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ABSTRACT
Extrapolating wavefields and imaging at each depth during three-dimensional re-
cursive wave-equation migration is a time-consuming endeavor. For efficiency, most
commercial techniques extrapolate wavefields through thick slabs followed by wave-
field interpolation within each thick slab. In this article, we develop this strategy by
associating more efficient interpolators with a Fourier-transform-related wavefield
extrapolation method. First, we formulate a three-dimensional first-order separation-
of-variables screen propagator for large-step wavefield extrapolation, which allows
for wide-angle propagations in highly contrasting media. This propagator signifi-
cantly improves the performance of the split-step Fourier method in dealing with sig-
nificant lateral heterogeneities at the cost of only one more fast Fourier transform in
each thick slab. We then extend the two-dimensional Kirchhoff and Born–Kirchhoff
local wavefield interpolators to three-dimensional cases for each slab. The three-
dimensional Kirchhoff interpolator is based on the traditional Kirchhoff formula and
applies to moderate lateral velocity variations, whereas the three-dimensional Born–
Kirchhoff interpolator is derived from the Lippmann–Schwinger integral equation
under the Born approximation and is adapted to highly laterally varying media. Nu-
merical examples on the three-dimensional salt model of the Society of Exploration
Geophysicists/European Association of Geoscientists demonstrate that three-
dimensional first-order separation-of-variables screen propagator Born–Kirchhoff
depth migration using thick-slab wavefield extrapolation plus thin-slab interpola-
tion tolerates a considerable depth-step size of up to 72 ms, eventually resulting in
an efficiency improvement of nearly 80% without obvious loss of imaging accuracy.
Although the proposed three-dimensional interpolators are presented with one-way
Fourier extrapolation methods, they can be extended for applications to general mi-
gration methods.

Key words: 3D Fourier depth migration, First-order separation-of-variables screen
propagator, Thick-slab extrapolation, Thin-slab interpolation, 3D Born–Kirchhoff
interpolators.

INTRODUCTION

Fourier-transform-based migration methods have been widely
used in seismic imaging because of their many desirable

∗E-mail: lfu@mail.iggcas.ac.cn

properties, including analytical wavefield extrapolation, al-
gorithm simplicity, high computational efficiency with fast
Fourier transforms (FFTs), amplitude preservation by honour-
ing Snell’s law naturally, and immunisation against both grid
dispersion and operator splitting errors occurring in 3D cases.
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In particular, Fourier wavefield extrapolation can tolerate a
much larger depth-step size than conventional finite-difference
(FD) wavefield extrapolation in the presence of lateral velocity
variations and dipping events. This article develops supporting
3D wavefield interpolation techniques to image small layers
inside excessively large depth intervals.

Early Fourier extrapolators present various difficulties in
handling wide-angle propagations and lateral velocity varia-
tions simultaneously (Cheng, Cheng and Toksöz 1996; Huang
and Fehler 1998). Several improvements have been achieved
for this problem over the past few decades. For example,
both the split-step Fourier (SSF) (Stoffa et al. 1990) and
phase-screen propagators (Wu 1996) are suitable for either
weak-contrast heterogeneities or small propagation angles.
Slight modifications to the phase-screen propagator have
lead to a category of pseudo screen propagators (Wu 1996;
Huang, Fehler and Wu 1999), generalised screen propagators
(de Hoop, Le Rousseau and Wu 2000; Le Rousseau and de
Hoop 2001; Liu and Zhang 2006), and broadband constant-
coefficient propagators (Fu 2005) for moderate laterally het-
erogeneous media. For large-contrast slabs with wide-angle
propagations, the most appropriate method may be the first-
order separation-of-variables screen propagator (SVSP1) (Fu
2006) formulated from the generalised Lippmann–Schwinger
integral equation. Strong lateral velocity contrasts may be
addressed by the multiple-reference-velocity Fourier method
(Gazdag and Sguazzero 1984; Kessinger 1992), the windowed
phase-screen method (Wu and Jin 1997), and the optimised
Chebyshev–Fourier method (Zhang et al. 2010). These high-
accuracy Fourier migration schemes are capable of simulta-
neously imaging steep dips and handling complex media with
arbitrary velocity variations in all directions.

However, because of the multiple reference velocities
used or high-order approximations to the one-way wave equa-
tion, these aforementioned Fourier migration methods require
extra computations at each depth step, which increases the
computational time considerably especially for immense 3D
cases. In general, Fourier migration techniques for practical
applications allow for the downward continuation of wave-
fields through thick slabs, with the depth-step size usually
chosen to be several times as large as the output depth sam-
pling interval. However, excessively coarse depth steps cause
visible spurious kinks along dipping reflectors in the migra-
tion section. Although eliminating these kinks is possible by
using proper interpolators inside each thick slab, the results
are severely affected by the characteristics of the interpolator
used. Fu (2004) proposed three 2D interpolation algorithms:
Fourier transform, Kirchhoff (KKF), and Born–Kirchhoff (BK)

interpolators for mild, moderate, and large to strong lateral
heterogeneities, respectively. The validity of these interpola-
tors has been validated by the 2D SEG/EAGE salt model and
practical applications to field data (Fu et al. 2013).

The motivation of this work is to extend the 2D KKF
and BK interpolators to 3D cases for 3D large-step Fourier
migrations to reduce computational costs while preserving
Fourier imaging accuracy. As described in Appendix A, we
first extend the 2D SVSP1 Fourier extrapolator (Fu 2006)
to 3D cases for large-step wavefield extrapolation. The 3D
KKF interpolator is then derived from the traditional 3D
KKF integral formula and used to interpolate wavefields for
moderate lateral velocity variations. The 3D BK interpolator
is formulated based on the 3D Lippmann–Schwinger integral
equation under the Born approximation over a perturbation
slab. This strategy is suited for salt-related complex structures
that are commonly associated with large to strong lateral
velocity variations. The 3D BK interpolator presents a simple
algorithm structure with complexity and computational cost
nearly equal to those of the KKF interpolator. We discuss
the practical aspects of 3D Fourier wavefield extrapolation,
focusing on the efficiency of wavefield extrapolation by
optimising migration parameters. Numerical results from the
cascaded application of the SVSP1 method and the 3D KKF
or BK interpolator to the 3D SEG/EAGE salt model illustrate
the feasibility of our strategy. Fourier depth migrations by
a 72-ms depth size with the BK interpolator lead to a nearly
80% reduction of computational time in contrast to the
desired migration using the grid interval of 10 m without
interpolation. These interpolation techniques result in con-
siderable savings of computing time and memory for 3D
Fourier migrations. Although the proposed 3D interpolators
are presented with one-way Fourier extrapolators, they can
be extended for applications to a general migration method.

THREE-DIMENSIONAL WAVEFIELD
INTERPOLATION INSIDE A S LAB

The standard Kirchhoff migration formula (French 1975;
Schneider 1978) can be reduced to an efficient wavefield
interpolation algorithm to interpolate wavefields in large-
step Fourier migrations. Bevc (1997) extended this time–
space Kirchhoff migration into the frequency–space domain,
and based on the result, Fu (2004) proposed the 2D KKF
interpolator formulated from the Kirchhoff migration for-
mula in the frequency–space domain (Bevc 1997). We extend
this understanding to the 3D wavefield interpolator, where
each downward-continued wavefield at (xp, yp, z + �zmin) is
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calculated by integration over the input wavefields around
(xp, yp, z) as

u(xp, yp, z + �zmin) =
∫∫ √−ik0 cos(θ )

2πr (x, y)
√

v0

× u(x, y, z) exp(ik0r (x, y))dxdy, (1)

where r (x, y) =
√

(xp − x)2 + (yp − y)2 + �z2
min; v0 and k0 are

the background velocity and the reference wavenumber of
a slab, respectively; and θ is the angle between the travel
path r (x, y) and the normal to the input interface at depth
z. Denoting the continuous coordinates x and y with input
trace indexes i and j , respectively, and replacing cos(θ ) with
�zmin/ri j , equation (1) can be discretised as

u(xp, yp, z + �zmin) =
Lx/2∑

i=−Lx/2

Ly/2∑
j=−Ly/2

Wi j ui j (z), (2)

where Lx × L y is the integral aperture and Wi j is the weighting
factor

Wi j = �zmin

√−ik0 exp(ik0ri j )

2πr2
i j
√

v0

, (3)

which can be optimally designed using the theory of migration
aperture (Schleicher et al. 1997). Equation (2) describes the
discretised 3D KKF interpolator that can be used to calculate
local wavefields for small layers inside each thick slab. Cur-
rent industry techniques have widely used the 2D/3D KKF
interpolator for wavefield interpolation in recursive seismic
migrations. However, it is only valid for moderate lateral het-
erogeneities. In this article, we use it as the reference for the
proposed 3D BK interpolator.

The extension of the 3D KKF interpolator to large to
strong lateral heterogeneities invokes the 3D BK interpolator.
For simplicity, we begin with the 3D Lippmann–Schwinger
integral equation in the frequency–space domain

u(r)=u0(r) + k2
0

∫∫∫
O(r′)u(r′)G(r, r′)dr′, (4)

where u0(r) is the reference wavefield satisfying the ho-
mogeneous Helmholtz equation with the solution be-
ing the Kirchhoff propagator defined by equation (1);
O(r′) ≈ n(r′) − 1 is the relative slowness perturbation with
n(r) being the refractive index; and G(r, r′) = i

8π2

∫ ∞
−∞

∫ ∞
−∞

k−1
z exp[ikz(z − z′) + iky(y − y′) + ikx(x − x′)]dkxdky is the

3D causal Green’s function satisfying the homogeneous
Helmholtz equation. This equation is the extension of the 3D
KKF integral equation to lateral heterogeneities, which propa-
gates a time-harmonic wavefield u(r′) through a perturbation
slab spanning from z to z + �zmin.

Equation (4) describes two-way wave propagation be-
cause the full-wavefield Green’s function handles both pri-
maries and multiples inside the perturbation slab by solving
a system of equations. Calculating u(r) may be impractical
due to the volume integration of the unknown wavefield u(r′).
Nevertheless, the problem can be properly resolved by reduc-
ing the equation to a one-way wavefield extrapolator with
the help of the Born approximation, i.e., by replacing the un-
known field u(r′) at depth z + �z with the input field u(r′)z at
depth z in equation (4) to yield

u(r)=u0(r) + k2
0

∫∫∫
O(r′)u(r′)zG(r, r′)dr′. (5)

Each downward-continued output trace at (xp, yp, z +
�zmin) is calculated by equation (5) with integration over the
input traces

u(xp, yp, z + �zmin)

= u0(xp, yp, z + �zmin) + k2
0�zmin

4πr (x, y)

∫∫
O(x, y)u(x, y, z)

× exp(ik0r (x, y))dxdy. (6)

Considering u0(xp, yp, z + �zmin) as expressed by
equation (1), we obtain

u(xp, yp, z + �zmin) =
∫∫

W(x, O(x, y), k0)u(x, y, z)dxdy,

(7)

where W(x, O(x, y), k0) represents the weighting coefficient

W(x, O(x, y), k0)

=
(√−ik0/v0 cos(θ ) + 0.5O(x, y)k2

0�zmin

)
exp(ik0r (x, y))

2πr (x, y)
.

(8)

The weighting coefficient in equation (8) differs from
that of the Kirchhoff in equation (3) in not only the obliquity,
spherical spreading, and wavelet shaping factors but also the
relative slowness perturbation O(x, y) accounting for lateral
velocity variations. Because of the application of the Born
approximation, Fu (2004) called equation (7) the BK interpo-
lator to differentiate it from the KKF interpolator in its ability
to accurately deal with large lateral heterogeneous media. Sim-
ilar to the KKF interpolator, equation (7) can be discretised
within a finite aperture of Lx × L y as

u(xp, yp, z + �zmin) =
Lx/2∑

i=−Lx/2

Ly/2∑
j=−Ly/2

Wi j ui j (z). (9)
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Figure 1 Vertical slices of the 3D impulse responses obtained by the
KKF (the left side of the panel) and BK (the right side of the panel)
migrators using different reference velocities. The grid interval used
here is 10 m, and the dominant frequency of the Ricker wavelet is
30 Hz.

Appendix C presents the accuracy analysis of the BK
interpolator using the dispersion equation (named the ex-
tended Born dispersion relation) derived from the one-way
Lippmann–Schwinger wave equation (B12). As shown in
Fig. C1, the BK interpolator presents higher accuracy than
the SSF propagator. Appendix C also provides an f-k domain
version of the BK interpolator despite its instability because
of the singularity at large-angle propagation.

Figure 1 shows the vertical slices of the 3D migration
impulse responses obtained by both the KKF (the left side of
the panel) and BK (the right side of the panel) migrators. The
real velocity of the homogeneous media is V = 4000 m/s,
which leads to a standard semicircle in the panel indicated by
the dashed line. The reference velocities for A and A’, B and B’,
C and C’, and D and D’ are 3000, 2500, 2000, and 1500 m/s
respectively (i.e., velocity contrasts calculated by (V – V0)/V
are 25%, 37.5%, 50%, and 62.5%, respectively). Each BK
response clearly deviates from the exact position less than the
KKF under the same velocity contrast, which presents better
adaptability to the velocity variation of the BK method.

Figure 2 displays the depth slices of 3D migration impulse
responses at the depth where the radius of the right circle poses
a dip angle of 60° relative to the depth direction. This figure
yields a more explicit comparison of the two methods. The
entire panel is divided into four equipment parts, and each
part shows the responses of both the BK and KKF methods,
as well as the correct position (marked with the dashed line)
under different reference velocities. The upper left quadrant
represents V0 = 3000 m/s, the upper right quadrant repre-
sents V0 = 2500 m/s, the lower left quadrant represents V0 =
2000 m/s, and the lower right quadrant represents V0 = 1500
m/s. As shown in the figure, the two responses overlap onto
each other and slightly deviate from the dashed line when
the velocity contrast is lower than 37.5% (i.e., (V – V0)/V �

Figure 2 Depth slices of 3D impulse responses obtained by the KKF
and BK migrators using different reference velocities. The grid interval
used here is 10 m, and the dominant frequency of the Ricker wavelet
is 30 Hz.

37.5%, the upper half part of the panel). Hence, the two meth-
ods are similarly efficient if a relatively small velocity contrast
is involved. As the divergences of the real velocity and refer-
ence velocity increase (the lower half part of the panel), both
responses migrate away from the ideal position, but the BK
method shows a lower migration speed than the KKF one.
The gradually increasing gap between the two responses re-
veals the superior performance of the BK method in dealing
with high-velocity contrast.

OPTIMAL IMPLEMENTATION OF
EXTRAPOLATION AND INTERPOLATION

Current industry techniques of Fourier migrations usually re-
quire 32- to 40-ms depth intervals for wavefield extrapolation,
followed by wavefield interpolation using the KKF interpola-
tor for small layers at �zmin spacing inside each thick slab.
In Fourier depth migration, frequency-related parameters and
depth-step sizes are the key factors affecting computational
efficiency and imaging accuracy. This section presents some
original techniques to optimise these parameters for Fourier
wavefield extrapolation.

The migration sampling rate �tmig, frequency increment
�ω, and number of frequencies to migrate nω are the domi-
nant frequency parameters contributing to the performance
of Fourier migration. Usually, �tmig, which is defined as
�tmig = 0.5/ fmax, with fmax as the maximum frequency to
migrate, is much larger than the sampling rate �t of the
input seismic data. We use �tmig to calculate the frequency

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 311–326



Interpolation in Fourier extrapolation 315

Figure 3 Large-step wavefield extrapolation is conducted through a
thick slab by the SVSP1 propagator. The migrated wavefields for
small heterogeneous layers defined by �zmin are then interpolated
inside the thick slab by the BK operator.

increment �ω, i.e., �ω = 2π/(L�tmig), rather than the gen-
eral expression �ω = 2π/(Nt�t), with L representing Nt the
original time sampling points and the two-radix FFT length,
respectively. The minimum layer thickness �zmin required for
seismic migration is also determined by �tmig. As a conse-
quence, the number of frequencies nω is reduced to save com-
puting time. Prior to migration, the input seismic data are
Fourier translated into the frequency–space domain according
to Nt and �t, and the resulting complex wavefield is interpo-
lated in terms of the new frequency increment �ω to generate
the wavefield for extrapolation.

Depth-step size is another crucial parameter that must
be properly selected for wavefield extrapolation. The depth-
step size as an input parameter is in units of milliseconds,
which can be mapped during depth migration into a depth
interval in metres in terms of velocities in each slab. That is,
Fourier wavefield extrapolation during depth migration will
be performed using a large depth size for large-velocity slabs
or a small depth size for small-velocity slabs. This process can
be easily achieved by designing a time parameter in millisec-
onds, but this parameter should be appropriately estimated by
analysing the heterogeneity and angular spectra of the velocity
(Fu 2010; Dong et al. 2011; Fu et al. 2013) because no effi-
cient criterion has yet been found to evaluate variable depth
intervals for laterally heterogeneous slabs. In general, the more
accurate the migrator is, the larger the depth range it can tol-
erate. However, excessively large depth-step sizes will cause
discontinuities along dipping reflectors at discrete intervals
related to depth-step size (Yilmaz 1987). In principle, these

spurious kinks could be removed by local wavefield inter-
polation. More precise interpolation algorithms (e.g., the BK
interpolator) are required for stronger lateral heterogeneities.
Based on 2D numerical tests (Fu 2004) on the SEG/EAGE salt
model, larger depth intervals (e.g., 40–60 ms) can be used for
wavefield extrapolation when accompanied by the BK inter-
polator for depths at �zmin spacing inside each interval. In 3D
cases, the procedure of wavefield extrapolation through thick
slabs and wavefield interpolation at small layers defined by
�zmin inside each thick slab is shown in Fig. 3.

NUMERICAL EXAMPLES

Figure 4 provides vertical slices of the 3D impulse responses
obtained by the large-step wavefield extrapolator (SVSP1)
plus the small-step wavefield interpolators (i.e., (a) KKF and
(b) BK). The real velocity of the homogeneous medium and
the reference velocity used here are V = 4000 m/s and V0 =
2500 m/s, respectively. The grid interval for both vertical and
horizontal directions is 10 m, and the dominant frequency of
the Ricker wavelet is 30 Hz. On the one hand, the outlines
of both responses in (a) and (b) match the ideal position of
the reflection indicated by the black dashed line well, even at
an angle of 70°; the response shows no noticeable deviation
from the exact position. This result demonstrates the excellent
accuracy of the SVSP1 migrator. On the other hand, the com-
parison between the two responses presents the advantages of
the BK interpolator because the results in Fig. 4(a) are more
continuous than those revealed in Fig. 4(b). In the following
section, more detailed numerical examples are provided for
the comparison of the two interpolators.

To verify the efficiency and accuracy of the 3D SVSP1
plus KKF and BK interpolator methods, we tested them on
the zero-offset records of the 3D SEG/EAGE salt model. The
velocity model used here has 500 × 500 × 401 grid points,
20-m spacings in the x- and y-directions, and a 10-m spac-
ing in the z-direction. It is generated from the 3D SEG/EAGE
salt model that has 250 × 250 × 201 grid points with 40-m
spacings in the x- and y-directions and a spacing of 20 m in
the z-direction using two-point linear interpolation. The 3D
zero-offset records are also interpolated using the same lin-
ear interpolation to match the model. The frequency range
calculated in the extrapolation is 0–30 Hz. All post-stack mi-
grations are computed on an Intel R© Xeon R© E5620 processor
(1600 MHz) with a random access memory device of 4 Gb on
a 64-bit Linux platform. Figure 5(a) and (c) displaces a hori-
zontal slice at a depth of 2100 m and a vertical slice along the
inline direction at a crossline position of 5000 m, respectively.
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Figure 4 Vertical slices of 3D impulse responses obtained by (a) the SVSP1 + BK method and (b) the SVSP1 + KKF method. The velocity of the
homogeneous medium here is V = 4000 m/s, and the reference velocity is V0 = 2500 m/s. The dashed semicircle represents the ideal position.
The grid interval used here is 10 m, and the dominant frequency of the Ricker wavelet is 30 Hz.

Figure 5 (a) A horizontal slice of the model at a 2100-m depth and (b) its desired migration using the minimum 10-m depth step without
wavefield interpolation. (c) A vertical inline slice at crossline 5000 m and (d) the desired migration section.

Figure 5(b) and (d) show the corresponding desired migra-
tion sections using the pure SVSP1 method with the minimum
10-m depth step (the grid spacing of the velocity model) with-
out wavefield interpolation.

Although the SVSP1 extrapolator is able to tolerate rel-
atively large depth steps for highly laterally heterogeneous
media, it requires appropriate selection to avoid severe spu-
rious kinks along steep dips. Based on experience, we chose

the time parameters of 32 and 72 ms for downward wave-
field extrapolation. In this work, depth-step sizes are mea-
sured in milliseconds rather than metres to enable the migra-
tion program to calculate real-time depth steps according to
velocity variations. For example, a 72-ms depth step allows
extrapolation slabs to vary in thickness from 108 to 324 m
corresponding to a range of velocity changes from 1500 to
4500 m/s.
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Figure 6 Horizontal and vertical migration slices resulting from (a, c) the 32-ms SVSP1-KKF method and (b, d) the 32-ms SVSP1-BK method.

Figure 6(a) and (c) illustrates the horizontal and verti-
cal sections migrated by the 32-ms SVSP1 + KKF method,
whereas Fig. 6(b) and (d) illustrates the corresponding sections
migrated by the 32-ms SVSP1 + BK method. Compared with
the desired migration in Fig. 5(b) and (d), both the KKF and
BK interpolators show nearly no reduction of imaging qual-
ity, except for the negligible distortion within the salt body.
Considering the absence of significant differences between the
migration sections, distinguishing these two interpolators in
terms of imaging accuracy is difficult when depending solely
on Fig. 6, mainly because depth steps calculated using the
32-ms parameter are only two to four times as large as the
grid spacing.

Increasing the depth-step size to 72 ms leads to the migra-
tion results shown in Fig. 7. Because of phase errors caused by
the KKF interpolator, Fig. 7(a) shows poorer spatial resolution
than Fig. 5(b) because of stretching of the structure interfaces
and the appearance of noticeable spurious kinks accompanied
with a slight smearing of waveforms along the steep dips in
Fig. 7(c). In Fig. 7(b) and (d), the more accurate BK interpo-
lator does not apparently deteriorate the imaging quality in

comparison with the desired migration. The absence of visible
kinks further indicates that the 72-ms BK interpolator is not
too coarse for the dips presented in the model. Although 72 ms
is an excessively large depth step, it can still produce adequate
results for the salt model with strong-contrast heterogeneities
and steep dips. Thus, Fig. 7 confirms that the BK interpolator
outperforms the KKF interpolator when large depth-step sizes
are involved.

Figure 8 provides a clearer comparison of the two migra-
tion strategies by enlarging the rectangular areas in Figs. 5, 6,
and 7. Figure 8(c) and (d) shows results comparable with the
desired migration in Fig. 8(b) in terms of the sloping edge of
the salt body (indicated by black arrows). This result demon-
strates that the SVSP1 + KKF and SVSP1 + BK methods are
fairly suitable for the model when a relatively short time pa-
rameter, such as 32 ms, is selected. The 72-ms results of the
SVSP1 + KKF and SVSP1 + BK methods are shown in Fig. 8(e)
and (f), respectively. The obvious discontinuity within the salt
body and the zigzags along the steep salt edge in Fig. 8(e)
shows that the 72-ms time parameter is slightly large for the
SVSP1 + KKF method. By comparison, the SVSP1 + BK

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 311–326
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Figure 7 Horizontal and vertical migration slices resulting from (a, c) the 72-ms SVSP1 + KKF method and (b, d) the 72-ms SVSP1 + BK
method.

method using the 72-m parameter yields acceptable results,
and no measurable distortion can be seen in Fig. 8(f) despite
the weak discontinuity within the salt body. Thus, the BK
interpolator achieves better migration than the KKF interpo-
lator, especially when a relatively large time parameter is used.

Figure 9 plots the depth-step variation along the depth
direction using 32 and 72 ms as depth parameters; in the fig-
ure, the dashed line represents the 32-ms case, which has a
total step number of 108, and the solid line represents the
72-ms case, which shows larger depth step changes and has a
step number of only 54. As the depth increases, the step sizes
of both cases also increase, mainly because the total velocity
shows a generally increasing trend in the depth direction. We
note here that, although the two curves show similar shapes,
they are not quantitatively related to each other because of the
randomness of the velocity distribution. Bumps peaking at a
depth of about 1800 m are caused by the relatively high refer-
ence velocity attributed to the high velocity of the salt body.

Table 1 compares the CPU time of these post-stack mi-
grations on the 3D SEG/EAGE salt model with different

Table 1 CPU time of post-stack migrations with different depth-step
sizes for the 3D SEG/EAGE salt model

Method Depth step CPU time

SVSP1 10 m 3376 s
SVSP1 + Kirchhoff 32 ms 1052 s
SVSP1 + Born–Kirchhoff 32 ms 1065 s
SVSP1 + Kirchhoff 72 ms 809 s
SVSP1 + Born–Kirchhoff 72 ms 820 s

depth-step sizes. Nearly equal computational times are re-
quired for both the SVSP1 + KKF and the SVSP1 + BK
methods to migrate the zero-offset records as the same time
parameters are used. Compared with the pure SVSP1 migra-
tion, both methods for the 32-ms case reduce the CPU time by
about 68%, and this time reduction increases to about 79%
when the 72-ms parameter is used. We tested other time pa-
rameters larger than 72 ms but obtained limited time savings,
largely because more wavefield interpolations, which demand
more computing time, are required for large depth steps.

C© 2017 European Association of Geoscientists & Engineers, Geophysical Prospecting, 66, 311–326
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Figure 8 Comparison of the local details within the rectangular areas
in Figs. 5, 6, and 7: (a) The velocity model; (b) the desired migra-
tion; (c) 32-ms SVSP1 + KKF migration; (d) 32-ms SVSP1-BK migra-
tion; (e) 72-ms SVSP1 + KKF migration; and (f) 72-ms SVSP1 + BK
migration.

Figure 9 Depth intervals (in metres) of thick slabs versus depth across
the whole model for the time input parameters of 32 and 72 ms,
corresponding total depth-step numbers of 108 and 54, respectively,
for wavefield extrapolation.

SUMMARY AND C ON C L USI ON S

Of the many advantages of Fourier-transform-based migra-
tions, the flexibility of depth-step size for wavefield extrapo-
lation is a critical one. In practice, large depth steps are always
used to improve efficiency. This strategy, however, produces

spurious kinks along dipping reflectors. These steep-interface
distortions can be effectively eliminated by local interpolation
within each extrapolation. In this paper, we mainly develop
the 3D large-step Fourier wavefield extrapolator and efficient
local interpolators for laterally heterogeneous media for the
sake of computational efficiency and imaging accuracy.

To guarantee accurate wavefields at large depth-step sizes
for laterally varying media, we derive the 3D SVSP1 propaga-
tor for large-step extrapolation. The 3D SVSP1 extrapolator
uses separation-of-variables decomposition instead of implicit
FD implementation to accomplish high-accuracy wavefield
correction, which also leads to an efficiency improvement.
Migration tests on the 3D SEG/EAGE model using the pure
SVSP1 method with minimum grid interval demonstrate its
efficiency and effectiveness in dealing with significant lateral
velocity variations. To support large-step 3D SVSP1 migra-
tion, we develop the 3D KKF and BK interpolators to dispose
of the spurious kinks observed during moderate and strong lat-
eral velocity variations, respectively. These two interpolators
are in fact local wavefield extrapolators and can correct dis-
torted wavefields by taking into account spherical spreading,
wavelet shaping, and relative slowness perturbations. Prior
to each wavefield extrapolation, a time parameter is applied
to determine the depth of the current step according to the
velocity distribution.

Numerical tests on the 3D SEG/EAGE model show the
success of both SVSP1 + KKF and SVSP1 + BK methods in
accuracy and efficiency when a relatively small time parameter
is used. Appropriately increasing the time parameter results in
significant time savings despite the negligible imaging deterio-
ration. We acknowledge that increases in the time parameter
result in smaller and smaller time reductions because of the
growing number of interpolations; the imaging accuracy is
also lowered, particularly for the KKF interpolator. Regard-
less of these observations, the SVSP1 + BK interpolator with
a 72-ms depth-step size still achieves high imaging accuracy
while saving time consumption by nearly 80% compared with
the desired migration using the velocity grid interval of 10 m.
Although the proposed 3D interpolators are presented with
one-way Fourier extrapolators, they can be extended for ap-
plications to general migration methods.
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APPENDIX A

THREE-DIMENSIONAL LARGE-STEP
FOURIER WAVEFIELD EXTRAPOLATION

This appendix extends the 2D SVSP1 Fourier extrapolator
(Fu 2006) to 3D cases for large-step wavefield extrapolation.
An operator K(x, y) is said to be separation-of-variables if it
can be decomposed in the form K(x, y) = ∑N

k=1 Ak(x)Bk(y),
where functions Ak(x) and Bk(y) are linearly independent. In
general, higher-order series expansion involves heavy numer-
ical calculations. An efficient development with rapid conver-
gence comes with lower-order terms that satisfy seismic imag-
ing accuracy for large to strong lateral heterogeneities. We will
demonstrate that the separation-of-variables expression of the
one-way Lippmann–Schwinger integral propagator leads to
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a Fourier matching solution for Fourier wavefield extrapo-
lation. These separation-of-variables extrapolators preserve
a dual-domain algorithmic structure of the classical phase-
screen extrapolator.

As described in Appendix B, the one-way Lippmann–
Schwinger integral equation (B12) with complex convolu-
tional operations in F (kx, ky, z) accounts for the accumulated
effects of both forward scattering inside a heterogeneity slab
and transmission/refraction between different slabs on wave
amplitude and phase. Appendix C further explores the physics
of equation (B12) by the Born approximation, refractive-index
smoothing, and small-angle approximation, resulting in sev-
eral typical low-accuracy dispersion equations; some high-
accuracy rational approximations to equation (B12) lead to
terms with the cross product of velocity perturbations and
propagation angles. The cross terms must invoke a new im-
plicit finite-difference (FD) implementation in Fourier wave-
field extrapolation. To avoid this problem, we consider the
following separation-of-variables decomposition:

k̄z(k̄x, k̄y, n) ≈
m∑

j=1

f j (k̄x, k̄y)g j (n). (A1)

Thus, we need to handle the following two problems:
(i) construction of the splitting operators f j (k̄x, k̄y) and g j (n)
and (ii) pure Fourier transform implementation to equation
(A1). We compare the Taylor series expansion and some ra-
tional approximations for the construction of these splitting
operators. As expected, these two approaches possess quite
different properties of approximations.

Using the rectangular rule rather than the trapezoid rule
to evaluate the volume integration over the slab in equation
(B8) and setting kz + k′

z ≈ 2kz for convenience, equation (B12)
becomes a standard equation for one-way propagation in
heterogeneous media

u(kx, ky, z + �z) =
[

u(kx, ky, z) + 1

k̄z

F Txy[ik0�z(n(r) − 1)u(r)]

]

× exp(ikz�z), (A2)

where F Txy denotes the 2D Fourier transform from (x, y) to
(kx, ky). Because of the second term inside the bracket, this
equation takes into account the accumulated effect of for-
ward scattering by volume heterogeneities in the slab. The
corresponding dispersion relation is shown in equation (C7),
which can be rewritten as

k̄z =
√

1 − k̄2
x − k̄2

y + (n − 1)
(√

1 − k̄2
x − k̄2

y

)−1

. (A3)

Equation (A3) is a separation-of-variables operator rep-
resentation with its accuracy shown in Fig. C1 (marked
by EBorn). Equation (A3) is the first-order approximation
of Taylor series expansion of the square-root operator. A
Fourier-transform-based matching solution to equation (A3)
can be obtained from equation (A2) using the approximate
calculation eiζ ≈ 1 + iζ

u(kx, ky, z + �z)

=
⎡
⎣

⎛
⎝1 − 1√

1 − k̄2
x − k̄2

y

⎞
⎠ + 1√

1 − k̄2
x − k̄2

y

exp(ik0�z(n − 1))

⎤
⎦

× u(kx, ky, z) exp(ikz�z). (A4)

The split-step solution to this equation can be expressed
as

u(kx, ky, z + �z)

=
⎡
⎣

⎛
⎝1 − 1√

1 − k̄2
x − k̄2

y

⎞
⎠ u(kx, ky, z) + 1√

1 − k̄2
x − k̄2

y

× FTxy [u(x, y, z) exp(ik0�z(n(x, y) − 1))]

⎤
⎦ exp(ikz�z).

(A5)

We see that wavefield extrapolation through a slab by
the first-order separation-of-variables propagator is a linear
interpolation in the wavenumber domain between the refer-
ence phase-shift solution and the split-step solution. The com-
putational time with equation (A5) is almost the same as the
traditional SSF solution.

The problems with the Taylor degenerate operator ap-
proximation (A5) are as follows: (i) low accuracy (although
better than the SSF method) that causes poor performance
for strong-contrast slabs and (ii) singularity when k̄2

x + k̄2
y ≈ 1

(high propagation angles). This singularity is the main rea-
son for unstable numerical propagation for large lateral vari-
ations, high frequencies, and large propagation angles. Re-

placing
√

1 − k̄2
x − k̄2

y in equation (A5) with
√

1 − k̄2
x − k̄2

y +√
1 − k

′2
x − k

′2
y (see equation (C4)) may reduce the singularity

to some degree due to the velocity difference between adjacent
slabs.

The phase error brought about by the parabolic correc-
tion term in equation (C10) rapidly increases with increasing
k̄2

x + k̄2
y and decreasing n. In such circumstances, approxima-

tion to the parabolic correction term will yield more accurate
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Figure A1 Accuracy analysis of the first-order SVSP1. (a) Angular spectra of (solid line) the SVSP1 propagator compared with those of (dotted
line) the FFD and (dashed line) the SSF propagators. (b) Dispersion circles of (thick solid line) the SVSP1 propagator compared with those of
(thick dotted line) the exact, (thick dashed line) the FFD, and (thin dashed line) the SSF propagators for n = 0.3, n = 0.65, and n = 0.9.

results if some fast convergent functions, such as rational,
exponential, or logarithmic functions, are applied, rather than
the Taylor series expansion, for a given number of terms. In
analogy to the FD-based various parabolic approximations to
the square-root operator, more accurate operator approxima-
tions for constructing the splitting operators in equation (A1)
can be obtained with the use of rational functions.

Since k̄2
x + k̄2

y ≤ 1 for one-way propagation, the term
(1 − k̄2

x − k̄2
y)−1/2 in equation (A3) can be approximated by

the following rational expansion:

(
1 − k̄2

x − k̄2
y

)−1/2 = 1 −
m∑

j=1

a j

(
k̄2

x + k̄2
y

)
1 + bj

(
k̄2

x − k̄2
y

) , (A6)

where coefficients a j and bj are independent from n. Substi-
tuting this equation into equation (A3), we obtain

k̄z =
√

1 − k̄2
x − k̄2

y + n − 1 − (n − 1)
m∑

j=1

a j

(
k̄2

x + k̄2
y

)
1 + bj

(
k̄2

x + k̄2
y

) .

(A7)

In comparison with the Fourier finite-difference (FFD)
solution (C10), equation (A7) is a separation-of-variables op-
erator representation that leads to a pure Fourier-transform-
based matching solution.

Coefficients in equation (A7) can be determined nu-
merically by an optimization procedure using least-squares
method. The optimization procedure can be defined as search-
ing optimal a j and bj to minimize the following cost function

J =
∫ 1

0

∫ φ

0
E2(θ, n)dθdn, (A8)

where φ is the maximum angle designed and the dispersion
error

E(θ, n) =
√

1 − k̄2
x − k̄2

y + n − 1 − (n − 1)
m∑

j=1

a j

(
k̄2

x + k̄2
y

)
1 + bj

(
k̄2

x + k̄2
y

)
−

√
n2 − k̄2

x − k̄2
y . (A9)

Because of the mathematical properties and approxi-
mation behaviour of rational functions (e.g., Trefethen and
Halpern 1986; Bamberger et al. 1988; Halpern and Trefethen
1988), equation (A7) should be well-posed, especially for
lower-order terms. In practice, the first-order equation or,
at most, the second-order equation is adequate for common
one-way propagation in large to strong-contrast media with
large propagation angles in seismology.

In the following section, we formulate these separation-
of-variables propagators by a Fourier-transform-based rep-
resentation for numerical implementation. Substituting
equation (A7) into (A2) and, using the approximate calcu-
lation eiζ ≈ 1 + iζ , we obtain

u(kx, ky, z + �z)

=
⎡
⎣ m∑

j=1

a j

(
k̄2

x + k̄2
y

)
1 + bj

(
k̄2

x + k̄2
y

) +
⎛
⎝1 −

m∑
j=1

a j

(
k̄2

x + k̄2
y

)
1 + bj

(
k̄2

x + k̄2
y

)
⎞
⎠

× exp(ik0�z(n − 1))

⎤
⎦ u(kx, ky, z) exp(ikz�z). (A10)
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We see that advancing wavefields through a slab re-
sults from a linear interpolation in the f-k domain between
the reference phase-shift solution and the split-step solu-
tion. Setting Cj = a j (k̄

2
x + k̄2

y)/(1 + bj (k̄
2
x + k̄2

y)) and taking its
first-order term (SVSP1), the split-step Fourier (SSF) solution
to equation (A10) can be expressed as

u(kx, ky, z + �z) = {
C1u(kx, ky, z) + (1 − C1)FTxy[u(kx, ky, z)

× exp(ik0�z(n − 1))]
}

exp[ikz�z]. (A11)

With the first-order separation-of-variables screen prop-
agator (SVSP1), the extrapolated wavefields result from a lin-
ear interpolation in the f-k domain between two split-step
terms exp[ik0�z(n − 1)] and exp[ik0�z2(n − 1)]. This is the
most distinct feature that differentiates the present strategy
from the Taylor series expansion. It extends the SSF method
to steeper-propagation angles in larger-contrast media at the
cost of one more Fourier transform for each extrapolation
step. Figure A1 shows the SVSP1’s angular spectrum under a
relative phase error of 10% in comparison with those of the
SSF and FFD propagators. SVSP1 can clearly be regarded as
an efficient alternative to the FFD method (Ristow and Rühl
1994) in terms of accuracy but only uses Fourier transforms
for migration, thereby significantly reducing computational
costs, particularly for 3D cases.

APPENDIX B

ONE-WAY THREE-DIMENSIONAL
LIPPMANN–SCH WI N GER IN T E GR A L
PROPAGATOR

In general, most acoustic media in seismic exploration can be
sliced into heterogeneous slabs roughly perpendicular to the
main propagation direction. Wave propagation in a heteroge-
neous slab can be formulated as the superposition of incident,
boundary scattering, and volume-scattering waves, which
can be accurately expressed as the generalised Lippmann–
Schwinger integral equation incorporating boundary scatter-
ing. This appendix illustrates a brief derivation of the one-way
3D Lippmann–Schwinger integral propagator by one-way
approximations from the generalised Lippmann–Schwinger
integral equation inside a 3D heterogeneous slab.

Figure B1 depicts the geometry of such a heterogeneous
slab with the thickness �z, denoted by � with a top interface
	0, a bottom interface 	1, and two infinite boundaries 	∞.
The velocity distribution in the slab is denoted by v(r), where
r is the position vector, and its reference velocity is v0. We

Figure B1 The geometry of a 3D heterogeneous slab.

start with the scalar Helmholtz equation for a time-harmonic
wavefield u(r)

∇2u(r) + k2u(r) = 0, (B1)

where the wavenumber k = ω/v(r). The total wavefield � at
location � is composed for scattering problems of

u(r) = us
1(r) + us

2(r). (B2)

� is the scattered field by the boundary structure 	 =
	0 + 	1 + 	∞ and satisfies the following boundary integral
equation:

us
1(r) =

∫
	

[
G(r, r′)

∂u(r′)
∂n

− u(r′)
∂G(r, r′)

∂n

]
dr′, (B3)

where � denotes differentiation with respect to the outward
normal of the boundary �. � is the scattered field by the vol-
ume heterogeneities within the slab and satisfies the following
Lippmann–Schwinger integral equation:

us
2(r) = k2

0

∫
�

O(r′)u(r′)G(r, r′)dr′, (B4)

where k0 is the reference wavenumber and O(r) is the rela-
tive slowness perturbation defined as O(r) = n2(r) − 1 with
the acoustic refractive index n(r) = v0/v(r). We define the fol-
lowing velocity-weighted wavefield F (r) = ik0�zO(r)u(r) that
has a concise relation to scattered fields in the frequency–
wavenumber domain (Fu, Mu and Yang 1997).

These Helmholtz integral representation formulas are
derived using the Green’s function G(r, r′) in the back-
ground medium, i.e., G(r, r′) = i

8π2

∫ ∞
−∞

∫ ∞
−∞ k−1

z exp[ikz(z −
z′) + iky(y − y′) + ikx(x − x′)]dkxdky, for 3D problems with
�. Substituting equations (A3) and (A4) into equation (A2)
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and considering the “boundary naturalisation” of the inte-
gral equations, i.e., a limit analysis when the “observation
point” r′ approaches the boundary 	 and tends to coin-
cide with the “scattering point” r, we obtain the following
generalised Lippmann–Schwinger integral equation:∫

	

[
G(r, r′)

∂u(r′)
∂n

− u(r′)
∂G(r, r′)

∂n

]
dr′

+ k2
0

∫
�

O(r′)u(r′)G(r, r′)dr′ =

⎧⎪⎨
⎪⎩

u(r) r ∈ �

C(r)u(r) r ∈ 	

0 r /∈ �̄

, (B5)

for all r′ ∈ �̄ = � + 	, where coefficient C(r) = 1/2 for a flat
	. This is a wave integral equation that is equivalent to the
Helmholtz equation (B1) and describes two-way wave propa-
gation in the heterogeneous slab.

Equation (B5), as a Fredholm integral equation of the sec-
ond kind, describes wave propagation in the space–frequency
domain. Formulating it in the frequency–wavenumber do-
main using a plane-wave expansion will lead to quite different
numerical schemes. In Fig. B1, we assume wave propagation
along the Z-axis, crossing the slab from the slab entrance 	0

to the exit 	1. Let q(r) = ∂u(r)/∂n indicate the acoustic pres-
sure gradient, r = (x, y, z) represent the observation point,
and r′ = (x′, y′, z′) denote the scattering point. Applying the
plane-wave representation of the Green’s function, G(r, r′) =

i
8π2

∫ ∞
−∞

∫ ∞
−∞ k−1

z exp[ikz(z − z′) + iky(y − y′) + ikx(x − x′)]×
dkxdky, to each integrand in equation (B5), we obtain∫

	0

[
G(r, r′)q(r′) − u(r′)

∂G(r, r′)
∂n

]
dr′

= 1
8π2

∫ ∞

−∞

∫ ∞

−∞

[(
ik−1

z q(kx, ky, z) + u(kx, ky, z)
)

× exp(ikz�z)
]

exp(ikxx) exp(iky y)dkxdky. (B6)

∫
	1

[
G(r, r′)q(r′) − u(r′)

∂G(r, r′)
∂n

]
dr′

= i
8π2

∫ ∞

−∞

∫ ∞

−∞

[
k−1

z q(kx, ky, z + �z)
]

exp(iky y)

× exp(ikxx)dkxdky. (B7)

Using the trapezoid rule to evaluate the volume integra-
tion over the slab in equation (B5) yields

k2
0

∫
�

O(r′)u(r′)G(r, r′)dr′

= k0

4π2

∫ ∞

−∞

∫ ∞

−∞
k−1

z

[
F (kx, ky, z) exp(ikz�z)

+ F (kx, ky, z + �z)
]

exp(ikyy) exp(ikxx)dkxdky. (B8)

This is actually a Born approximation applied to the slab.
This approximation implies that the heterogeneity of the slab
is represented by its top/bottom interfaces and consequently
requires that the slab be thin enough with respect to the wave-
length of incident waves. Substituting equations (B6), (B7),
and (B8) into equation (B5) and noting that each inner inte-
gral is a Fourier transform, we obtain

2Ckzu(kx, ky, z) − iq(kx, ky, z + �z) − 2k0 F (kx, ky, z + �z)

= (
kzu(kx, ky, z) + iq(kx, ky, z) + 2k0 F (kx, ky, z)

)
× exp(ikz�z). (B9)

Equation (B9) is a wavenumber-domain wave equation
that describes two-way wave propagation in the heteroge-
neous slab, including multiple forward- and backscatterings
between 	0 and 	1. However, solving this equation requires
operator deconvolution in the wavenumber domain because
of the velocity-weighted wavefield F (kx, ky, z + �z).

For one-way wave propagation using the matching so-
lution techniques, further simplification should be made to
equation (B5) by reducing it to one-way version. From
equation (B5), we see that two-way wave propagation involves
two terms: the acoustic pressure u(r) and acoustic pressure
gradient q(r). In practice, we do not often measure both u(r)
and q(r) at a given level. The pressure gradient q(r) at the slab
entrance 	0 can be dropped by choosing 	0 as an acoustically
soft boundary (Dirichlet boundary condition). This Rayleigh-
type integral representation is valid if we neglect backscat-
terings. With this choice, no energy returns from the upper
boundary 	0 and multiple reflections between 	0 and 	1 can
be avoided, and equation (B9) is updated to

2Ckzu(kx, ky, z) − iq(kx, ky, z + �z) − 2k0 F (kx, ky, z + �z)

= (2kzu(kx, ky, z) + 2k0 F (kx, ky, z)) exp(ikz�z). (B10)

To account for the effect of transmission and refraction at
	1 on forward wave propagation, we need to build a boundary
integral equation in the medium immediately below the slab

1
2

u(r) +
∫

	1

[
G(r, r′)q(r′) + u(r′)

∂G(r, r′)
∂n

]
dr′ = 0. (B11)

Applying the plane-wave representation of the Green’s
function to equation (B11) results in iq(kx, ky, z + �z) =
−k′

zu(kx, ky, z + �z), where k′
z is the wavenumber related to

the medium immediately below 	1. Substituting in equation
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(B10) gives

(
2Ckz + k′

z

)
u(kx, ky, z + �z) − 2k0 F (kx, ky, z + �z)

= (2kzu(kx, ky, z) + 2k0 F (kx, ky, z)) exp(ikz�z). (B12)

This is one-way Lippmann–Schwinger wave equation ac-
counts for the accumulated effect of both forward scatter-
ing by volume heterogeneities inside a slab and transmis-
sion/refraction between different slabs on wave amplitude and
phase.

APPENDIX C

DISPERS ION RELATION OF
THREE-DIMENSIONAL B ORN–KIRCHHOFF
PROPAGATOR

This appendix further explores the physics of equation
(B12), leading to several dispersion equations that correspond
to some typical one-way propagators, including the Born–
Kirchhoff (BK) propagator. These dispersion relations define
the accuracy of one-way propagators.

To analyse the accuracy of equation (B12) in terms of
acoustic refractive indices and propagation angles, we nor-
malise the wavenumbers k̄x = kx/k0, k̄y = ky/k0, k̄z = kz/k0,
and k̄′

z = k′
z/k′

0 with k′
0, the reference wavenumber for the

medium immediately below 	1. Taking 2kz/(kz + k′
z) ≈ 1 af-

ter Born approximation to the slab is reasonable. For con-
venience, we take the acoustic refractive index n(r) of the
slab as different constants n to avoid convolution opera-
tions in F (kx, ky, z + �z). Then, equation (B12) can be written
as

u(kx, ky, z + �z)
[
1 − ik0�zO(n)

2(k̄z + k̄′
z)

]

= u(kx, ky, z)
[
1 + ikz�zO(n)

2(k̄z + k̄′
z)

]
exp(ikz�z). (C1)

Since

∣∣∣∣∣∣∣∣
1 + ik0�zO(n)

2(k̄z + k̄′
z)

1 − ik0�zO(n)

2(k̄z + k̄′
z)

∣∣∣∣∣∣∣∣
= 1,

equation (C1) becomes

u(kx, ky, z + �z) = u(kx, ky, z)exp
[
i2 arctan

(
k0�zO(n)

2(k̄z + k̄′
z)

)]

× exp(ikz�z). (C2)

Because of the Born approximation, we have

tan
[

k0�zO(n)

2(k̄z + k̄′
z)

]
≈ k0�zO(n)

2(k̄z + k̄′
z)

,

which gives

u(kx, ky, z + �z) = u(kx, ky, z)exp
[

ik0�zO(n)

(k̄z + k̄′
z)

]

× exp(ikz�z). (C3)

From equation (C3), we obtain the following Born dis-
persion relation:

k̄z =
√

1 − k̄2
x − k̄2

y

+ n2 − 1√
1 − k̄x

2 − k̄y
2 +

√
1 − k̄′

x
2 − k̄′

y
2
. (C4)

To make sense of this dispersion equation, we take k̄x ≈
k̄′

x, k̄y ≈ k̄′
y and substitute it in equation (C4) to yield

k̄2
x + k̄2

y +
⎛
⎝k̄z − 0.5(n2 − 1)√

1 − k̄2
x − k̄2

y

⎞
⎠

2

= 1. (C5)

Here, k̄z ≈
√

1 − k̄2
x − k̄2

y for n ≈ 1 (small perturbation)

and k̄′
z ≈ 0.5(n2 + 1) for k̄x, k̄y ≈ 0 (small angle). Compared

with the exact dispersion relation k̄z =
√

n − k̄2
x − k̄2

y , we find
that the Born approximation is a small perturbation approxi-
mation (fitting into its assumption) rather than a global small-
angle approximation. It cannot remove the axial phase error,
i.e., for k̄x, k̄y ≈ 0, equation (C5) cannot arrive at exact val-
ues for any slowness perturbations except in the case n = 1.
Figure C1 shows the poor performance of the Born dispersion
equation (C5) for n = 0.1 ∼ 0.8.

One can significantly improve the Born approximation
by simplifying the relative slowness perturbation

O(n) = n2 − 1 ≈ 2(n − 1), (C6)

which tends to smooth medium contrasts. Equation (C6) ex-
tends the Born dispersion relation (equation (C5)) to a more
accurate form

k̄2
x + k̄2

y +
⎛
⎝k̄z − n − 1√

1 − k̄2
x − k̄2

y

⎞
⎠

2

= 1. (C7)

We see that k̄′
z ≈

√
1 − k̄2

x − k̄2
y for n ≈ 1 and k̄′

z ≈ n for

k̄x, k̄y ≈ 0, which agrees with the exact dispersion relation.
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Figure C1 Comparison of angular spectra of several typical one-way
propagators: Born, SSF, EBorn, and FFD Here, EBorn denotes the
dispersion relation of the BK propagator.

Equation (C7) can be called the extended Born (EBorn) dis-
persion equation, and Fig. C1 demonstrates its significant im-
provement over the SSF approximation. We consider the sim-
plification (equation (C6)) as refractive-index smoothing that
extends the Born approximation to accommodate small prop-
agation angles for arbitrarily strong-contrast media. There-
fore, matching solution techniques based on equation (C7)
would account for moderate perturbations and global small
angles rather than the weak perturbations produced by the
standard Born approximation. Despite its improved perfor-
mance compared with the SSF approximation, one-way prop-
agation by this improved Born dispersion relation (equation
(C7)) using Fourier transforms is unstable because of the
singularity obtained when k̄2

x + k̄2
y ≈ 1 (large-angle waves).

However, one-way propagation by its space-domain version
(equation (6)) is unconditionally stable using diffraction sum-
mation. That is, equation (C7) is the dispersion relation of the
BK propagator; this relation differs from the Kirchhoff prop-
agator in that it accounts not only for the obliquity, spherical
spreading, and wavelet shaping factors but also for the relative
slowness perturbation in a laterally heterogeneous slab.

Applying the small-angle approximation

1/

√
1 − k̄2

x − k̄2
y ≈ 1 to equation (C5) results in the so-called

standard parabolic equation (Tappert 1977) with a dispersion
relation of

k̄2
x + k̄2

y + (k̄z − 0.5(n2 − 1))2 = 1. (C8)

Applying refractive-index smoothing (equation (C6)) to
equation (C8) yields the following well-known split-step dis-
persion equation on which the current SSF method is based:

k̄2
x + k̄2

y + (k̄z − (n − 1))2 = 1. (C9)

From Fig. C1, we see that the small-angle approximation

1
√

1 − k̄2
x − k̄2

y ≈ 1 decreases the benefit from the refractive-
index smoothing and reduces the extended Born approxima-
tion to the SSF approximation.

With the above dispersion equations, Fourier matching
algorithms using FFTs can be designed for one-way propa-
gation in either moderate-contrast media or small propaga-
tion angles. For large to strong-contrast media, various hy-
brid methods that incorporate the FD scheme into the Fourier
matching solutions have been proposed, theoretically permit-
ting one-way propagation in arbitrary angles. These split-step
FD solutions have been reported to allow larger grid spacings
than pure FD methods. For instance, the split-step FD prop-
agator (Thomson 1990), the split-step Padé solution (Collins
1993), and the FFD propagator (Ristow and Rühl 1994) are
of the same form with the rational approximation

k̄z =
√

1 − k̄2
x − k̄2

y + n − 1 +
m∑

j=1

a j (n)
(
k̄2

x + k̄2
y

)
1 + bj (n)

(
k̄2

x + k̄2
y

) , (C10)

with coefficients varying with n. We see that these split-
step FD propagators hierarchically consist of the reference
phase-shift solution (the first term), the split-step correc-
tion term (the second term), and a parabolic correction term
(the last term). Cross-coupling of k̄x, k̄y, and n in the last
term shows that equation (C10) is not a degenerate opera-
tor expression and consequently requires an extra implicit FD
implementation.
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