamorphosed at greenschist to upper amphibolite facies conditions. Terrane 4 is mainly composed of the Late Silurian to Early Devonian Kangbutiebao Formation and the overlying Middle Devonian Altay Formation. The terrane includes

FIGURE 1 Simplified geological map of the Chinese Altay. Tectonic subdivision modified from Windley et al. (2002). Permian intrusions are marked by their zircon ages. Data sources: (a), Tong et al. (2006); (b) Wang et al. (2005); (c) Gao et al. (2010); (d) Sun, Li, Yang, Li, Zhu, & Yang (2009a); (e) Sun et al., 2009b; (f) Zhang et al. (2010); (g) Tong et al. (2014b); (h) Chen and Han (2006); (i) Zhang et al. (2012) [Colour figure can be viewed at wileyonlinelibrary.com]

metamorphic rocks with greenschist to upper amphibolite and locally granulite facies assemblages (Wei, Clarke, Tian, & Qiu, 2007). Xu et al. (2003) reported an ophiolite sequence dominated by mafic rocks with mid-ocean ridge basalt (MORB) affinity in the Kuerti area at the central part of the terrane and inferred that they formed in a back-arc basin environment. Terrane 5 is largely composed of Early Palaeozoic to Devonian sedimentary rocks and Late Carboniferous volcanoclastic rocks, metamorphosed at greenschist to amphibolite facies conditions. Terrane 6 consists entirely of Devonian island-arc rocks with small amounts of Ordovician limestones and some Carboniferous island-arc volcanics. This terrane belongs to the Junggar Block and was separated from the Altay orogen (Terrane 5) by the Erqis Fault, one of the largest transcurrent faults in Central Asia (Sengör et al., 1993).

Granitic rocks occupy at least 40% of the Chinese Altay (Figure 1) and some highly deformed and metamorphosed rocks are identified as orthogneiss or gneissic granite. Recently, precise zircon U–Pb data have shown that most of the granitic intrusions have Early to Middle Palaeozoic ages (Briggs et al., 2007; Cai, Sun, Yuan, Zhao, Xiao, Long, & Wu, 2011a; Sun et al., 2008; Wang et al., 2006; Windley et al., 2002; Yuan et al., 2007). In contrast, Late Palaeozoic and Mesozoic plutonism was found to be relatively weak with limited distribution. For instance, Yuan et al. (2007) reported an I-type granitic pluton with a zircon U–Pb age of 318 \pm 6 Ma and suggested that it was emplaced during the waning period of magmatic activity. Many small A-type granitic plutons have emplacement ages of ca. 300–270 Ma, and massive pegmatite dykes were emplaced in the period of 280–205 Ma (Ren, Zhang, Tang, & Lv, 2011; Shen, Zhang, Wang, Wyman, & Yang, 2011; Tong, Tao, Kovach, Hong, & Han, 2006; Wang et al., 2007).

3 | SAMPLES AND ANALYTICAL METHODS

3.1 | Analysis of chemical compositions of the granite

Twelve whole-rock samples were collected from surface exposures; the sample locations are shown in Figure 2a and 2b. All samples were trimmed to remove the altered surfaces and crushed and powdered with an agate mill.

Major element compositions were analyzed with a PANanalytical Axios x-ray fluorescence (XRF) spectrometer at ALS Chemex (Guangzhou) Co, Ltd. A quantity of 0.9 g of the sample was added to 9.0 g of lithium borate flux (50% Li₂B₄O₇-50% LiBO₂), mixed well and fused in an auto fluxer between 1,050 and 1,100 °C. A flat molten glass disc was prepared from the resulting melt. This disc was analyzed by XRF spectrometry. The precision of XRF analyses at ALS Chemex was 2%.Trace-element concentrations were determined with an Elan 9000 ICP-MS at the same laboratory. A prepared sample (0.2 g) was added to the lithium metaborate flux (0.9 g), mixed well and fused in a furnace at 1,000 °C. The resulting melt was then cooled and dissolved in 100 ml of 4% HNO₃. This solution was then analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). The precision of the ICP-MS analyses at ALS Chemex was better than 10% for all elements. Whole-rock chemical composition data are reported as weight percent (wt%), and trace-element and rare earth element

FIGURE 2 More detailed map showing sampling location of the (a) Jiangjunshan and (b) Dakalasu granite plutons [Colour figure can be viewed at wileyonlinelibrary.com]

(REE) data are reported in parts per million (10^{-6}) . The analytical results are listed in Table 1.

3.1.1 | Zircon U-Pb dating by LA-ICP-MS

Zircon grains from Jiangjunshan and Dakalasu granites were separated using conventional heavy liquid and magnetic techniques. After the hand-picked zircon grains were cleaned with an acid bath, they were mounted in epoxy blocks and then polished to obtain a smooth surface. The selection of zircon grains for isotopic analysis was based upon cathodoluminescence images (Figure 3). The U-Pb dating of zircon was conducted by laser ablation ICP-MS (LA-ICP-MS) at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang. A GeoLasPro laser ablation system (LamdaPhysik, Gottingen, Germany) and an Agilent

TABLE 1Major oxides (wt%) and trace element (ppm) compositions of the Jiangjunshan alkali-feldspar granite and Dakalasu alkali-feldspar granitein the southern Altay Range

		Jiangju	ınshan alka	li-feldspar	granite			Dal	kalasu alkali-	feldspar gra	nite	
Sample no.	JJS- 13-03	JJS- 13-04	JJS- 13-06	JJS- 13-07	JJS- 13-08	JJS- 13-09	KLS- 13-1-1	KLS- 13-1-2	KLS- 13-2-1	KLS- 13-2-2	KLS- 13-3-1	KLS- 13-3-2
Major oxides												
SiO ₂	72.95	72.05	73.27	72.4	72.38	72.48	70.69	70.57	70.14	69.55	71.04	70.61
Al ₂ O ₃	13.85	14.22	13.92	13.98	13.9	14.1	14.44	14.15	14.6	14.68	14.37	14.59
Fe ₂ O ₃	2.04	1.93	1.86	2.02	2	1.88	3.01	3.19	3.18	2.93	2.8	2.25
MgO	0.34	0.34	0.32	0.34	0.35	0.32	0.79	0.67	0.93	0.6	0.76	0.56
CaO	1.05	0.99	1.01	1.15	1.15	1.09	1.99	1.55	2.14	1.59	1.81	1.49
Na ₂ O	3.46	3.43	3.66	3.71	3.56	3.63	4.6	3.4	4.13	3.9	3.55	3.53
K ₂ O	4.97	5.26	4.83	4.75	4.85	5.07	2.64	4.92	3.2	4.48	4.44	5.13
MnO	0.1	0.05	0.06	0.05	0.05	0.05	0.07	0.06	0.05	0.05	0.05	0.04
P_2O_5	0.14	0.14	0.12	0.14	0.14	0.14	0.266	0.214	0.319	0.193	0.267	0.17
TiO ₂	0.21	0.21	0.2	0.22	0.22	0.21	0.43	0.5	0.47	0.46	0.4	0.37
LOI	0.92	0.82	0.71	0.58	0.7	0.63	0.54	0.59	0.43	0.56	0.54	0.47
Total	100.05	99.48	99.99	99.37	99.33	99.63	99.55	99.9	99.67	99.06	100.1	99.28
A/CNK	1.07	1.08	1.06	1.05	1.05	1.05	1.03	1.03	1.03	1.04	1.03	1.04
A/NK	1.25	1.25	1.24	1.24	1.25	1.23	1.25	1.25	1.24	1.24	1.25	1.23
$K_2O + Na_2O$	8.43	8.69	8.49	8.46	8.41	8.70	7.24	8.32	7.33	8.38	7.99	8.66
Na ₂ O/K ₂ O	0.7	0.65	0.76	0.78	0.73	0.72	1.74	0.69	1.29	0.87	0.80	0.69
Trace elements	S											
Li	103	127	151.5	139	120.5	114.5	210	141.5	187.0	134.5	119.5	94.1
Ве	6.5	9.66	7.25	6.13	6.64	11.8	7.34	3.91	5.63	4.39	3.40	3.23
Ga	26.4	25.1	28.1	26.2	24	24.6	22.1	22.5	19.05	21.2	19.60	19.65
Ge	0.22	0.2	0.21	0.22	0.21	0.21	0.20	0.17	0.23	0.20	0.24	0.30
Rb	325	313	386	314	284	311	303	181.5	303	237	182.0	195.0
Sr	63.7	69	61	67.7	70.3	71.8	158.5	144.0	195.0	141.0	147.0	146.0
Υ	51.9	50.9	41.7	47.7	47.6	46.2	38.6	36.9	37.3	31.0	39.7	40.8
Zr	75.7	81	76.9	75.3	74.7	73	114.0	40.9	114.0	38.4	94.5	34.7
Nb	30.8	30.6	22.7	29.9	29.6	29.4	18.5	17.5	13.8	16.6	15.9	12.8
Cs	19.05	22.4	23.6	28.1	20.6	30.2	96.7	25.4	48.4	39.5	19.05	13.50
Ва	250	240	220	220	230	250	570	630	780	570	550	560
La	57.1	59.8	54.8	54.7	55.2	52.7	80.7	46.0	64.6	38.3	63.0	129.0
Ce	114	116	109	109	111	104	159.0	87.5	129.0	70.7	120.0	251
Pr	14.3	15	14.3	13.85	13.95	13.45	19.25	10.65	15.20	8.46	14.20	28.6
Nd	55.3	57.6	55	53.9	53.4	51.9	73.4	40.9	56.6	32.0	52.7	104.5
Sm	12.3	12.85	12.6	11.85	11.95	11.5	14.00	8.41	11.20	6.61	10.50	18.55
Eu	0.84	0.93	0.79	0.89	0.92	0.9	1.83	1.95	1.69	1.91	1.52	1.91
Gd	10.45	10.85	9.8	10.25	10.2	10.05	9.92	6.87	9.61	5.98	8.69	12.10
Tb	1.72	1.79	1.55	1.68	1.7	1.63	1.42	1.13	1.48	0.98	1.38	1.79
Dy	8.84	9.14	7.58	8.68	8.73	8.66	7.07	6.21	7.21	5.17	6.95	8.51
Но	1.73	1.78	1.38	1.68	1.68	1.65	1.38	1.30	1.34	1.05	1.37	1.50
Er	4.72	4.85	3.84	4.47	4.56	4.52	3.75	3.52	3.46	2.99	3.64	3.69
Tm	0.74	0.74	0.61	0.7	0.69	0.69	0.56	0.52	0.47	0.44	0.55	0.51
Yb	4.58	4.66	4.02	4.23	4.33	4.34	3.56	3.19	2.78	2.68	3.37	2.98
Lu	0.68	0.71	0.63	0.65	0.66	0.66	0.57	0.48	0.44	0.43	0.52	0.46
Hf	2.9	3	3.3	2.8	2.7	2.6	3.1	1.1	2.9	1.0	2.4	1.0
Та	3.56	4.02	3.49	2.53	3.2	5.08	1.30	1.06	0.71	1.13	1.18	1.03
Th	24.6	23.5	23.9	23.2	23.7	22.3	40.1	9.1	33.7	10.1	28.5	37.4
U	3	4.7	2.5	9.5	3.5	3.2	8.9	2.4	3.1	1.4	1.4	2.1
Y/Nb	1.69	1.66	1.84	1.6	1.61	1.57	2.09	2.11	2.70	1.87	2.50	3.19

TABLE 1 (Continued)

		Jiangju	ınshan alka	li-feldspar	granite			Da	ıkalasu alkali	-feldspar gra	anite	
Sample no.	JJS- 13-03	JJS- 13-04	JJS- 13-06	JJS- 13-07	JJS- 13-08	JJS- 13-09	KLS- 13-1-1	KLS- 13-1-2	KLS- 13-2-1	KLS- 13-2-2	KLS- 13-3-1	KLS- 13-3-2
Yb/Ta	1.29	1.16	1.15	1.67	1.35	0.85	2.74	3.01	3.92	2.37	2.86	2.89
Ba/La	4.38	4.01	4.01	4.02	4.17	4.74	7.06	13.70	12.07	14.88	8.73	4.34
Zr/Nb	2.46	2.65	3.39	2.52	2.52	2.48	6.16	2.34	8.26	2.31	5.94	2.71
Rb/Sr	5.1	4.54	6.33	4.64	4.04	4.33	1.91	1.26	1.55	1.68	1.24	1.34
Eu/Eu*	0.22	0.23	0.21	0.24	0.25	0.25	0.45	0.76	0.49	0.91	0.47	0.37
Ba/Nb	8.12	7.84	9.69	7.36	7.77	8.5	30.81	36.00	56.52	34.34	34.59	43.75
(La/Sm)N	3	3	2.81	2.98	2.98	2.96	3.72	3.53	3.72	3.74	3.87	4.49
Ba/Th	10.16	10.21	9.21	9.48	9.7	11.21	14.21	69.23	23.15	56.44	19.30	14.97
Th/Yb	5.37	5.04	5.95	5.48	5.47	5.14	11.26	2.85	12.12	3.77	8.46	12.55
U/Pb	0.04	0.1	0.04	0.19	0.07	0.06	0.21	0.06	0.10	0.03	0.03	0.05
Nb/U	10.27	6.51	9.08	3.15	8.46	9.19	2.08	7.29	4.45	11.86	11.36	6.10
Ce/Nb	3.69	3.79	4.78	3.65	3.75	3.54	8.59	5.00	9.35	4.26	7.55	19.61
Hf/Nb	0.09	0.1	0.15	0.09	0.09	0.09	0.17	0.06	0.21	0.06	0.15	0.08
Sr/Y	1.23	1.36	1.46	1.42	1.48	1.55	4.11	3.90	5.23	4.55	3.70	3.58
ΣREE	286.8	296.7	275.4	276.53	278.97	266.65	376.41	218.63	305.08	177.70	288.39	565.10

Note. REE = rare earth element.

7700× ICP-MS system (Agilent Technologies, Tokyo, Japan) were combined for these measurements. A 193-nm ArF excimer laser, homogenized by a set of beam delivery systems, was focused on a zircon surface with a flux of 10 J/cm². The ablation protocol employed a spot diameter of 32 μ m at a 5-Hz repetition rate for 40 s (equating to 200 pulses). Helium was applied as a carrier gas to efficiently transport the aerosol to the ICP-MS system. Zircon 91500 was used as an external standard to correct instrumental mass discrimination and elemental

fractionation. Zircon GJ-1 and Plešovice were treated as quality control references for geochronology. The common lead concentration of zircon was externally calibrated against NIST SRM 610 with Si as an internal standard, whereas Zr served as the internal standard for the other trace elements (Hu et al., 2011; Liu, Gao, Hu, Gao, Zong, & Wang, 2010b). Raw data reduction was performed off-line by ICPMSDataCal (Liu, Gao et al., 2010; Liu, Hu, Zong, Gao, Gao, Xu, & Chen, 2010a).

3.2 | In situ zircon Hf isotope analysis

Zircon Hf isotopic analyses were performed on a Nu Plasma HR MC-ICP-MS (Nu Instruments Ltd., UK) equipped with a GeoLas 2005 193-nm ArF excimer laser ablation system at the State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, P.R. China. Analyses were conducted using a spot size of 44 µm, and He was used as the carrier gas. The laser repetition rate was 10 Hz, and the energy density applied was 15-20 J/cm². Raw count rates for ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶(Hf + Yb + Lu), ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf, and ¹⁸⁰Hf were collected simultaneously. The isobaric interference of ¹⁷⁶Lu on ¹⁷⁶Hf was corrected by measuring the intensity of an interference-free ¹⁷⁵Lu isotope, and a recommended ¹⁷⁶Lu/¹⁷⁵Lu ratio of 0.02669 was used to calculate ¹⁷⁶Lu/¹⁷⁷Hf. Similarly, the interference of ¹⁷⁶Yb on ¹⁷⁶Hf was corrected by measuring an interference-free ¹⁷²Yb isotope and using a ¹⁷⁶Lu/¹⁷²Yb ratio of 0.5886 to calculate ¹⁷⁶Hf/¹⁷⁷Hf ratios (Chu et al., 2002). Time-dependent drifts of Lu-Hf isotopic ratios were corrected using linear interpolation according to the variations of 91500 and GJ-1. To evaluate the data quality, we reanalyzed 91500 and GJ-1 as unknown. The obtained ¹⁷⁶Hf/¹⁷⁷Hf ratios were 0.282295 ± 0.000027 (n = 14, 2 σ) for 91500 and 0.282734 ± 0.000015 (n = 16, 2 σ) for GJ-1. These results are in good agreement with the recommended 176 Hf/ 177 Hf ratio within 2σ (0.2823075 ± 58, 2σ and 0.282015 ± 0.000019, 2σ ; Griffin, Pearson, Belousova, & Saeed, 2006; Wu, Yang, Xie, Yang, & Xu, 2006).

A decay constant for 176 Lu of $1.865 \times 10^{-11}a^{-1}$ (Scherer, Munker, & Mezger, 2001) and present-day chondritic ratios of 176 Hf/ 177 Hf = 0.282772 and 176 Lu/ 177 Hf = 0.0332 (Blichert-Toft & Albarède, 1997) were adopted to calculate the initial values of 176 Hf/ 177 Hf and $\epsilon_{\rm Hf}(t)$. Depleted mantle Hf model ages (T_{DM}) were calculated from the measured 176 Lu/ 177 Hf and 176 Hf/ 177 Hf ratios of the zircons, assuming a present-day 176 Hf/ 177 Hf ratio of 0.283250 and a 176 Lu/ 177 Hf ratio of 0.0384 for the depleted mantle (Griffin et al., 2002). The average crustal 176 Lu/ 177 Hf value of 0.015 was adopted to calculate the two-stage model ages (Griffin et al., 2002).

4 | RESULTS

4.1 | Petrography

The Jiangjunshan pluton is located 4 km southeast of Altai city and intrudes into the Devonian Altai Formation. The main rock of this pluton is K-feldspar granite. The granite samples are light grey with coarse-grained inequigranular texture (Figure 4a). The major minerals are K-feldspar (60–70 vol%), quartz (20–30 vol%), plagioclase (~5 vol%), and biotite (~5 vol%). Accessory minerals include zircon, apatite, and ilmenite. K-feldspar crystals range up to ~10 mm and consist primarily of microcline with a typical tartan twin (Figure 4b). Quartz is subhedral to anhedral, ranging from 0.1 to 2 mm. Plagioclase shows polysynthetic twins with a zone texture. Biotite is fine grained (<0.5 mm) and typically forms small aggregates.

The Dakalusu pluton is situated 6 km northwest of Altai city and also intrudes into the Devonian Altai Formation. The main rock of this pluton is biotite granite. The pluton consists of two main phases that are texturally distinct. Contact between the two phases is gradual,

FIGURE 4 Photos of hand specimens of (a) Jiangjunshan granite pluton and (c) Dakalasu granite pluton and petrographic micrographs cross polarized light of (b) Jiangjunshan granite (transmitted, 10 × 5) and (d) Dakalasu granite (transmitted, 10 × 5). Bt = biotite; Kfs = K-feldspar; Mgt = magnetite; Q = quartz [Colour figure can be viewed at wileyonlinelibrary.com]

changing from porphyritic texture to inequigranular texture (Figure 4c). The two phases are consistent with the size and number of the K-feldspar phenocryst and have a similar mineral composition: (30–40 vol%), albite (20–30 vol%), quartz (20–30 vol%), plagioclase (5–10 vol%), and biotite (~5 vol%). K-feldspar is mainly microcline. Microcline crystals usually occur as phenocrysts in porphyritic granite with grain diameters up to 20 mm. In contrast, microcline grains are usually <7 mm in size and are locally abundant or aggregated in inequigranular granite. Microcline crystals have typically cross-hatched twins (Figure 4d). Albite is anhedral and 0.05 to 0.6 mm in size. Myrmekitic texture is commonly seen in the thin section (Figure 4d). Quartz is anhedral and ranges from 0.2 to 0.5 mm in size. Plagioclase occurs as mediumacid plagioclase and has a polysynthetic twin. Biotite is irregularly flaky with a flake size of 0.1–0.5 mm in diameter.

4.2 | Major and trace-element composition

The major and trace-element composition of the Jiangjunshan and Dakalasu granites is listed in Table 1. The Jiangjunshan granite exhibits a high content of SiO₂ (varying from 72.05 to 73.27 wt%), Al₂O₃ (varying from 13.85 to 14.22 wt%), and total alkali (Na₂O + K₂O, from 8.41 to 8.71 wt%) and a low CaO content (from 0.99 to 1.05 wt%). The Dakalasu granite shows a high content of SiO₂ (varying from 69.55 to 71.04 wt%), Al₂O₃ (varying from 14.15 to 14.68 wt%), and total alkali (Na₂O + K₂O, from 7.24 to 8.66 wt%) and low CaO content (from 1.49 to 2.14 wt%). On the quartz-alkali feldspar-plagioclase feldspar

(QAP) classification diagrams, the granites are classified as alkali-feldspar granite (Figure 5a). All samples are plotted in the subalkalic granite field in the (K₂O + Na₂O) versus SiO₂ discrimination diagram (Figure 5 b), and the high-K calc alkaline is plotted in the shoshonite series field in the K₂O versus SiO₂ diagram (Figure 5c). The Jiangjunshan and Dakalasu alkali-feldspar granites are weak peraluminous, with A/CNK (molar ratio of Al₂O₃/[CaO + Na₂O + K₂O]) ratios ranging from 1.05 to 1.08 and 1.03 to 1.08 (Table 1 and Figure 5d), respectively. The granites have a relatively high Fe₂O₃ content (1.86-2.04 wt% for the Jiangjunshan granite and 2.25-3.19 wt% for the Dakalasu granite) and low MgO content (0.32-0.35 wt% for the Jiangjunshan granite and 0.56-0.93 wt% for the Dakalasu granite). FeO^T/MgO ratios of the Jiangjunshan and Dakalasu granites vary from 5.67 to 6.02 with an average of 5.83 and from 3.42 to 4.88 with an average of 4.10, respectively, which are clearly higher than those of I-type granites (average of 2.27 from 991 samples) and S-type granites (average of 2.38 from 578 samples; Whalen et al., 1987).

The total REE content of the Jiangjunshan granite and Dakalasu granite varies from 266.65 to 269.70 ppm and 177.70 to 565.10 ppm, respectively. The chondrite-normalized REE pattern of the Jiangjunshan granite shows a relative enrichment of light rare earth elements, with $(La/Yb)_N$ ratios varying from 8.71 to 9.78 and large negative Eu anomalies (δ Eu = 0.21–0.25; Figure 6a and 6c). The larger (La/Yb)_N ratios, (La/Yb)_N = 10.25–31.05, and δ Eu values (δ Eu = 0.37–0.91) of the Dakalasu granite also indicate an enrichment of light rare earth element and weakly negative Eu anomalies.

FIGURE 5 Chemical classification diagrams for the Jiangjunshan and Dakalasu alkali-feldspar granites: (a) QAP diagram (Streckeisen, 1974); (b) total alkalis ($K_2O + Na_2O$) versus SiO₂ diagram (compositional fields from Middlemost, 1994); (c) K_2O versus SiO₂ diagram; and (d) A/NK versus A/CNK diagram (Maniar & Piccoli, 1989)

FIGURE 6 Primitive mantle-normalized extended trace-element spidergram patterns for the (a) Jiangjunshan and (c) Dakalasu alkali-feldspar granites and chondrite-normalized rare earth element patterns for the (b) Jiangjunshan and (d) Dakalasu alkali-feldspar granites. Data of primitive mantle and chondrite are from Sun & McDonough (1989)

The Jiangjunshan and Dakalasu granites are characterized by a high content of high-field strength elements, such as Ta, Zr, Hf, and Th. The high Ga/Al ratios of the Jiangjunshan and Dakalasu granites with a $10,000 \times \text{Ga/Al}$ value that ranges from 2.62 to 4.19 indicate that they are geochemically similar to A-type granites. In the primitive mantle-normalized spider diagram (Figure 6b and 6d), the granites exhibit strongly negative Ba, Sr, Ti, and Eu anomalies and slightly negative Nb anomalies.

4.3 | Zircon U–Pb geochronology

Zircon grains from the Jiangjunshan and Dakalasu granites are pale yellow, euhedral, and tetragonal dipyramidal. The grain size of zircons ranges from 100 to 200 µm with elongation ratios (c/a) ranging from 2 to 4. In cathodoluminescence images (Figure 4), most zircon grains display fine oscillatory zonation, which is a typical of magmatic zircon. The U-Pb isotope analytical results for 39 spots are listed in Table 2.

Twenty-four spot analyses of zircons from the Jiangjunshan granite show that they contain 240–1,619 ppm U and 61–682 ppm Th, with Th/U ratios varying from 0.25 to 0.42. Two spots yielded a relatively younger 206 Pb/ 238 U age (176 and 258 Ma), and one spot yielded relatively older 206 Pb/ 238 U ages (299 Ma). The other 21 spots have similar 206 Pb/ 238 U ages and give a weighted mean age of 268.3 ± 1.9 Ma (Figure 7a), which is regarded as the best estimate for the emplacement age of the Jiangjunshan granite.

Fifteen spots of zircons from the Dakalasu granite were analyzed. These spots yielded 206 Pb/ 238 U ages from 258 to 274 Ma, with a weighted mean age of 270.4 ± 1.9 Ma (Figure 7b), except that one spot yielded a 206 Pb/ 238 U age of 409 Ma. Thus, we suggest that 270.4 ± 1.9 Ma represents the best estimate for their emplacement age.

4.4 | In situ zircon Hf isotope

The in situ Hf isotope analyses of the Jiangjunshan and Dakalasu granites are listed in Table 3. The ¹⁷⁶Lu/¹⁷⁷Hf ratios of most zircons are lower than 0.0025, suggesting that the zircons accumulated little radiogenic Hf after they formed; therefore, the ¹⁷⁶Hf/¹⁷⁷Hf ratios represent the isotopic composition of the zircons when they crystallized (Patchett et al., 1981; Knudsen, Griffin, Hartz, Andresen, & Jackson, 2001; Kinny & Maas, 2003). The ²⁰⁶Pb/²³⁸U ages of the zircon grains were used to calculate the initial ¹⁷⁶Hf/¹⁷⁷Hf ratios and $\varepsilon_{Hf}(t)$. Twelve spots on zircons were analyzed for each of Jiangjunshan and Dakalasu, yielding variable $\varepsilon_{Hf}(t)$ values of -6.0 to +5.3 and -7.0 to +5.6, respectively. The yielded two-stage (T_{DM2}) model ages generally vary from 1.60 to 2.44 Ga (an average of 1.99 Ga) and 1.58 to 2.50 Ga (an average of 1.91 Ga), respectively.

5 | DISCUSSION

5.1 | Age of the Jiangjunshan and Dakalasu alkalifeldspar granites

The Jiangjunshan alkali-feldspar granite has been identified as a Jurassic granite complex (~151 Ma) using whole-rock Rb–Sr isotope data (Chen & Jahn, 2002) and by zircon U–Pb dating of 13 spots from one

Falle Iai Falle Iai Jai	٩	D	Th/U	²⁰⁷ Pb/ ²	²⁰⁶ Pb	²⁰⁷ Pb/	/ ²³⁵ U	²⁰⁶ Pb/	/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶	éPb	²⁰⁷ Pb/ ²³	¹⁵ U	²⁰⁶ Pb/ ²³	⁸ U
0.05781 0.00379 0.331/1 0.01720 0.01120 0.01220 0.00220 2.210 2.21 2.21 2.21 2.21 2.21 0.12 0.00120 <td< th=""><th>(mqq)</th><th></th><th>) Î</th><th>Ratio</th><th>1σ</th><th>Ratio</th><th>1σ</th><th>Ratio</th><th>1σ</th><th>Age (Ma)</th><th>1σ</th><th>Age (Ma)</th><th>1σ</th><th>Age (Ma)</th><th>1σ</th></td<>	(mqq)) Î	Ratio	1σ	Ratio	1σ	Ratio	1σ	Age (Ma)	1σ	Age (Ma)	1σ	Age (Ma)	1σ
0000 000000 001730 0002440 000460 001700 001730 001730 001730 001730 001730 001730 001730 0002730 000260 001430 001730 000730 001730 000730 001730 000730 001730 000730 000730 000730 000730 000730 000730 000730 000730 000730 000730 000730 000730 000730 0000730 000730 000730															
044 0105706 000731 0104750 0100750 0107310 01007310 0103110 01	245.5		0.59	0.05783	0.00330	0.33171	0.01759	0.04172	0.00083	524	124	291	13	263	5
01 0103510 0103363 013136 010437 010347 <td>391.8</td> <td></td> <td>0.64</td> <td>0.05706</td> <td>0.00271</td> <td>0.34005</td> <td>0.01520</td> <td>0.04279</td> <td>0.00085</td> <td>494</td> <td>104</td> <td>297</td> <td>12</td> <td>270</td> <td>5</td>	391.8		0.64	0.05706	0.00271	0.34005	0.01520	0.04279	0.00085	494	104	297	12	270	5
044 0.06447 0.00234 0.38775 0.01326 0.04276 0.00035 0.17 17	167.2		0.51	0.05510	0.00289	0.31718	0.01586	0.04235	0.00079	417	117	280	12	267	5
01 01<	797.5		0.44	0.06447	0.00234	0.38775	0.01340	0.04277	0.00056	767	76	333	10	270	ო
033 00373 000311 033803 01012 00470 000313 00132 001313 000313 001313 001313 000313 001313 000313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001314 001313 001314 001314 001314 001314 001313 001313 001313 001313 001313 001313 001313 001313 001313 001313 001314	205.9		0.46	0.07392	0.00392	0.42738	0.02186	0.04254	0.00086	1039	107	361	16	269	5
035 005320 040506 01116 04273 00005 344 57 345 9 270 4 024 005132 000503 01146 04275 00005 254 9 270 4 025 005913 000503 01487 00428 00057 254 10 271 1 025 005913 000204 03573 001487 00428 000057 251 126 279 2 025 004981 00029 03541 01418 04428 000051 156 126 270 2 026 013071 00231 02110 04428 000051 157 266 17 256 16 271 267 2 0301 013071 00023 02491 00148 00423 00033 256 17 266 17 266 17 2 2 2 2 2 2 2 2	381.8		0.53	0.05768	0.00281	0.33803	0.01527	0.04246	0.00065	517	107	296	12	268	4
054 005126 000040 030753 001186 002475 000132 023975 001183 002475 001283 001283 001283 001283 001283 001283 001283 001283 001283 001283 001283 001283 001283 001283 000394 126 <t< td=""><td>1645.0</td><td></td><td>0.35</td><td>0.06720</td><td>0.00220</td><td>0.40506</td><td>0.01210</td><td>0.04273</td><td>0.00067</td><td>844</td><td>67</td><td>345</td><td>6</td><td>270</td><td>4</td></t<>	1645.0		0.35	0.06720	0.00220	0.40506	0.01210	0.04273	0.00067	844	67	345	6	270	4
0123 005031 000222 023935 001439 000249 001430 001439 000249 001430 001439 000434 001430 001439 000434 001439 000434 000339 033532 001439 000437 110 126 126 127 129 249 1 0.145 000339 035711 001430 004232 000430 1367 112 126 127 129 149 0.146 000339 035711 001310 04422 000037 1267 126 127 226 12 246 0.146 000330 035711 001310 004231 000420 1267 126 247 126 247 126 247 126 246 12 246 12 246 12 246 12 246 12 247 126 247 126 247 12 247 126 247 126 247 126 126	525.2		0.54	0.05128	0.00204	0.30753	0.01186	0.04275	0.00062	254	88	272	6	270	4
039 0.07987 0.00272 0.53752 0.01808 0.0471 0.00374 0.53752 0.01808 0.0471 0.0211 0.0213 0.01487 0.00498 0.00337 0.01487 0.00498 0.00337 0.01487 0.00430 0.00037 1161 1153 245 117 212 269 14 0.148 0.00349 0.033710 0.03448 0.04302 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.04303 0.00303 0.03514 0.01303 0.04203 0.00033 567 78 306 271 267 78 0.10 0.00303 0.29513 0.0137 0.00424 0.00033 101 12 271 273 263 78 0.11 0.00337 0.29513 0.0137 0.00424 0.00033 101 12 271 273 273 0.11 0.00370 0.29114 0.01324 0.00033	396.0		0.52	0.05013	0.00222	0.29835	0.01253	0.04288	0.00059	211	104	265	10	271	4
047 0.05149 0.00283 0.30357 0.29759 0.01487 0.00283 0.39758 0.39759 0.39759 0.30147 0.39759 0.30147 0.30247 0.39759 0.30141 0.44308 0.00037 0.39759 0.011310 0.44308 0.00037 1.397 1.26 1.72 2.89 1.8 0.42 0.00481 0.00280 0.37448 0.04120 0.00432 0.00037 1.81 1.26 1.72 2.87 1 0.42 0.005116 0.00328 0.35448 0.01131 0.04256 0.00034 5.67 78 360 17 2.75 17 2 0.201 0.00328 0.35448 0.01131 0.04256 0.00034 5.67 78 360 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2	1096.2		0.39	0.07987	0.00272	0.53752	0.01830	0.04751	0.00059	1194	68	437	12	299	4
0.03 0.037 0.29759 0.02111 0.04308 0.00011 0.04308 0.00357 0.27750 0.27111 0.11310 0.04430 1.15 2.55 1.15 2.75 1.27 2.72 1.5 0.448 0.00249 0.01468 0.04226 0.00043 557 78 330 12 2.75 12 2.75 14 0.40 0.00539 0.01468 0.04281 0.00048 2.65 78 330 10 2.65 14 12 2.71 14 0.40 0.005116 0.00230 0.29513 0.01792 0.04075 0.00056 1139 81 2.71 14 2.85 14 2.85 14 0.44 0.00319 0.29511 0.01327 0.04075 0.00056 1139 16 2.86 14 12 2.86 14 0.44 0.00240 0.01321 0.01321 0.00431 0.00436 16 2.86 14 12 2.86 <	490.5		0.47	0.05149	0.00283	0.30632	0.01487	0.04269	0.00067	261	126	271	12	269	4
056 004981 000269 014460 00422 000073 187 126 267 267 267 0448 000509 003711 001310 004204 000067 635 833 310 10 255 78 0448 000517 000323 049828 001190 004247 000058 557 78 305 17 247 74 0700 005116 000233 049129 001477 000424 000058 113 81 136 17 263 74 0701 000231 001157 004241 000058 1139 81 211 17 263 17 0742 000219 01157 01421 00026 133 133 263 14 273 263 14 051 00507 01324 01431 004313 000059 143 14 263 273 051 050143 000121 010127 <td>240.2</td> <td></td> <td>0.25</td> <td>0.04928</td> <td>0.00357</td> <td>0.29759</td> <td>0.02111</td> <td>0.04308</td> <td>0.00091</td> <td>161</td> <td>163</td> <td>265</td> <td>17</td> <td>272</td> <td>9</td>	240.2		0.25	0.04928	0.00357	0.29759	0.02111	0.04308	0.00091	161	163	265	17	272	9
046 006089 000240 035711 001310 0.04204 0.00264 0.03514 0.01136 0.00264 0.03514 0.01136 0.00264 0.00264 0.01237 0.04286 0.00056 547 78 306 8 271 0 0.01 0.00233 0.49828 0.01198 0.04286 0.00056 2109 70 411 12 176 245 244 0.02 0.00233 0.49828 0.01193 0.04470 0.00056 2109 70 411 12 71 24 249 24 246	356.1		0.56	0.04981	0.00269	0.29059	0.01468	0.04222	0.00073	187	126	259	12	267	5
04.4 005872 000208 0.35148 001108 0.04268 000285 567 78 306 8 271 4 0.20 0.13077 0.00523 0.49828 0.01790 0.02768 0.00056 2109 70 411 12 176 4 0.20 0.05116 0.00230 0.49828 0.01747 0.00454 0.00056 1339 81 386 139 268 4 0.44 0.05146 0.00331 0.4522 0.01811 0.04247 0.00056 1339 81 386 139 136 136 149 256 14 0.44 0.05146 0.00249 0.04317 0.04247 0.00059 136 136 149 126 149	786.9		0.48	0.06089	0.00240	0.35711	0.01310	0.04204	0.00067	635	83	310	10	265	4
020 013077 000523 0.49828 0.01790 0.02768 0.01797 0.00523 0.49828 0.01797 0.00239 0.29107 0.01237 0.00056 2139 71 12 176 7 0.27 0.07762 0.00318 0.4322 0.01337 0.04247 0.00065 1139 81 259 10 258 14 258 14 268 16	1619.4		0.42	0.05872	0.00208	0.35148	0.01108	0.04286	0.00058	567	78	306	œ	271	4
090 005116 0.00230 0.29107 0.01237 0.04076 0.00065 1139 129 10 258 1 0217 007762 0.00318 0.46322 0.01818 0.04247 0.00055 1139 81 386 13 268 14 044 0.0517 0.00367 0.01157 0.04472 0.00059 330 166 263 14 265 16 044 0.05160 0.00249 0.01157 0.04122 0.00093 333 103 263 14 265 16 263 16 263 16 16 263 16 16 263 16 263 16 263 16 263 16 263 16 263 16 263 16 263 16 263 16 263 16 263 263 16 263 16 263 16 263 263 263 263 263 263 263	1559.5		0.20	0.13077	0.00523	0.49828	0.01790	0.02768	0.00066	2109	70	411	12	176	4
0.27 0.07762 0.00318 0.44322 0.01818 0.04247 0.00065 1139 136 13 268 4 0.64 0.05217 0.00347 0.29551 0.01817 0.04192 0.00093 300 166 263 14 265 6 0.641 0.05176 0.00347 0.29515 0.01157 0.04132 0.00093 333 103 263 14 265 6 0.651 0.00243 0.29515 0.01157 0.04132 0.00073 333 103 263 163 263 6 0.639 0.00243 0.01353 0.01324 0.01323 0.00064 1459 89 311 10 263 6 7 7 263 6 7 263 6 6 7 6 7 6 7 6 7 6 7 7 263 6 7 6 7 7 7 7 7 7	642.5		0.90	0.05116	0.00230	0.29107	0.01237	0.04076	0.00068	256	104	259	10	258	4
0.64 0.05217 0.00367 0.29551 0.01841 0.04192 0.00093 300 166 263 14 265 6 0.42 0.05176 0.00293 0.30450 0.01157 0.04231 0.00060 276 88 271 9 267 4 0.51 0.05160 0.00243 0.30450 0.01157 0.04313 0.00060 276 88 271 9 267 4 0.51 0.05070 0.00243 0.30452 0.01323 0.04313 0.00069 198 267 10 273 5 0.39 0.05160 0.00243 0.3442 0.04313 0.00069 145 10 273 16 0.49 0.00136 0.3445 0.01324 0.04313 0.00069 145 10 273 16 0.49 0.00136 0.3446 0.01324 0.04317 0.00269 145 16 273 17 16 273 16	1161.4		0.27	0.07762	0.00318	0.46322	0.01818	0.04247	0.00065	1139	81	386	13	268	4
0.42 0.05176 0.00209 0.30650 0.01157 0.04231 0.00060 276 88 271 9 267 4 0.83 0.05160 0.00243 0.29515 0.01277 0.04156 0.00073 333 103 263 10 263 5 0.5160 0.00243 0.30462 0.01323 0.04313 0.00059 198 263 10 263 5 4 0.39 0.05179 0.00244 0.33684 0.01438 0.00057 654 89 311 10 263 5 4 0.49 0.05179 0.00244 0.04313 0.00057 654 89 311 10 263 5 0.49 0.00126 0.30462 0.04313 0.00057 654 89 311 10 263 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	270.3		0.64	0.05217	0.00367	0.29551	0.01841	0.04192	0.00093	300	166	263	14	265	9
083 005160 000243 0.29515 001277 0.04156 0.00073 333 103 263 10 263 5 0.51 0.05007 0.00219 0.30462 0.01323 0.04313 0.00697 198 99 270 10 263 5 0.39 0.06137 0.00246 0.35884 0.01364 0.04318 0.00067 654 89 311 10 263 5 0.49 0.09158 0.00468 0.01364 0.04329 0.00085 1459 16 273 5 273 5 0.49 0.05160 0.00097 0.31051 0.04377 0.00049 280 43 16 273 5 0.41 0.05560 0.00437 0.00046 143 267 5 274 2 0.22 0.05560 0.00426 0.04377 0.00056 343 267 5 274 2 0.23 0.05560 0.0046 13	591.4		0.42	0.05176	0.00209	0.30650	0.01157	0.04231	09000.0	276	88	271	6	267	4
0.51 0.05007 0.00219 0.30462 0.01323 0.00431 0.00647 198 19 270 10 272 4 0.39 0.06137 0.00254 0.35884 0.01364 0.04188 0.00667 654 89 311 10 264 4 0.49 0.09158 0.35864 0.01364 0.04379 0.00667 654 89 311 10 264 4 0.75 0.05196 0.00099 0.31051 0.00437 0.0036 1459 98 443 16 273 5 273 5 0.49 0.05560 0.00099 0.30601 0.00437 0.00046 280 275 5 274 3 0.211 0.05576 0.000575 0.04344 0.00056 354 36 443 276 274 2 0.210 0.05576 0.000575 0.04344 0.00056 354 36 247 2 274 2 <	364.7		0.83	0.05160	0.00243	0.29515	0.01277	0.04156	0.00073	333	103	263	10	263	5
0.39 0.06437 0.00254 0.35884 0.01364 0.01364 0.01364 0.01488 0.00418 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01489 0.00418 0.00428 0.00430 0.00366 1459 98 311 10 264 4 0.75 0.005190 0.00097 0.31051 0.00424 0.04337 0.00049 280 433 16 273 5 0.75 0.00576 0.00097 0.31051 0.00642 0.04377 0.00045 354 36 267 5 274 3 0.71 0.05504 0.00078 0.3174 0.00036 374 36 367 275 5 274 3 0.32 0.00576 0.00042 0.04349 0.00036 374 36 276 5 274 3 0.31 0.00538 0.00042 0.00042 0.00042 0.00042	388.1		0.51	0.05007	0.00219	0.30462	0.01323	0.04313	0.00069	198	66	270	10	272	4
0.49 0.09158 0.00468 0.54660 0.02402 0.04329 0.00086 1459 98 443 16 273 5 0.76 0.05190 0.00097 0.31051 0.00642 0.04337 0.00049 280 43 275 5 274 3 0.79 0.05360 0.00097 0.31051 0.00647 0.04077 0.00049 280 43 267 5 274 3 0.21 0.05504 0.00078 0.04344 0.00046 317 44 279 5 274 3 0.232 0.05504 0.00138 0.31158 0.00449 0.00046 413 36 274 3 1.06 0.05328 0.00138 0.31158 0.00449 0.00046 413 36 274 2 <td>656.4</td> <td></td> <td>0.39</td> <td>0.06137</td> <td>0.00254</td> <td>0.35884</td> <td>0.01364</td> <td>0.04188</td> <td>0.00067</td> <td>654</td> <td>89</td> <td>311</td> <td>10</td> <td>264</td> <td>4</td>	656.4		0.39	0.06137	0.00254	0.35884	0.01364	0.04188	0.00067	654	89	311	10	264	4
0.76 0.05190 0.00097 0.31051 0.00642 0.04337 0.00049 280 43 275 5 274 3 0.49 0.05360 0.00097 0.30080 0.00624 0.04077 0.00045 354 36 267 5 274 3 0.21 0.05360 0.00087 0.30680 0.006545 0.04344 0.00056 354 36 267 5 274 2 0.21 0.05276 0.00087 0.31611 0.00555 0.04344 0.00036 317 44 279 5 274 2 0.32 0.05328 0.00138 0.31158 0.004249 0.00077 343 59 77 268 5 0.17 0.05328 0.00120 0.32029 0.01101 0.04273 0.00119 343 59 77 268 5 0.17 0.05445 0.00119 376 70 70 267 7 0.18	366.1		0.49	0.09158	0.00468	0.54660	0.02402	0.04329	0.00086	1459	98	443	16	273	5
0.76 0.05190 0.00097 0.31051 0.00642 0.04337 0.00049 280 43 275 5 274 3 0.49 0.05360 0.00097 0.30080 0.006545 0.04347 0.00065 354 36 267 5 274 3 0.21 0.05276 0.00087 0.30680 0.04344 0.00055 317 44 279 5 274 3 0.21 0.05276 0.00087 0.04344 0.00036 317 44 279 5 274 3 0.32 0.05504 0.00138 0.31158 0.06454 0.00276 343 59 70 5 274 3 1.06 0.05328 0.00130 0.31158 0.04249 0.00077 343 59 275 7 268 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
0.49 0.05346 0.00099 0.30080 0.00624 0.04077 0.00045 354 36 267 5 258 4 0.21 0.05276 0.00087 0.31611 0.00595 0.04344 0.00036 317 44 279 5 274 2 0.32 0.05504 0.00078 0.49721 0.00852 0.04550 0.00046 413 36 410 6 409 3 1.06 0.05328 0.00138 0.31158 0.004249 0.00077 343 59 275 7 268 5 0.17 0.05445 0.00120 0.32029 0.01101 0.04273 0.00119 398 55 282 8 270 7 0.83 0.06451 0.00120 0.31094 0.04255 0.00139 398 55 282 7 268 7 0.83 0.06451 0.072455 0.00129 0.31094 0.04255 0.00139 375 7	774.6		0.76	0.05190	0.00097	0.31051	0.00642	0.04337	0.00049	280	43	275	5	274	ო
0.21 0.05276 0.00087 0.31611 0.00595 0.04344 0.00036 317 44 279 5 274 2 0.32 0.05504 0.0078 0.49721 0.00852 0.04344 0.00036 317 44 279 5 274 2 1.06 0.05328 0.00138 0.31158 0.00554 0.04249 0.00077 343 59 275 7 268 5 0.17 0.05465 0.00120 0.32029 0.01101 0.04273 0.00119 398 55 282 8 270 7 0.83 0.06451 0.00120 0.31094 0.04265 0.00139 398 55 282 8 270 7 0.83 0.06451 0.00120 0.31094 0.04265 0.00183 767 70 369 7 7 268 5 7 7 268 5 7 7 7 7 7 7 7	1768.2		0.49	0.05360	0.00099	0.30080	0.00624	0.04077	0.00065	354	36	267	5	258	4
0.32 0.05504 0.00078 0.49721 0.00852 0.06550 0.00046 413 36 410 6 409 3 1.06 0.05328 0.00138 0.31158 0.00554 0.04249 0.00077 343 59 275 7 268 5 0.17 0.05465 0.00120 0.32029 0.01101 0.04273 0.00119 398 55 282 8 270 7 268 5 0.83 0.06451 0.00120 0.37703 0.01296 0.04265 0.00083 767 70 325 10 269 5 5 269 5	1971.0		0.21	0.05276	0.00087	0.31611	0.00595	0.04344	0.00036	317	44	279	5	274	2
1.06 0.05328 0.00138 0.31158 0.00754 0.00077 343 59 275 7 268 5 0.17 0.05465 0.00120 0.32029 0.01101 0.04273 0.00119 398 55 282 8 270 7 0.83 0.06451 0.00211 0.37703 0.01296 0.04265 0.00083 767 70 325 10 269 5 0.06 0.05301 0.00102 0.31094 0.04322 0.00138 328 44 275 7 269 5	551.0		0.32	0.05504	0.00078	0.49721	0.00852	0.06550	0.00046	413	36	410	9	409	ო
0.17 0.05465 0.00120 0.32029 0.01101 0.04273 0.00119 398 55 282 8 270 7 0.83 0.06451 0.00211 0.37703 0.01296 0.04265 0.00083 767 70 325 10 269 5 0.06 0.05301 0.00102 0.31094 0.04322 0.00138 328 44 275 7 273 8	481.3		1.06	0.05328	0.00138	0.31158	0.00954	0.04249	0.00077	343	59	275	7	268	5
0.83 0.06451 0.00211 0.37703 0.01296 0.04265 0.00083 767 70 325 10 269 5 0.06 0.05301 0.00102 0.31094 0.04322 0.00138 328 44 275 7 273 8	3610.9		0.17	0.05465	0.00120	0.32029	0.01101	0.04273	0.00119	398	55	282	Ø	270	7
0.06 0.05301 0.00102 0.31094 0.00901 0.04322 0.00138 328 44 275 7 273 8	300.1		0.83	0.06451	0.00211	0.37703	0.01296	0.04265	0.00083	767	70	325	10	269	5
	2219.7		0.06	0.05301	0.00102	0.31094	0.00901	0.04322	0.00138	328	44	275	7	273	8

LIU ET AL.

TABLE 2 Zircon LA-ICP-MS U-Pb data of the Jiangjunshan alkali-feldspar granite and Dakalasu alkali-feldspar granite in the southern Altay Range

-WILEY 535

TABLE 2	(Continue	d)														
Ö	Чd	Ę	Π	Th/U	²⁰⁷ Pb/ ²	²⁰⁶ Pb	²⁰⁷ Pb/	⁻²³⁵ U	²⁰⁶ Pb/	/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ I	Pb	²⁰⁷ Pb/ ²³⁵	Ū	²⁰⁶ Pb/ ²³⁸	Ű
	(mdd)	(mdd)	(mqq)		Ratio	1σ	Ratio	1σ	Ratio	1σ	Age (Ma)	1σ	Age (Ma)	1σ	Age (Ma)	1σ
6	123.7	599.5	2426.8	0.25	0.05395	0.00084	0.31795	0.00685	0.04277	0.00070	369	68	280	5	270	4
10	15.6	173.7	278.6	0.62	0.05361	0.00179	0.31624	0.01125	0.04297	0.00086	354	76	279	6	271	5
11	121.6	259.7	2465.8	0.11	0.06007	0.00084	0.35245	0.00738	0.04262	0.00072	606	30	307	9	269	4
12	87.8	156.6	1788.9	0.09	0.05406	0.00077	0.31964	0.00686	0.04280	0.00056	372	31	282	5	270	ო
13	126.1	531.7	2508.6	0.21	0.06682	0.00204	0.38282	0.01017	0.04303	0.00141	831	63	329	7	272	6
14	54.6	466.8	1025.1	0.46	0.05228	0.00097	0.30628	0.00635	0.04249	0.00040	298	43	271	5	268	2
15	119.3	386.8	2516.5	0.15	0.05786	0.00085	0.34352	0.01042	0.04274	0.00089	524	33	300	ω	270	5
Note. LA-	ICP-MS = l	aser ablation	inductively c	coupled plas	sma-mass spect	trometry.										

FIGURE 7 Laser ablation inductively coupled plasma-mass spectrometry U-Pb concordant diagrams for zircons from the (a) Jiangjunshan and (b) Dakalasu granites

sample (AT-1) of two-mica monzogranite (Wang, Jahn et al., 2014a). In addition, the Jiangjunshan alkali-feldspar granite has been dated to 220 Ma using muscovite ⁴⁰Ar-³⁹Ar isotope data (Zhang, Hu, Zhang, Fan, & Pu, 1994) and 235 Ma using whole-rock Rb-Sr isotope data from low ⁸⁷Rb-⁸⁶Sr samples (Wang, Zhao, & Zou, 1998). During the long-term evolution of the orogenic belt, the formation and evolution of Altay granite were influenced by multiperiod tectonic activities and magmatism. The isotopic closed system could be sometimes destroyed by magmatism and hydrothermal activities in different periods (Cliff, 1985; Dallmeyer & VanBreeman, 1981; Harrison & McDougall, 1982; Mezger, 1990; Mezger, Hanson, & Bohlen, 1989). Therefore, the age obtained by isotope systems with low closure temperature, such as K-Ar and Ar-Ar methods of potassium-rich mineral (K-feldspar and muscovite), may not accurately represent the real rock-forming age. Zircon U-Pb isotope dating is the best way to determine the granite formation age due to its relatively high closed temperature. In this study, the new LA-ICP-MS zircon U-Pb isotope method was used to confirm the formation age of the Jiangjunshan and Dakalasu alkali-feldspar granites, showing that these granites were emplaced at the Middle Permian (268.3 \pm 1.9 and 270.4 \pm 1.9 Ma).

Recent studies have established the Permian as one of the most important periods of tectonomagmatic activities in the Chinese Altay. More than 20 Permian granitic plutons have been identified in the past decade (Table 4). Their formation ages range from 290 to 270 Ma, with a peak age of ca. 278 Ma (Tong, Wang et al., 2014). Certain mafic-

TABLE 3 Zircon Lu-Hf isotope data for the Jiangjunshan alkali-feldspar granite and Dakalasu alkali-feldspar granite in the southern Altay Range

Sample	Age (Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	1σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	1σ	ε _{Hf} (0)	$\epsilon_{\rm Hf}(t)$	T _{DM1}	T _{DM2}	f _{Lu/Hf}
Jiangjunshan												
JJS-01	270	0.282719	0.000009	0.030616	0.000359	0.001147	0.000012	-1.9	3.8	758	1714	-0.97
JJS-02	267	0.282587	0.000012	0.049494	0.000360	0.001791	0.000013	-6.6	-1.0	962	2068	-0.95
JJS-03	270	0.282545	0.000012	0.053250	0.000094	0.001926	0.000003	-8.0	-2.5	1026	2180	-0.94
JJS-04	269	0.282487	0.000009	0.068480	0.000323	0.002515	0.000011	-10.1	-4.6	1126	2333	-0.92
JJS-05	268	0.282607	0.000009	0.033780	0.000096	0.001250	0.000003	-5.8	-0.2	919	2015	-0.96
JJS-07	270	0.282629	0.000012	0.056775	0.001295	0.002080	0.000046	-5.1	0.5	909	1957	-0.94
JJS-08	270	0.282761	0.000007	0.024792	0.000463	0.000908	0.000016	-0.4	5.3	694	1602	-0.97
JJS-09	271	0.282627	0.000009	0.050717	0.000572	0.001805	0.000017	-5.1	0.5	903	1960	-0.95
JJS-10	272	0.282681	0.000011	0.039733	0.000868	0.001408	0.000029	-3.2	2.4	817	1816	-0.96
JJS-11	267	0.282684	0.000011	0.041540	0.000140	0.001535	0.000005	-3.1	2.5	817	1809	-0.95
JJS-12	265	0.282447	0.000009	0.060464	0.000250	0.002187	0.000009	-11.5	-6.0	1174	2439	-0.93
Dakalasu												
KLS-10-01-01	270	0.282659	0.000009	0.055497	0.000462	0.002015	0.000016	-4.0	1.6	863	1877	-0.94
KLS-10-01-02	270	0.282701	0.000009	0.022876	0.000101	0.000872	0.000003	-2.5	3.3	778	1766	-0.97
KLS-10-01-03	270	0.282545	0.000010	0.062283	0.000743	0.002200	0.000028	-8.0	-2.5	1033	2181	-0.93
KLS-10-01-04	270	0.282770	0.000010	0.034064	0.000365	0.001258	0.000013	-0.1	5.6	688	1579	-0.96
KLS-10-01-05	270	0.282426	0.000014	0.096272	0.001345	0.003737	0.000053	-12.2	-7.0	1258	2498	-0.89
KLS-10-01-06	270	0.282609	0.000010	0.049007	0.000418	0.001817	0.000013	-5.8	-0.2	930	2011	-0.95
KLS-10-1-08	270	0.282623	0.000007	0.042165	0.000197	0.001655	0.000007	-5.3	0.4	906	1973	-0.95
KLS-10-1-09	270	0.282697	0.000010	0.031561	0.000154	0.001190	0.000005	-2.6	3.1	790	1775	-0.96
KLS-10-1-10	270	0.282645	0.000011	0.041012	0.001000	0.001522	0.000036	-4.5	1.2	872	1916	-0.95
KLS-10-1-11	270	0.282737	0.000009	0.021392	0.000682	0.000778	0.000022	-1.2	4.6	725	1667	-0.98
KLS-10-1-12	270	0.282696	0.000009	0.035148	0.000807	0.001399	0.000031	-2.7	3.0	795	1777	-0.96

ultramafic intrusions, such as the Kalatonke intrusions, were emplaced during 280 to 260 Ma (Chen et al., 2006; Han et al., 2004). In addition to magmatic activities, coeval ultrahigh-temperature metamorphism is also widely distributed in the Chinese Altay. Metamorphism of granulite and paragneiss took place during 295 to 280 Ma, according to the zircon U–Pb ages (Tong, Xu et al., 2014a; Wang, Wei, Wang, Lou, & Chu, 2009; Yang, Li, Liang, & Wang, 2015).

Geographically, most of the plutons or dykes are restricted to being distributed along the NW-SE trending faults at the southern Chinese Altay (Figure 1), and this type of distribution may imply the special origin and tectonic setting for the Permian magmas.

5.2 | Petrogenetic type: A-type affinity

The Jiangjunshan alkali-feldspar granite has high Na₂O + K₂O and high-field strength element content and low CaO, Sr, and Eu content with high FeO^T/MgO and Ga/Al ratio values, exhibiting characteristics of A-type granite (Bonin, 2007; Collins et al., 1982; King et al., 1997; Loiselle & Wones, 1979; Whalen et al., 1987). According to various discrimination diagrams of K₂O/MgO, K₂O + Na₂O, Nb, and Y versus 10,000 Ga/Al, all samples from the Jiangjunshan alkali-feldspar granite and most samples from the Dakalasu alkali-feldspar granite can be plotted in the "A-type granite" field (Eby, 1990; Whalen et al., 1987; Figure 8). Some coeval granites, such as Lamazao granite, Aweitan granite, and Chaergan granite, also show A-type granite affinity (Tong, Wang, et al., 2014; Wang, Hong, Yong, Han, & Shi, 2005; Zhang et al., 2010). These A-type granites, together with the Jiangjunshan and Dakalasu A-type granites recognized in this study, indicate that the Middle Permian represents an important formation period of A-type granites.

In terms of tectonic setting, Eby (1992) divided A-type granites into A_1 and A_2 groups. The A_1 group is associated with mantle-derived magma and emplaced in anorogenic settings, such as hot spots, plumes, or continental rift zones. The A_2 group is derived from underplated mafic magma or melting of continental crust, which is related to postorogenic setting. Using the discrimination diagram of Eby (1992), the Middle Permian A-type granites, including the Jiangjunshan and Dakalasu A-type granites in this study, fall into the A_2 group (Figure 9), suggesting that these granites formed in a postorogenic tectonic setting.

5.3 | Source and petrogenesis

Many compositional variations have been found for A-type granites, and there is no consensus on their origin (Bonin, 2007). A-type granites are genetically diverse and can be produced from various sources and by different processes; thus, several origin models have been proposed, including (a) fractional crystallization of mantlederived melts (Anderson, Frost, & Frost, 2003; Jiang, Zhang, Zhou, & Liu, 2009; Mansouri Esfahani, Khalili, Kochhar, & Gupta, 2010; Namur et al., 2011), (b) partial melting of crustal rocks (Clemens, Holloway, & White, 1986; Dall'Agnol, Scaillet, & Pichavant, 1999; Whalen et al., 1987), and (c) hybridization between anatectic crustal and mantle-derived magmas (Jung, Mezger, & Hoernes, 1998; Karsli

WILEY-

TABLE 4 Age data of Permian rocks in the Chinese Altay

No.	Location	Rock type	Age (Ma)	Methods	Terrane no.	References
1	Adenbluk	Granite	271 ± 5	Zircon SHRIMP	6	Tong et al., 2014b
2	Aweitan	Granite	271 ± 2	Zircon SHRIMP	4	Tong et al., 2014b
3	Buerjing	Granite	268 ± 5	Zircon SHRIMP	6	Tong et al., 2014b
4	Xibodu	Granite	267 ± 6	Zircon SHRIMP	5	Tong et al., 2014b
5	Daqiaonan	Granite	267 ± 5	Zircon SHRIMP	3	Tong et al., 2014b
6	Altai	Gabbro	281 ± 6	Zircon SHRIMP	4	Tong et al., 2014b
7	Buerjin	Granodiorite	286.3 ± 1.6	Zircon SHRIMP	6	Zhang et al., 2012
8	Fuyun	Granitic dyke	252.2 ± 2.2	Zircon SHRIMP	5	Zhang et al., 2012
9	Fuyun	Migmatite	283 ± 4	Zircon SHRIMP	5	Zhang et al., 2012
10	Buerjing	Keyinblak two-mica granite	278.6 ± 3.5	Zircon LA-ICP-MS	4	Li et al., 2012b
11	Qinghe	Gabbro	272.5 ± 2.4	Zircon SHRIMP	Boundary of 4 and 5	Zhang et al., 2010
12	Dasazi	Bimodal	269.4 ± 2.5	Zircon SHRIMP	3	Zhang et al., 2010
13	Chaergan	Granite	277.2 ± 3.2	Zircon SHRIMP	Boundary of 4 and 5	Zhang et al., 2010
14	Buksala	Porphyritic biotite monzonite granite	277.0 ± 2.4	Zircon LA-ICP-MS	4	Gao et al., 2010
15	Sorkuduk	Porphyritic biotite monzonite granite	280.9 ± 4.3	Zircon LA-ICP-MS	4	Gao et al., 2010
16	Qinghe	Blocket pegmatite	275.5 ± 4.2	Zircon LA-ICP-MS	3	Ren et al., 2011
17	Buerjing	Yelaman pegmatite	281 ± 10	Zircon SHRIMP	4	Sun et al., 2009b
18	Fuyun	Acidic dyke	286 ± 12	Zircon SIMS	5	Briggs et al., 2007
19	Fuyun	Acidic dyke	278 ± 7	Zircon SIMS	5	Briggs et al., 2007
20	Altai	Sarbulake	275.1 ± 1.7	Zircon SHRIMP	5	Sun, Long, et al., 2009
21	Mayinebo	S-type granite	283 ± 4	Zircon SHRIMP	Boundary of 4 and 5	Zhou et al., 2007
22	Fuyun	Diorite	277 ± 10	SIMS	5	Gong et al., 2007
23	Mayinebo	Granitic mylonite	281 ± 4	Zircon SHRIMP	5	Zhou et al., 2007
24	Dakeshiken	Alkali-rich granite	286 ± 1	TIMS	6	Tong et al., 2006
25	Altai	Lamazhao	276 ± 9	Zircon SHRIMP	4	Wang et al., 2005
26	Kalatongke	Norite	287 ± 5	Zircon SHRIMP	5	Han et al., 2004
27	Wuqiagou	Mafic intrusive	257.4 ± 5.3	Zircon SHRIMP	5	Chen & Han, 2006
28	FuyunWuqiagou	Basic granulite	268.0 ± 5.5	Zircon SHRIMP	4	Chen et al., 2006
29	FuyunWuqiagou	Basic granulite	271.0 ± 5.0	Zircon SHRIMP	4	Chen et al., 2006
30	FuyunWuqiagou	Basic granulite	271.0 ± 6.0	Zircon SHRIMP	4	Chen et al., 2006
31	FuyunWuqiagou	Basic granulite	279.0 ± 5.6	Zircon SHRIMP	4	Chen et al., 2006

Note. LA-ICP-MS = laser ablation inductively coupled plasma-mass spectrometry.

et al., 2012; Pankhurst, Vernon, Turner, Schaefer, & Foden, 2011; Trumbull, Harris, Frindt, & Wigand, 2004; Yang, Wu, Chung, Wilde, & Chu, 2006).

Extensive fractional crystallization of mantle-derived mafic magma is unlikely to produce Jiangjunshan and Dakalasu alkali-feldspar granites. First, large volumes of mafic-intermediate rocks, as would be expected if extensive fractional crystallization occurred, are absent in the study area. Second, the Jiangjunshan and Dakalasu alkali-feldspar granites possess some negative $\varepsilon_{Hf}(t)$ values, precluding the conclusion that the Jiangjunshan and Dakalasu alkali-feldspar granites were directly derived from the mantle source. On the basis of the geochemical and Sr-Nd-Hf isotopic data, Tong, Xu et al. (2014a) suggested that some Permian granitoids in the Chinese Altay were formed by fractionation of mantle-derived magmas contaminated by crustal material. As the Jiangjunshan and Dakalasu alkali-feldspar granites show much lower $\varepsilon_{Hf}(t)$ values than those of other granitoids (Figure 10), more crustal material was likely involved in the origin of the Jiangjunshan and Dakalasu alkali-feldspar granites. The zircon Hf isotope of the Jiangjunshan and Dakalasu alkali-feldspar granites is relatively uniform (with approximately 13 ϵ units, ranging from -7.0 to 5.6). Because the zircon Hf isotope does not change during partial melting or fractional crystallization, its heterogeneity most likely indicates that the Jiangjunshan and Dakalasu alkali-feldspar granites were derived from a mixed source, that is, partly juvenile and partly old crust (Yang et al., 2006).

The plot of La/Sm versus La shown in Figure 11a indicates a Rayleigh fractionation in a closed system during the evolutional process of the Jiangjunshan and Dakalasu alkali-feldspar granites. As shown in Figure 11b and 11c, fractional crystallization of plagioclase ± alkali-feldspar accounts for the change of Rb, Ba, and Sr with Eu. Depletion of Nb, Ta, Ti, and P in the Jiangjunshan and Dakalasu alkali-feldspar granites may indicate fractional crystallization of a titanium-rich mineral phase and apatite during magmatic evolution (Figure 11d).

FIGURE 8 Chemical classification diagrams: (a) K₂O/MgO versus 10,000Ga/Al; (b) K₂O + Na₂O versus 10,000Ga/Al; (c) Nb versus 10,000Ga/Al; and (d) Y versus 10,000Ga/AI

5.4 | Implications for tectonic evolution of the Chinese Altay

In this study, two Permian A-type granites are identified. In addition to the Jiangjunhshan and Dakalusu A-type granites, other coeval A-type granites are also identified in the Chinese Altay orogen with an intrusion age younger than 300 Ma, and these A-type granitic plutons are linearly distributed in the southern Chinese Altay (Figure 1). Several other tectonothermal events that are mainly bounded between the Abgong Fault and Ergis Fault and closely associated temporally with these Atype granites have also been reported. They include the following:

1. High-temperature (HT) and low-pressure metamorphism: A pelitic granulite has been confirmed with peak conditions of T = 780-800 °C and P = 5-6 kbar. SHRIMP zircon U-Pb dating presented a metamorphic age of 292.8 \pm 2.3 Ma (Wang et al., 2009). The

sillimanite-bearing metapelitic schist (635-670 °C and 5.8-6.8 kbar) was dated as 299.2 ± 3.4 Ma (Wang, Wei, Zhang, Chu, Zhao, & Liu, 2014b). Recently, two ~280-Ma pelitic granulites were identified, and the P-T estimates indicate peak conditions of >940 °C and 7.8–10 kbar and 970 °C and ~8 kbar, respectively (Li, Zhang, Chen, Zheng, Hollings, Wang, & Fang, 2014a; Tong, Xu et al., 2014a). These HT to ultrahigh-temperature and low-pressure metamorphic rocks reflect a high heat flow in the extensional environment in the Chinese Altay orogen during the Permian.

2. Mafic-ultramafic rock: Permian mafic-ultramafic intrusions or dykes are widely distributed only along the Irtish suture zone, and they comprise, from west to east, the Hongguleneng maficultramafic complex (273.3 ± 2.6 Ma; Zhang et al., 2010), the Qiemuqieke hornblende-bearing gabbro (276.0 ± 2.1 Ma; Wan et al., 2013), the Kekesazi gabbro (281.2 ± 1.8 Ma) and mafic

 Jiangjunshan Dakalasu

0 Changan Aweitan + Lamazao

0

540 WILEY

FIGURE 10 Hf isotopic diagram of the Jiangjunshan and Dakalasu pluton

dykes (279.6 \pm 3.6 Ma; Zhang, Zou et al., 2014a), the Bayituobie gabbro (282.2 \pm 2.8 Ma), the Jungeleke gabbro (283.6 \pm 1.8 Ma), and the Palasier River gabbro (283.4 \pm 1.4 Ma; Zhang, Zou et al., 2014a), the Kalatongke mafic-ultramafic complex (287 \pm 5 Ma; Han et al., 2004), and the Mayinebo gabbro (272.5 \pm 2.4 Ma) and the Dasazi gabbro (269.4 \pm 2.5 Ma; Zhang et al., 2010). Geochemical data imply that these mafic-ultramafic rocks are predominantly derived from a subduction-metasomatized mantle wedge with variable degrees of crustal contamination. The gabbroic intrusions in the Dasazi region are part of a bimodal suite composed of A-type granitic plutons and high-Ti gabbroic intrusions (Zhang et al., 2010).

- Felsic magmatism: In addition to A-type granites, some Permian Itype granites (~270 Ma) are identified. In general, these granites do not suffer from deformation and occur in a rounded shape in the southern Chinese Altay. Based on the geochemical data, these rocks are considered to be generated by differentiation of mantlederived magmas with variable crustal contamination (Tong, Wang et al., 2014).
- 4. Regional uplift. The ⁴⁰Ar/³⁹Ar dating results of amphiboles from granite and amphibolites exposed in Alahake and Fuyun of the southern Chinese Altay yield consistent ⁴⁰Ar/³⁹Ar plateau ages of 265.9 ± 1.7 and 270.1 ± 3.1 Ma, which are younger than the ages of Permian HT metamorphism (~299–280 Ma; Li, Yuan, Sun, Long, & Cai, 2015). These ages may represent the timing of cooling of the amphiboles below the closure temperature after Early Permian HT metamorphism. The regional cooling is commonly associated with the uplift geological units in response to the crustal deformation (Reiners & Brandon, 2006; Stockli, 2005).

The geodynamic setting of the Chinese Altay in the Permian is debated, including the activity of mantle plumes (Tong, Xu et al., 2014a; Yang et al., 2015; Zhang, Zou et al., 2014a; Zhang et al.,

FIGURE 11 Trace-element diagrams for the evolution of the Jiangjunshan and Dakalasu granites: (a) La/Sm versus La; (b) Rb/Sr versus Sr, partition coefficients of Rb and Sr are from Philpotts and Schnetzler (1970); (c) Eu/Eu* versus Ba, partition coefficients are from Philpotts and Schnetzler (1970), Bacon and Druitt (1988), and Bea, Pereira, and Stroh (1994); (d) (La/Yb)_N versus La, partition coefficients are from Fujimaki (1986) for apatite and Mahood and Hildreth (1983) for zircon, magnetite, and allanite. PI = plagioclase; Kf = K-feldspar; AF = alkali feldspar Bt = biotite; Aln = allanite; Ap = apatite; Mgt = magnetite; Zrn = zircon

2012), slab break-off (Li, Yang et al., 2014b), postcollisional extension (Tong, Wang et al., 2014; Wang, Jahn, et al., 2014a; Wei et al., 2007), or a large-scale strike-slip shearing fault (Laurent-Charvet, Monié, Charvet, Shu, & Shi, 2003).

Mantle plume model: The coeval (275-270 Ma) voluminous, variably sourced mafic rocks in the Tarim and the mafic intrusions and voluminous A-type granites in Tianshan and Altay (see Zhang et al., 2010; Figure 1) constitute a Permian large igneous province in NW China. This large igneous province has been proposed to be the product of a ca. 280-Ma mantle plume (Qin et al., 2011; Su et al., 2011; Zhang et al., 2010). Nevertheless, we consider the mantle plume model implausible for a number of reasons. First, geochemical data confirm that the source of the Permian ultramafic-mafic rocks in the Chinese Altay orogen is strikingly different from those in the Tarim Craton. The former is derived from intensively depleted mantle and variably enriched by the Phanerozoic subduction slab-derived fluid or subducted sediments, whereas the latter is derived from enriched continental lithospheric mantle that has not been metasomatized by Phanerozoic subducted materials (Zhang et al., 2010). An HT mantle plume can melt down a refractory mantle beneath an old craton and give rise to a large igneous province, such as the Emeishan (Xu, He, Chung, Menzies, & Frey, 2004) and Siberian Traps (Sharma, 1997). If the mantle plume is emplaced beneath an orogenic belt in which the mantle has been water enriched, it will more easily melt to produce a larger volume of rock and then penetrate the lithospheric mantle, as in Yellowstone (Coble & Mahood, 2012). However, this is not the case in the southern Altaids, where the Permian mafic rocks are sporadically distributed linearly along the Ergis Fault and the amount of these Permian mafic rocks is considerably less than those of the previous Carboniferous arc rocks. Second, the A-type granites in the Chinese Altay are classified as A₂-type granites, which are significantly distinct from the Permian A1-type granites in the Tarim craton, which are genetically related to the Tarim mantle plume.

Slab break-off model: Based on tectonothermal events, there is a general consensus that an extensional environment with high flow occurred in the southern margin of the Altay orogen during the Early Permian. The extensional environment can be related to the subduction, rift, and orogeny.

Because the known ophiolites in the Chinese Altay are older than the Early Permian and a late Carboniferous-Permian continental volcanic-sedimentary sequence abruptly overlapped the earlier Palaeozoic marine facies deposits in the southern Altay range, a collisional event in the Carboniferous is considered likely (Zhang, Zhao, et al., 2009a). Thus, the extensional environment caused by a back-arc or slab window associated with subduction has not been considered in this work.

The A2-type granites are always associated with nonrift extensional environments (Eby, 1992). Recently, increasingly more Triassic rare element pegmatites have been reported in the Chinese Altay (Chen, 2011; Lv, Zhang, Tang, & Guan, 2012; Ma, 2014; Ren et al., 2011; Wang et al., 2007). According to the classification scheme presented by Cerny and Ercit (2005), these pegmatites belong to the Li, Cs and Ta (LCT) family, which may form in a postorogenic setting WILEV-

541

(Cerny, 1991). Thus, the extensional environment related to rift in the Permian, which usually is considered a tectonic setting for Nb, Y and F (NYF) pegmatites (Cerny, 1991), is ruled out.

Slab break-off usually occurs during the initial stages of continental collision, due to the contrasting strength and buoyancy between the subducting oceanic lithosphere and dragging continental lithosphere (Davies & von Blanckenburg, 1995). Slab break-off creates a combination of characteristic features of the orogenic belt, which is distinct from those suggested for other mechanisms, such as delamination. These features are as follows (Blanckenburg & Davies, 1995): (a) a narrow, linear zone of magmatism and metamorphism with a limited spatial distribution; (b) bimodal magmatism comprising basaltic partial mantle melts on the one hand and granitoids, most likely formed by lower crustal melting with a mantle parentage on the other hand; (c) regional HT metamorphism; (d) rapid uplifting and late exhumation: and (e) an extensional structure. These features are perfectly consistent with those tectonothermal events in the Chinese Altav in Permian. Therefore, we believe that slab break-off is the best model to account for the field observations and the characteristics of the magmatism and metamorphism in the Chinese Altay in the Permian.

The slab break-off model is also consistent with the tectonic history of the Chinese Altay. It has been shown that the 440- to 360-Ma granitic intrusions are widespread and represent the strongest episode of magmatic activity, Carboniferous intrusions (360-310 Ma) sporadically crop out in the southern Chinese Altay, Permian pluton (290-250 Ma) are widely distributed in the southern Chinese Altay and Ergis, and Triassic pegmatites mainly occur in the central Chinese Altay (Cai et al., 2011b and references therein; Zhang et al., 2016). These rocks correspond to the tectonic settings of subduction, transition from subduction to collision, the initial stages of continental collision, and postcollision. According to the 3-D numerical model proposed by van Hunen and Allen (2011), collision after the subduction leads to slab break-off at 20-25 Ma or 10 Ma later than the onset of continental collision, due to the different features of the subducting oceanic slab. If the ~300-Ma HT metamorphism represents the starting time of the slab break-off, it can be inferred that the collision between the Junggar and the Chinese Altay terranes most likely occurred at approximately 325 or 310 Ma.

6 | CONCLUSIONS

- 1. The zircon U-Pb dating indicates that the Jiangjunshan and Dakalasu granites were emplaced during the Middle Permian (268.3 ± 1.9 and 270.4 ± 1.9 Ma, respectively).
- 2. The Jiangjunshan and Dakalasu granites consist of A₂-type granite, based on their main and trace-element geochemical characteristics, indicating that the southern Altay was in a postcollision setting during the Late Permian.
- 3. The Jiangjunshan and Dakalasu granites show heterogeneous Hf isotope content, $\varepsilon_{Hf}(t)$ from -7.0 to +5.6, suggesting contributions from both the mantle and lower crust ends. Upwelling of the hot asthenospheric mantle after the collision and amalgamation between the Junggar and the Chinese Altav terranes most likely

triggered immediate mixing of mantle magma with the crust materials in the deep crust.

ACKNOWLEDGEMENTS

We thank the editors and the reviewers very much for their constructive comments that have greatly improved the manuscript. We thank Liu Xiaoming and Yuan Honglin for their help in determining the zircon Hf isotopic composition by LA-MC-ICP-MS. We also thank Li Liang for his assistance in zircon U–Pb dating by LA-ICP-MS. Many thanks to Ma Zhanlong for his assistance during the field work and sample analyses. This study was jointly supported by the Natural Science Foundation of China (Grant 41372104) and the National Supporting Program of China (305 Program; 2007BAB25B01).

REFERENCES

- Anderson, I. C., Frost, C. D., & Frost, B. R. (2003). Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: Implications for the origin of A-type granite. *Precambrian Research*, 124, 243–267. https://doi.org/10.1016/S0301-9268(03)00088-3
- Bacon, C. R., & Druitt, T. H. (1988). Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. *Contributions to Mineralogy and Petrology*, 98, 224–256. https://doi. org/10.1007/BF00402114
- Bea, F., Pereira, M. D., & Stroh, A. (1994). Mineral/leucosome traceelement partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). *Chemical Geology*, 117, 291–312. https://doi.org/ 10.1016/0009-2541(94)90133-3
- Blanckenburg, F., & Davies, J. H. (1995). Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. *Tectonics*, 14, 120–131. https://doi.org/10.1029/94TC02051
- Blichert-Toft, J., & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. *Earth and Planetary Science Letters*, 148(1), 243–258. https://doi.org/10.1016/ S0012-821X(97)00040-X
- Bonin, B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. *Lithos*, 97, 1–29. https://doi.org/10.1016/j. lithos.2006.12.007
- Briggs, S. M., Yin, A., Manning, C. E., Chen, Z. L., Wang, X. F., & Grove, M. (2007). Late Paleozoic tectonic history of the Ertix fault in the Chinese Altai and its implications for the development of the Central Asian orogenic system. *Geological Society of America Bulletin*, 119, 944–960. https://doi.org/10.1130/b26044.1
- Cai, K. D., Sun, M., Yuan, C., Long, X., & Xiao, W. (2011a). Geodynamics, tectonics, and metallogeny of orogenic belts, geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: A review. Russian Geology and Geophysics, 52, 1619–1633. https://doi. org/10.1016/j.rgg.2011.11.014
- Cai, K. D., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., & Wu, F. (2011b). Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. *Lithos*, 127, 261–281. https://doi.org/10.1016/j.lithos.2011.09.001
- Cai, K. D., Sun, M., Xiao, W. J., Buslov, M. M., Yuan, C., Zhao, G. C., & Long, X. P. (2014). Zircon U-Pb geochronology and Hf isotopic composition of granitoids in Russian Altai Mountain, Central Asian Orogenic Belt. *American Journal of Science*, 314, 580–612. https://doi.org/10.2475/ 02.2014.05
- Cerny, P. (1991). Rare-element granite pegmatites part II. Regional to global environments and petrogenesis. *Geoscience Canada*, 18, 68–81.https:// journals.lib.unb.ca/index.php/GC/article/view/3723/4237
- Cerny, P., & Ercit, T. S. (2005). The classification of granitic pegmatites revisited. *Canadian Mineralogist*, 43, 2005–2026. https://doi.org/ 10.2113/gscanmin.43.6.2005

- Chen, J. F. (2011). Geochemistry of the plate part in Altai no.3 pegmatite and its formation and evolution. Master, Graduate University of Chinese Academy of Sciences, Beijing.
- Chen, L. H., & Han, B. F. (2006). Geochronology, geochemistry and Sr-Nd-Pb isotopic composition of mafic intrusive rocks in Wuqiagou area, North Xinjiang: Constraints for mantle source and deep processes. Acta Petrologica Sinica, 22, 1201–1214 (in Chinese with English Abstract).
- Chen, B., & Jahn, B. M. (2002). Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. *Geological Magazine*, 139, 1–13. http://ci.nii. ac.jp/naid/80015400651/en/
- Chen, H. L., Yang, S., Li, Z., Yu, X., Xiao, W., Yuan, C., ... Li, J. (2006). Zircon SHRIMP U-Pb chronology of Fuyun basic granulite and its tectonic significance in Altaid orogenic belt. *Acta Petrologica Sinica*, 22, 1351–1358 (in Chinese with English Abstract).
- Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., ... Burton, K. (2002). Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. *Journal of Analytical Atomic Spectrometry*, 17, 1567–1574. https://doi.org/10.1039/b206707b
- Clemens, J. D., Holloway, J. R., & White, A. J. R. (1986). Origin of an A-type granite: Experimental constraints. *American Mineralogist*, 71, 317–324. https://www.mendeley.com/research/origin-atype-granite-experimental-constraints/
- Cliff, R. A. (1985). Isotopic dating in metamorphic belts. Journal of the Geological Society, 142, 97–110. https://doi.org/10.1144/gsjgs.142.1.0097
- Coble, M. A., & Mahood, G. A. (2012). Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts. *Geology*, 40, 655–658. https://doi.org/10.1130/g32692.1
- Collins, W. J., Beams, S. D., White, A. J. R., & Chappell, B. W. (1982). Nature and origin of A-type granites with particular reference to southeastern Australia. *Contributions to Mineralogy and Petrology*, *80*, 189–200. https://doi.org/10.1007/bf00374895
- Creaser, R. A., Price, R. C., & Wormald, R. J. (1991). A-type granites revisited: Assessment of a residual-source model. *Geology*, 19, 163–166. https:// doi.org/10.1130/0091-7613(1991)019<0163:atgrao>2.3.co;2
- Dall'Agnol, R., & de Oliveira, D. C. (2007). Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. *Lithos*, 93, 215–233. https://doi. org/10.1016/j.lithos.2006.03.065
- Dall'Agnol, R., Scaillet, B., & Pichavant, M. (1999). An experimental study of a lower Proterozoic A-type granite from the Eastern Amazonian craton, Brazil. *Journal of Petrology*, 40, 1673–1698. https://doi.org/10.1093/ petroj/40.11.1673
- Dallmeyer, R. D., & VanBreeman, O. (1981). Rb-Sr whole-rock and ⁴⁰Ar/ ³⁹Ar mineral ages of the Togus and Hallowell quartz monzonite and three mile pond granodiorite plutons, South-Central Maine: Their bearing on post-Acadian cooling history. *Contributions to Mineralogy and Petrology*, 78, 61–73. https://doi.org/10.1007/bf00371144
- Davies, J. H., & von Blanckenburg, F. (1995). Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. *Earth and Planetary Science Letters*, 129, 85–102. https://doi.org/10.1016/0012-821X(94)00237-S
- Eby, G. N. (1990). The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. *Lithos*, 26, 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z
- Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. *Geology*, 20, 641–644. https://doi.org/ 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
- Frost, C. D., & Frost, B. R. (1997). Reduced rapakivi-type granites: The tholeiite connection. *Geology*, 25, 647–650. https://doi.org/ 10.1130/0091-7613(1997)025<0647:rrtgtt>2.3.co;2
- Fujimaki, H. (1986). Partition-Coefficients of Hf, Zr, and Ree between Zircon, Apatite, and Liquid. Contributions to Mineralogy and Petrology, 94(1), 42–45.

- Gao, F. P., Zhou, G., Lei, Y. X., Wang, D. S., Chen, J. X., Zhang, H. F., ... Zhao, H. H. (2010). Early Permian granite age and geochemical characteristics in Shaerbulake of Xinjiang's Altay area and its geological significance. *Geological Bulletin of China*, 29, 1281–1293 (in Chinese with English abstract).
- Gong, H. L., Chen, Z. L., Hu, Y. Q., Li, L., Lai, X. R., Ma, Q. Y., ... Zhang, W. G. (2007). Geochemical characteristics of acidic dike swarm from the eastern segment of the Ertix tectonic belt, Altai orogeny and its geological implications. Acta Petrologica Sinica, 23, 889–899. http://www.ysxb. ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20070585andyear_id= 2007andquarter_id=5andfalg=1
- Griffin, W. L., Pearson, N. J., Belousova, E. A., & Saeed, A. (2006). Comment: Hf-isotope heterogeneity in zircon 91500. *Chemical Geology*, 23, 358–363. https://doi.org/10.1016/j.chemgeo.2006.03.007
- Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lithos*, 61, 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8
- Han, B. F., Ji, J. Q., Song, B., Chen, L., & Li, Z. (2004). SHRIMP zircon U–Pb ages of Kalatongke no. 1 and Huangshandong Cu-Ni-bearing maficultramafic complexes, North Xinjiang, and geological implications. *Chinese Science Bulletin*, 49, 2424–2429 (in Chinese with English Abstract). https://doi.org/10.1007/bf03183432
- Harrison, T. M., & McDougall, I. (1982). The thermal significance of potassium feldspar K-Ar ages inferred from ⁴⁰Ar³⁹Ar age spectrum results. *Geochimica et Cosmochimica Acta*, 46, 1811–1820. https://doi.org/ 10.1016/0016-7037(82)90120-X
- Hu, Z., Liu, Y., Chen, L., Zhou, L., Li, M., Zong, K., ... Gao, S. (2011). Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. [10.1039/C0JA00145G]. Journal of Analytical Atomic Spectrometry, 26, 425–430. https://doi.org/10.1039/c0ja00145g
- Jahn, B. M. (2004). The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226, 73–100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
- Jahn, B. M., Wu, F. Y., & Chen, B. (2000a). Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. *Geological Society of America Special Papers*, 350, 181–193. https://doi.org/ 10.1130/0-8137-2350-7.181
- Jahn, B. M., Wu, F. Y., & Chen, B. (2000b). Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. *Episodes*, 23, 82–92.
- Jiang, N., Zhang, S., Zhou, W., & Liu, Y. (2009). Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? *Contributions to Mineralogy and Petrology*, 158, 113–130. https://doi.org/10.1007/s00410-008-0373-2
- Jung, S., Mezger, K., & Hoernes, S. (1998). Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites—A major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. *Lithos*, 45, 147–175. https://doi.org/10.1016/ S0024-4937(98)00030-9
- Karsli, O., Caran, Ş., Dokuz, A., Çoban, H., Chen, B., & Kandemir, R. (2012). A-type granitoids from the Eastern Pontides, NE Turkey: Records for generation of hybrid A-type rocks in a subduction-related environment. *Tectonophysics*, 530–531, 208–224. https://doi.org/10.1016/j. tecto.2011.12.030
- Khain, E. V., Bibikova, E. V., Kröner, A., Zhuravlev, D. Z., Sklyarov, E. V., Fedotova, A. A., & Kravchenko-Berezhnoy, I. R. (2002). The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications. *Earth and Planetary Science Letters*, 199, 311–325. https://doi.org/10.1016/S0012-821X(02)00587-3

- King, P. L., White, A. J. R., Chappell, B. W., & Allen, C. M. (1997). Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. *Journal of Petrology*, 38, 371–391. https://doi.org/10.1093/petroj/38.3.371
- Kinny, P. D., & Maas, R. (2003). Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53, 327–341. https://doi.org/ 10.2113/0530327
- Knudsen, T.-L., Griffin, W., Hartz, E., Andresen, A., & Jackson, S. (2001). Insitu hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking. *Contributions to Mineralogy and Petrology*, 141, 83– 94. https://doi.org/10.1007/s004100000220
- Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., Kotov, A. B., Kozakov, I. K., Salnikova, E. B., & Larin, A. M. (2004). Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. *Journal of Asian Earth Sciences*, 23, 605–627. https://doi.org/10.1016/S1367-9120(03)00130-5
- Kröner, A., Demoux, A., Zack, T., Rojas-Agramonte, Y., Jian, P., Tomurhuu, D., & Barth, M. (2011). Zircon ages for a felsic volcanic rock and arc-related early Palaeozoic sediments on the margin of the Baydrag microcontinent, Central Asian Orogenic Belt, Mongolia. *Journal of Asian Earth Sciences*, 42, 1008–1017. https://doi.org/10.1016/j.jseaes.2010.09.002
- Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., ... Rytsk, E. (2014). Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. *Gondwana Research*, 25, 103–125. https://doi.org/10.1016/j.gr.2012.12.023
- Laurent-Charvet, S., Monié, P., Charvet, J., Shu, S. L., & Shi, M. R. (2003). Late-Paleozoic strike-slip shear zones in eastern Central Aisa (NW China): New structural and geochronological data. *Tectonics*, 22, 1009–1032. https://doi.org/10.1029/2001TC901047
- Li, X. R., Liu, F., & Yang, F. Q. (2012b). Geological times and its significance of the two mica syenogranite in the Keyinblack Cu-Zn deposit area in Altay, Xinjiang. *Xinjiang Geology*, 30, 5–11 (in Chinese with English abstract).
- Li, Z., Yang, X., Li, Y., Santosh, M., Chen, H., & Xiao, W. (2014b). Late Paleozoic tectono-metamorphic evolution of the Altai segment of the central Asian Orogenic Belt: Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite. *Lithos*, 204, 83–96. https://doi.org/10.1016/j.lithos.2014.05.022
- Li, P., Yuan, C., Sun, M., Long, X., & Cai, K. (2015). Thermochronological constraints on the late Paleozoic tectonic evolution of the southern Chinese Altai. *Journal of Asian Earth Sciences*, 113, 51–60. https://doi. org/10.1016/j.jseaes.2014.11.004
- Li, D. F., Zhang, L., Chen, H. Y., Zheng, Y., Hollings, P., Wang, C. M., & Fang, J. (2014a). Ore genesis of the unusual Talate Pb-Zn(-Fe) skarn-type deposit, Altay, NW China: Constraints from geology, geochemistry and geochronology. *Geological Journal*, 49, 599–616. https://doi.org/ 10.1002/gj.2570
- Li, C., Zhang, M., Fu, P., Qian, Z., Hu, P., & Ripley, E. M. (2012a). The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism? *Mineralium Deposita*, 47, 51-67. https://doi.org/10.1007/s00126-011-0354-7
- Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., & Wang, D. (2010b). Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. *Journal of Petrology*, *51*, 537–571. https://doi.org/10.1093/petrology/egp082
- Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J., & Chen, H. H. (2010a). Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. *Chinese Science Bulletin*, 55, 1535–1546 (in Chinese with English abstract).
- Loiselle, M. C., & Wones, D. R. (1979). Characteristics and origin of anorogenic granites. *Geological Society of America Abstract with Pro*grams, 11, 468.
- Long, X., Sun, M., Yuan, C., Xiao, W., Lin, S., Wu, F., ... Cai, K. (2007). U-Pb and Hf isotopic study of zircons from metasedimentary rocks in the

544 WILEY-

Chinese Altai: Implications for Early Paleozoic tectonic evolution. *Tectonics*, 26(5), 1–20. https://doi.org/10.1029/2007TC002128

- Long, X., Yuan, C., Sun, M., Xiao, W., Zhao, G., Wang, Y., ... Xie, L. (2010). Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. *Tectonophysics*, 480, 213–231. https://doi.org/10.1016/j.tecto.2009.10.013
- Lv, Z. H., Zhang, H., Tang, Y., & Guan, S. J. (2012). Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute no. 112 pegmatite in Altay, northwestern China: Evidence from zircon UPb and Hf isotopes. *Lithos*, 154, 374–391. https://doi.org/10.1016/j. lithos.2012.08.005
- Ma, Z. L. (2014). Zircon U–Pb dating and Hf isotopes of Pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite. In *The degree of master Of philosophy*. Beijing: Graduate University of Chinese Academy of Sciences.
- Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Bulletin of the Geological Society of America, 101, 63–643. https://doi. org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
- Mahood, G. A. & Hildreth, E. W. (1983). Large partition coefficients for trace elements in high-silica rhyolites. *Geochimica et Cosmochimica Acta*, 47, 11–30. https://doi.org/10.1016/0016-7037(83)90087-X
- Mansouri Esfahani, M., Khalili, M., Kochhar, N., & Gupta, L. N. (2010). Atype granite of the Hasan Robat area (NW of Isfahan, Iran) and its tectonic significance. *Journal of Asian Earth Sciences*, 37, 207–218. https://doi.org/10.1016/j.jseaes.2009.05.010
- Mezger, K. (1990). Geochronology in Granulites. In D. Vielzeuf, & P. Vidal (Eds.), Granulites and crustal evolution). Dordrecht: Springer Netherlands.
- Mezger, K., Hanson, G. N., & Bohlen, S. R. (1989). High-precision U–Pb ages of metamorphic rutile: Application to the cooling history of high-grade terranes. *Earth and Planetary Science Letters*, 96, 106–118. https://doi. org/10.1016/0012-821X(89)90126-X
- Middlemost, E. A. K. (1994). Naming materials in the magma igneous rock system. *Earth-Science Reviews*, 37, 215–224.
- Namur, O., Charlier, B., Toplis, M. J., Higgins, M. D., Hounsell, V., Liégeois, J.-P., & Vander Auwera, J. (2011). Differentiation of Tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. *Journal of Petrology*, 52, 487–539. https://doi.org/10.1093/petrology/egq088
- Pankhurst, M. J., Vernon, R. H., Turner, S. P., Schaefer, B. F., & Foden, J. D. (2011). Contrasting Sr and Nd isotopic behaviour during magma mingling; new insights from the Mannum A-type granite. *Lithos*, 126, 135–146. https://doi.org/10.1016/j.lithos.2011.07.005
- Patchett, P. J., Kouvo, O., Hedge, C. E., & Tatsumoto, M. (1981). Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. *Contributions to Mineralogy and Petrology*, 78, 279–297.
- Philpotts, J. A., & Schnetzler, C. C. (1970). Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. *Geochimica et Cosmochimica Acta*, 34(3), 307–322. https://doi.org/10.1016/0016-7037(70)90108-0
- Pirajno, F., Mao, J., Zhang, Z., Zhang, Z., & Chai, F. (2008). The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. *Journal of Asian Earth Sciences*, 32, 165–183. https://doi.org/10.1016/j.jseaes.2007.10.012
- Qin, K. Z., Su, B. X., Sakyi, P. A., Tang, D. M., Li, X. H., Sun, H., ... Liu, P. P. (2011). SIMS zircon U–Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. *American Journal of Science*, 311, 237–260. https://doi.org/10.2475/03.2011.03
- Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
- Ren, B. Q., Zhang, H., Tang, Y., & Lv, Z. H. (2011). LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance.

Acta Mineralogica Sinica, 31, 587-596 (in Chinese with English abstract).

- Scherer, E., Munker, C., & Mezger, K. (2001). Calibration of the lutetiumhafnium clock. *Science (New York, N.Y.), 293*(5530), 683–687. https:// doi.org/10.1126/science.1061372
- Sengör, A. M. C., & Natal'in, B. A. (1996). Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24, 263–337. https://doi.org/10.1146/annurev.earth.24.1.263
- Sengör, A. M. C., Natal'in, B. A., & Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. *Nature*, 364(6435), 299–307. https://doi.org/10.1038/364299a0
- Sharma, M. (1997). In J. J. Mahoney, & M. F. Coffin (Eds.), Siberian traps. Large igneous provinces: Continental, oceanic, and planetary flood volcanism). Washington DC: American Geophysical Union.
- Shen, X., Zhang, H., Wang, Q., Wyman, D. A., & Yang, Y. (2011). Late Devonian-Early Permian A-type granites in the southern Altay range, Northwest China: Petrogenesis and implications for tectonic setting of "A₂-type" granites. *Journal of Asian Earth Sciences*, 42, 986–1007. https://doi.org/10.1016/j.jseaes.2010.10.004
- Stockli, D. F. (2005). Application of low-temperature thermochronometry to extensional tectonic settings. *Reviews in Mineralogy and Geochemistry*, 58, 411–448. https://doi.org/10.2138/rmg.2005.58.16
- Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks. Geologische Rundschau, 63, 773–786. https://doi.org/10.1007/BF01820841
- Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., ... Malaviarachchi, S. P. K. (2011). U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic–ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. *Gondwana Research*, 20, 516–531. https://doi. org/10.1016/j.gr.2010.11.015
- Sun, G. H., Li, J. Y., Yang, T. N., Li, Y. P., Zhu, Z. X., & Yang, Z. Q. (2009a). Zircon SHRIMP U-Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications. *Geology in China*, 36(5), 976–987 (in Chinese with English abstract).
- Sun, M., Long, X., Cai, K., Jiang, Y., Wang, B., Yuan, C., ... Wu, F. (2009b). Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. *Science in China Series D: Earth Sciences*, 52, 1345–1358. https://doi.org/10.1007/s11430-009-0110-3
- Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., ... Kröner, A. (2008). Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. *Chemical Geology*, 247, 352–383. https://doi.org/10.1016/j. chemgeo.2007.10.026
- Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalt : implications for mantle composition and processes. *Geological Society London Special Publications*, 42, 313–345. https:// doi.org/10.1144/gsl.sp.1989.042.01.19
- Tong, Y., Tao, W., Kovach, V. P., Hong, D.-w., & Han, B.-F. (2006). Age and origin of the Takeshiken postorogenic alkali-rich intrusive rocks in souther Altai, near the Mongolian border in China and its implications for continental growth. Acta Petrologica Sinica, 22, 1267–1278 (in Chinese with English abstract).
- Tong, Y., Wang, T., Jahn, B. M., Sun, M., Hong, D. W., & Gao, J. F. (2014b). Post-accretionary Permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications. *American Journal of Science*, 314, 80–109. https://doi.org/10.2475/01.2014.03
- Tong, Y., Wang, T., Siebel, W., Hong, D.-W., & Sun, M. (2012). Recognition of Early Carboniferous alkaline granite in the southern Altai orogen: Post-orogenic processes constrained by U–Pb zircon ages, Nd isotopes, and geochemical data. *International Journal of Earth Sciences*, 101, 937–950. https://doi.org/10.1007/s00531-011-0700-0
- Tong, L. X., Xu, Y. G., Cawood, P. A., Zhou, X., Chen, Y., & Liu, Z. (2014a). Anticlockwise P–T evolution at ~280 Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai Orogenic Belt, a possible link with the Tarim mantle plume? *Journal of Asian Earth Sciences*, 94, 1–11. https://doi.org/10.1016/j.jseaes.2014.07.043

- van Hunen, J., & Allen, M. B. (2011). Continental collision and slab breakoff: A comparison of 3-D numerical models with observations. *Earth* and Planetary Science Letters, 302, 27–37. https://doi.org/10.1016/j. epsl.2010.11.035
- Wan, B., Xiao, W., Windley, B. F., & Yuan, C. (2013). Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. *Lithosphere*, *5*, 290–299. https://doi.org/10.1130/l261.1
- Wang, T., Hong, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F., & Wang, X. X. (2006). Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. *The Journal of Geology*, 114, 735–751. https://doi.org/10.1086/507617
- Wang, T., Hong, D. W., Yong, Y., Han, B. F., & Shi, Y. R. (2005). Zircon U–Pb SHRIMP age and origin of post-orogenic Lamazhao granite pluton from Altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21, 640–650 (in Chinese wtih English abstract).
- Wang, T., Jahn, B. M., Kovach, V. P., Tong, Y., Wilde, S. A., Hong, D. W., ... Salnikova, E. B. (2014a). Mesozoic intraplate granitic magmatism in the Altai accretionary orogen, NW China: Implications for the orogenic architecture and crustal growth. *American Journal of Science*, 314, 1–42. https://doi.org/10.2475/01.2014.01
- Wang, T., Tong, Y., Jahn, B. M., Zou, T. R., Wang, Y. B., Hong, D. W., & Han, B. F. (2007). SHRIMP U-Pb zircon geochronology of the Altai no. 3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32, 325–336. https:// doi.org/10.1016/j.oregeorev.2006.10.001
- Wang, W., Wei, C., Wang, T., Lou, Y., & Chu, H. (2009). Confirmation of pelitic granulite in the Altai orogen and its geological significance. *Chinese Science Bulletin*, 54, 2543–2548. https://doi.org/10.1007/ s11434-009-0041-6
- Wang, W., Wei, C., Zhang, Y., Chu, H., Zhao, Y., & Liu, X. (2014b). Age and origin of sillimanite schist from the Chinese Altai metamorphic belt: Implications for Late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. *International Geology Review*, *56*, 224–236. https://doi. org/10.1080/00206814.2013.841335
- Wang, Z. G., Zhao, Z. H., & Zou, T. R. (1998). Geochemistry of the granitoids in Altay. Beijing: Science Press.
- Wei, C., Clarke, G., Tian, W., & Qiu, L. (2007). Transition of metamorphic series from the Kyanite-to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. *Lithos*, 96, 353–374. https://doi.org/10.1016/j.lithos.2006.11.004
- Whalen, J., Currie, K., & Chappell, B. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 95, 407–419. https://doi.org/10.1007/ bf00402202
- Wilhem, C., Windley, B. F., & Stampfli, G. M. (2012). The Altaids of Central Asia: A tectonic and evolutionary innovative review. *Earth-Science Reviews*, 113, 303–341. https://doi.org/10.1016/j.earscirev.2012.04.001
- Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A., & Badarch, G. (2007). Tectonic models for accretion of the Central Asian Orogenic Belt. *Journal of the Geological Society*, 164, 31–47. https://doi.org/10.1144/0016-76492006-022
- Windley, B. F., Kroner, A., Guo, J. H., Qu, G. S., Li, Y. Y., & Zhang, C. (2002). Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. *The Journal of Geology*, 110, 719–737. https://doi.org/10.1086/342866
- Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H., & Xu, P. (2006). Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. *Chemical Geology*, 234, 105–126. https://doi.org/ 10.1016/j.chemgeo.2006.05.003

- Xiao, W., & Santosh, M. (2014). The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25, 1429–1444. https://doi.org/10.1016/j.gr.2014.01.008
- Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S., Chen, H., ... Sun, S. (2008). Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. *Journal of Asian Earth Sciences*, 32, 102–117. https://doi.org/10.1016/j.jseaes.2007.10.008
- Xiao, W., Windley, B. F., Badarch, G., Sun, S., Li, J., Qin, K., & Wang, Z. (2004). Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. *Journal of the Geological Society*, 161, 339–342. https://doi.org/10.1144/0016-764903-165
- Xiao, W. J., Windley, B. F., Yuan, C., Sun, M., Han, C. M., Lin, S. F., ... Sun, S. (2009). Paleozoic multiple subduction–accretion processes of the southern Altaids. *American Journal of Science*, 309, 221–270. https:// doi.org/10.2475/03.2009.02
- Xiao, Y., Zhang, H., Shi, J. a., Su, B., Sakyi, P. A., Lu, X., ... Zhang, Z. (2011). Late Paleozoic magmatic record of East Junggar, NW China and its significance: Implication from zircon U–Pb dating and Hf isotope. *Gondwana Research*, 20, 532–542. https://doi.org/10.1016/j.gr.2010.12.008
- Xu, J. F., Castillo, P. R., Chen, F. R., Niu, H. C., Yu, X. Y., & Zhen, Z. P. (2003). Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, Northwest China: Implications for backarc mantle evolution. *Chemical Geology*, 193, 137–154. https://doi.org/ 10.1016/S0009-2541(02)00265-6
- Xu, Y. G., He, B., Chung, S. L., Menzies, M. A., & Frey, F. A. (2004). Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. *Geology*, 32, 917–920. https:// doi.org/10.1130/g20602.1
- Yang, T. N., Li, J. Y., Liang, M. J., & Wang, Y. (2015). Early Permian mantle–crust interaction in the south-central Altaids: High-temperature metamorphism, crustal partial melting, and mantle-derived magmatism. *Gondwana Research*, 28, 371–390. https://doi.org/10.1016/j.gr.2014.05.003
- Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A., & Chu, M. F. (2006). A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. *Lithos*, 89, 89–106. https://doi.org/10.1016/j.lithos.2005.10.002
- Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., ... Long, X. (2007). Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. *Chemical Geology*, 242, 22–39. https://doi.org/10.1016/j. chemgeo.2007.02.013
- Zhang, S. H., Zhao, Y., Song, B., Hu, J. M., Liu, S. W., Yang, Y. H., ... Liu, J. (2009a). Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. *Geological Society* of America Bulletin, 121, 181–200. https://doi.org/10.1130/b26157.1
- Zhang, Z. C., Zhou, G., Kusky, T. M., Yan, S., Chen, B., & Zhao, L. (2009b). Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. *Gondwana Research*, 16, 201–215. https://doi.org/10.1016/j.gr.2009.03.004
- Zhang, L., Chen, H. Y., Zheng, Y., Qin, Y. J., & Li, D. F. (2014b). Geology, fluid inclusion and age constraints on the genesis of the Sarekuobu gold deposit in Altay, NW China. *Geological Journal*, 49, 635–648. https:// doi.org/10.1002/gj.2573
- Zhang, Q. F., Hu, A. Q., Zhang, G. X., Fan, S. K., & Pu, Z. P. (1994). Evidence from isotopic age for presence of Mesozoic-Cenozoic magmatic activities in Altai region, Xinjiang. *Geochimica*, 23, 269–280 (in Chinese with English abstract).
- Zhang, C. L., Li, Z. X., Li, X. H., Xu, Y. G., Zhou, G., & Ye, H. M. (2010). A Permian large igneous province in Tarim and Central Asian Orogenic Belt, NW China: Results of a ca. 275 Ma mantle plume? *Geological Society of America Bulletin*, 122, 2020–2040. https://doi.org/10.1130/b30007.1
- Zhang, C. L., Santosh, M., Zou, H. B., Xu, Y. G., Zhou, G., Dong, Y. G., ... Wang, H. Y. (2012). Revisiting the "Irtish tectonic belt": Implications

545

546 WILEY-

for the Paleozoic tectonic evolution of the Altai orogen. Journal of Asian Earth Sciences, 52, 117–133. https://doi.org/10.1016/j.jseaes.2012.02.016

- Zhang, J., Sun, M., Schulmann, K., Zhao, G., Wu, Q., Jiang, Y., ... Wang, Y. (2015). Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process. *Journal of Structural Geology*, 73, 64–82. https://doi.org/10.1016/j.jsg.2015.02.007
- Zhang, X., Zhang, H., Ma, Z. L., Tang, Y., Lv, Z. H., Zhao, J. Y., & Liu, Y. L. (2016). A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. *Journal of Asian Earth Sciences*, 124, 139–155. https:// doi.org/10.1016/j.jseaes.2016.04.020
- Zhang, C. L., Zou, H. B., Yao, C. Y., & Dong, Y. G. (2014a). Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic Belt: A possible link to the Permian Tarim mantle plume? *Lithos*, 204, 112–124. https://doi.org/10.1016/j.lithos.2014.05.019
- Zheng, Y., Zhang, L., Chen, H., Li, D., Wang, C., & Fang, J. (2014). CO₂-rich fluid from metamorphic devolatilization of the Triassic orogeny: An example from the Qiaxia copper deposit in Altay, NW China. *Geological Journal*, 49, 617–634. https://doi.org/10.1002/gj.2536

Zhou, G., Zhang, Z. C., Luo, S. B., He, B., Wang, X., Yin, L. J., ... He, Y. K. (2007). Confirmation of high temperature strongly peraluminous Mayin'ebo granites in the south margin of Altay, Xinjiang: Age, geochemistry and tectonic implications. *Acta Petrologica Sinica*, 23, 1909–1920 (in Chinese with English abstract).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Liu Y, Zhang H, Tang Y, Zhang X, Lv Z, Zhao J. Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China: Evidences from geochronological, geochemical, and Hf isotopic studies. *Geological Journal*. 2018;53:527–546. <u>https://doi.org/</u>10.1002/gj.2910