文章编号: 1000-4734(2017)01-0093-13

湘西合仁坪钠长石-石英脉型 金矿床的成矿流体研究

胡诗倩¹,彭建堂^{1,2*},邓穆昆¹,李玉坤¹

(1. 中南大学 地球科学与信息物理学院 有色金属成矿预测教育部重点实验室,湖南 长沙 410083;2. 中国科学院 地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550081)

摘 要: 合仁坪金矿床位于湘西柳林汊金矿带,是典型的钠长石-石英脉型金矿床,本文对其进行了较系统的 成矿流体地球化学研究。结果表明,与成矿有关的石英和方解石中的流体包裹体主要为气液两相包裹体。石 英中包裹体的均一温度范围为 111~375 °C,盐度为 0.18%~7.86%的 NaCl;方解石中包裹体的均一温度范围 为 196~271 °C,盐度为 4.18%~6.74%的 NaCl;成矿溶液的密度为 0.633~0.997 g/cm³,表明该矿床的成矿流 体均属于中低温、低盐度和低密度的流体;成矿压力为 4~209 MPa,成矿深度约为 1.2~6.8 km,该矿床是在 中低压力、中浅成条件下形成的。激光拉曼探针分析表明,包裹体中的气相成分有 CO₂、CO、CH₄和 N₂,液 相成分为 H₂O 和 CO₃²⁻,指示含有机质的沉积物变质脱水可能是成矿流体来源的方式。对石英和钠长石氢氧同 位素研究表明,该矿成矿流体的δ¹⁸O_{H2}0 值为 7.1%~10.8%, δD_{H_20} 值介于-69%~-55%,合仁坪金矿的成矿 流体主要来源于变质水。

关键词:成矿流体;激光拉曼分析;氢氧同位素;钠长石-石英脉型金矿;合仁坪 中图分类号:P585;PP599 文献标识码:A doi: 10.16461/j.cnki.1000-4734.2017.01.013 作者简介:胡诗倩,女,1990年3月生,硕士研究生,地质学专业,从事流体包裹体地球化学和稳定同位素 研究.E-mail: hushiqian312@126.com

Characteristics of Ore-forming Fluid in Herenping Albite-quartz Lode Gold Deposit, Western Hunan Province, China

HU Shi-qian¹, PENG Jian-tang^{1,2}, DENG Mu-kun¹, LI Yu-kun¹

(1. School of Geosciences and Info-physics & Key Laboratory of Non-ferrous Metals Metallogenic Prediction of

Ministry of Education, Central South University, Changsha 410083, China; 2. State Key Laboratory of

Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China)

Abstract: Herenping gold deposit , a typical albite-quartz lode gold deposit , is located in the Liulincha gold ore belt , western Hunan Province , China. The ore-forming fluid geochemistry was systematically studied in this paper. It is shown that the fluid inclusions in quartz and calcite related to gold mineralization are predominated by two-phase (liquid-rich) inclusion. The homogenization temperatures and salinities of fluid inclusion in quartz range from 111 °C to 375 °C and from 0. 18 wt% NaCl to 7. 86 wt% NaCl , respectively. The homogenization temperatures and salinities of fluid inclusion in calcite vary from 196 °C to 271 °C and from 4. 18 wt% NaCl to 6.74 wt% NaCl , respectively. The densities of the ore-forming fluid are estimated at $0.633 \sim 0.997$ g/cm³. Therefore the ore-forming fluid responsible

收稿日期: 2015-03-16

基金项目: 国家自然科学基金项目 (编号: 41073036 , 41473043)

通讯作者, E-mail: jtpeng@126.com

for gold mineralization in Herenping deposit is characterized by low-to-moderate temperature, low salinity and low density. The pressures of ore-forming fluid are calculated as $4 \sim 209$ MPa, indicating that the gold deposit formed at the depth of 1. 2 ~6.8 km. Based on the laser Raman analysis of fluid inclusion, it is concluded that the gas composition mainly consists of H₂O, CO₂, CO, CH₄ and N₂, and liquid phase composition is mainly H₂O and CO₃²⁻, which reveals that the ore-forming fluid is caused by the metamorphic dehydration of organic matter-bearing sediments. Hydrogen and oxygen isotope compositions also reveal, that the $\delta D_{H_{2}O}$ is 7. 1% \circ 10. 8% \circ and the $\delta^{18}O_{H_{2}O}$ is -69% \circ ~55% \circ , indicating that the ore-forming fluid in this gold deposit is mainly derived from metamorphic water. **Keywords**: ore-forming fluid; laser Raman; hydrogen isotope; oxygen isotope; albite-quartz lode deposit; herenping gold deposit

沃溪 Au-Sb-W 矿床是石英脉型金矿床的典型 代表,前人对其开展了较多研究^[1-8]。但湘西柳 林汊一带的含金矿脉中,钠长石却广泛分布,并 且是重要的载金矿物,明显有别于区域上的石英 脉型金矿。湘西柳林汊一带金矿床的研究程度较 低,近些年来,我们相继对该区的合仁坪金矿开 展了一些研究,对钠长石的矿物学和地球化学特 征、围岩蚀变、及 S、Pb 和 Sr 同位素进行了研 究^[9-11],但目前尚无人对其进行成矿流体方面的 研究,这严重制约对其成矿流体性质、来源以及 成矿机制的认识。因此,在野外详细调研的基础 上,本文对合仁坪金矿床进行了流体包裹体显微 测温、激光拉曼分析和 H、O 同位素测试, 明确 该矿成矿流体的性质和来源以及成矿物理化学条 件,并与区域上的石英脉型金矿进行对比,阐述 了该金矿的成因机制。

1 矿床地质特征

合仁坪钠长石-石英脉型金矿床位于湖南省 沅淩县境内,是柳林汊金矿带中开采历史最长、 规模最大的金矿床。在构造上,该金矿处于江南 古陆武陵隆起与雪峰山隆起带之间的次级隆起区 内。除第四系覆盖外,矿区出露的地层主要为新 元古界板溪群马底驿组和五强溪组(图1),这两 套地层呈整合接触关系,矿区外围有更老的冷家 溪群。矿区构造主要是 NE 向长岭岗复式背斜, 其两翼也发育较多次级背斜,所有含金矿脉都产 于背斜两翼或轴部的马底驿组紫红色绢云母板岩 中,受切层断裂和层间剥离构造的联合控制。矿 区以及外围未见岩浆岩出露。

合仁坪金矿床的矿体呈脉状产出,矿脉的厚 度为0.05~2m,通常为顺层产出,局部可见矿 脉切穿地层(图 2A、B、C);脉体中可见围岩角 砾(图 2C、D),角砾大小不一,棱角分明,其 成分单一,可拼性较好,为液压致裂的产物。矿 石矿物主要为黄铁矿、自然金、方铅矿、闪锌 矿、黄铜矿和黝铜矿等;脉石矿物为石英、钠长 石、方解石、绿泥石、叶腊石等,其中石英和钠 长石约占矿脉的 90%以上。金矿物主要为自然 金,载金矿物主要为石英、钠长石和硫化物(方 铅矿、黝铜矿和黄铁矿)(图 3),石英和钠长石 中偶见明金。围岩蚀变主要有绢云母化(褪色 化)、黄铁矿化、碳酸盐化和少量的绿泥石化、 叶腊石化、高岭土化,其中,褪色化分布最为广 泛,是该区金矿最重要的蚀变类型,亦是该区最 重要的找矿标志。

2 样品描述及分析方法

本次研究的样品采自合仁坪金矿床的不同矿 区(合仁坪、长岭岗、乔子冲、桐树面等),从 中选取具代表性的样品磨制了42块包裹体片, 供包裹体岩相学观察、显微测温和激光拉曼成分 分析; 另外选取了8件石英和7件钠长石样品进 行 H-O 同位素研究。流体包裹体显微测温分析 在中南大学流体包裹体实验室 Linkam-THMSG600 型冷热台上完成,该仪器测定温度范围为-196~ 600 ℃,误差范围为±0.5 ℃。而激光拉曼分析在 英国产 Renishaw in Via Reflect 型显微共聚焦激光 拉曼光谱仪上进行,对石英,钠长石和方解石中 流体包裹体的气相成分进行了扫描,波段范围包 括 H_2O 、 CO_2 、CO、 H_2S 、 SO_2 、 N_2 、 H_2 、 CH_4 、 C_2H_2 、 C_2H_4 、 C_4H_6 和 C_2H_6 的特征拉曼峰位置, 该项测试在中国科学院地球化学研究所矿床地球 化学国家重点实验室完成。样品的氢、氧同位素

94

图 1 合仁坪金矿床地质简图 (据文献 [12] 修改) Fig.1.Geological sketch map of the Herenping gold deposit (modified from the reference [12]).

A-单脉状; B-树枝状; C-网脉状; D-角砾状

图 2 合仁坪金矿中各种类型的矿脉 Fig.2.Various kinds of ore veins in the Herenping gold deposit.

测试中国地质科学院矿床资源研究所稳定同位素 实验室完成。

- 3 流体包裹体研究
- 3.1 岩相学特征

本次对合仁坪矿区石英、方解石和钠长石等

矿物中的包裹体进行了研究。显微镜下观察表 明,合仁坪金矿床石英中流体包裹体很发育,且 主要为原生包裹体,这些包裹体通常呈椭圆状、 长条状、不规则状(图4),其大小多在3~8μm 之间,偶见10μm以上的,气液比一般为5%~ 20%,但主要在10%~15%之间,偶见个体达到

图 3 本次研究采集的合仁坪金矿床的样品照片 Fig.3.Photographs of samples collected from the Herenping gold deposit.

70%以上; 方解石中流体包裹体也较发育, 多为 原生包裹体,大多呈不规则状或负晶形(图 5), 5~20 μm 较常见,偶见 20 μm 以上,气液比为 2%~50%。钠长石中流体包裹体数量较少且个体 较小,不易观察和测温,因此石英和方解石是本 次流体包裹体研究的主要对象。值得一提地是, 在少量石英样品中,发现了不同气液比包裹体在 同一视域共存的现象(图 4E),暗示流体曾发生 过沸腾作用。

根据室温(20℃)条件下的相态特征、升 温或降温过程中(-196~600℃)的相变行为以 及激光拉曼光谱分析,可以得出合仁坪金矿各阶 段石英中的包裹体以 L-V 型富液相水溶液包裹体 为主,一般可达 95%以上,偶见含子晶的包裹 体,但数量极少,且测温时未发现。包裹体大多 为无色透明,部分为浅黄、灰白色,气液两相界 线清晰。

3.2 显微测温和盐度

用于显微测温的流体包裹体主要为石英和方 解石中的 L-V 型富液相水溶液包裹体,利用冷冻 法和均一法分别对该类流体包裹体进行冷冻温度 和均一温度的测定,详细的测定结果见表 1。 L-V型富液相水溶液包裹体的盐度计算是根据 Hall 等^[13]提出的盐水(NaCl-H₂O)体系的公式: $w = 0.00+1.78t_m - 0.442t_m^2 + 0.000557t_m^3$ 。

显微测温研究表明,合仁坪金矿床石英中流体包裹体的均一温度(t_h)为111~375 °C(表1);在直方图中,石英中流体包裹体的均一温度大致呈正态分布,形成温度主要集中在140~230 °C之间(图 6A);石英中流体包裹体的冰点变化范围为-6.0~4.1 °C,对应的成矿流体盐度为0.18%~7.86%的 NaCl(表 1),主要集中在为5%~7%的%NaCl之间(图 6B),这表明该矿区

图 4 合仁坪金矿床石英中流体包裹体显微照片 Fig.4.Microphotographs of fluid inclusions in quartz from Herenping gold deposit.

图 5 合仁坪金矿床方解石中流体包裹体显微照片 Fig.5.Microphotographs of fluid inclusions in calcite from the Herenping gold deposit.

Table 1. Microthermometry of fluid inclusions in Herenping gold deposit							
样品号	主矿物 一	冰点 t _i /℃		 均一温度 t _h /℃		盐度 w(NaCl) /%	
		 范围	平均	范围	平均	范围	平均
CLG-4	石英	-5.0~-1.4	-3.9	154~316	224	2.41~7.86	6.34
HRP-43	石英	-4.0~-0.9	-2.6	139~268	199	1.57~6.45	4.31
HRP-38	石英	-2.5~1.6	-2.0	149~241	178	2.07~4.18	3.65
HRP-4	石英	-3.9~1.1	-2.8	121~235	198	1.74~6.30	4.94
CLG-38	石英	-3.8~-0.4	-3.1	149~315	205	0.7~6.16	5.04
HRP-30	石英	-4.0~1.7	-2.6	131~211	169	0.53~6.45	4.72
CLG-30	石英	-6.0~3.4	-3.3	117~249	188	2.24~7.86	5.53
QZC-10	石英	-4.0~-1.2	-3.5	132~290	194	2.07~6.45	5.63
HRP-9	石英	-4.7~-0.8	-2.7	121~263	212	1.40~7.45	4.49
CLG-14	石英	-4.1~-0.3	-3.0	137~259	188	0.53~6.59	4.94
CLG-23	石英	-3.8~-2.3	-3.2	139~370	232	3.87~6.16	5.23
HRP-2	石英	$-4.5 \sim -0.8$	-3.4	124~288	195	1.4~7.17	5.49
CLG-26	石英	-5.0~-0.3	-3.0	128~234	173	0.53~7.86	4.8
CLG-44	石英	-4.0~-0.5	-3.3	130~262	202	0.88~6.45	5.41
HRP-11	石英	-5.0~-2.7	-3.8	121~307	201	4.49~7.86	6.21
HRP-46	石英	-5.0~2.9	-3.1	120~330	199	1.76~7.86	5.65
QZC-15	石英	-4.8~-0.7	-3.9	179~265	220	1.22~7.59	6.23
HRP-23	石英	-4.1~-2.5	-3.6	218~349	260	4.18~6.59	5.83
HRP-26	石英	$-5.0 \sim 0.4$	-4.2	122~330	194	0.7~7.86	6.71
HRP-13	石英	-4.8~0.5	-3.2	123~375	220	0.88~7.59	5.32
CLG-35-2	石英	-4.5~3.3	-1.9	111~221	153	0.18~7.17	4.33
HRP-41	石英	-5.0~-0.4	-3.8	140~226	193	0.7~7.86	6.08
QZC-8	石英	-4.1~1.5	-1.1	116~230	159	0.18~6.59	2.76
CLG-35-1	石英	-4.0~4.1	-1.5	115~215	1770	0.18~6.59	3.6
QZC-17	石英	-4.0~-0.9	-2.0	111~210	145	1.57~6.45	4.09
QZC-6	石英	-4.0~-0.2	-2.9	123~292	191	0.35~6.45	4.7
HRP-18	方解石	-4.2~-3.5	-3.8	213~265	232	5.71~6.74	6.21
HRP-28	方解石	-4.2~-2.5	-3.7	206~271	229	4.18~6.74	5.99
HRP-44	方解石	-3.7~3.0	-2.9	203~213	218	4.80~6.01	5.2
CLG-35-1	方解石	-4.2~-4	-4.1	223~231	227	6.45~6.74	6.6
HRP-24	方解石	-3.9~-3.6	-3.8	212~222	217	5.86~6.30	6.11
CLG-12	方解石	-3.8~-3.6	-3.7	196~234	213	5.86~6.16	6.01

表1 合仁坪金矿床中流体包裹体显微测温结果

. . .

.....

成矿流体应为低盐度的流体。方解石中流体包裹 体的均一温度为 196~271 ℃(表 1),主要集中在 210~240 ℃之间变化(图 7A); 其冰点变化范围 为-4.2~-3.0℃,对应的成矿流体盐度为 4.18%~6.74%的 NaCl (表 1),主要集中在 6.0%~6.5%的 NaCl (图 7B)。

值得注意地是,该矿方解石的均一温度测定 值明显高于石英,这显然与地质事实不符,因为 石英形成于主成矿期,而方解石是形成于主成矿

之后。石英中流体包裹体均一温度测定值偏低, 可能与主成矿期成矿流体压力过高有关。前人研 究表明,压力效应导致矿物中的流体包裹体均一 温度测定值偏低的重要原因^[14]。液压致裂角砾 岩在该矿区普遍存在,也证实了其成矿流体为一 种超高压的流体。根据前人的研究成果^[14],合 仁坪金矿床的均一温度可能偏低 50 ℃ 左右,因 此合仁坪金矿床主成矿期的形成温度应主要集中 在190~280℃之间。合仁坪金矿床这种中低温、

图 7 合仁坪金矿床方解石流体包裹体均一温度(A) 和盐度(B) 直方图 Fig. 7. Histograms for homogenization temperature (A) and salinity (B) of fluid inclusions in calcite from Herenping gold deposit.

表2	湘西金矿	└床成矿	⁻流体的均−	-温度、盐	這特征对出	Ľ

Table 2. Comparison of homogenization temperature and salinity of fluid inclusions in Xiangxi gold deposit

金矿床	均一温	温度/℃	盐度/%(NaCl)		
	范围	集中值	范围	集中值	资料米源
合仁坪	111~375	140~230	0.18~7.86	5.0~7.0	本文
沃溪	140~240	140~200	<7.0	2.0~4.0	Zhu and Peng , 2015
漠滨	120~222	150~190	1.5~5.0	2.0~3.0	余大龙 ,1990
淘金冲	130~230	160~180	3.0~9.0	6.0~8.0	阎明等 ,1994
平茶	155~233	177~195	$2.25 \sim 4.40$	3.2~3.8	彭建堂等,1999
阳湾团	165~221	175~200	2.1~4.4	2.8~3.8	彭建堂等,1999

低盐度的特征,与该区域上石英脉型金矿床(表 2) 如湘西沃溪 W-Sb-Au 矿床^[1378]、湘西南金 矿床 漠 滨、淘 金 冲、平 茶、阳 湾 团 等 金 矿 床^[15-17]一致。

另外,在盐度-均一温度散点图(图 8) 中, 合仁坪金矿床的盐度和均一温度大致呈正相关 性,成矿流体的盐度随均一温度的降低而降低, 这可能是一种较高温高盐度的流体与另一种相对 低温低盐度的流体互相混合,说明流体的混合作 用是导致该区矿石发生沉淀的重要机制。这种流 体混合作用在国内外金属矿床中广泛存在^[18-25]。 Zhu 和 Peng^[8]对毗邻的沃溪 Au-Sb-W 矿床的研 究亦表明,流体混合是导致该矿矿石发生沉淀的 重要原因。

3.3 成矿物理化学条件

3.3.1 成矿流体的密度、压力和成矿深度

将显微测温获得的合仁坪金矿床的流体包裹 体均一温度和盐度范围,投影到 NaCl-H₂O 体系 的t_P相图(图 9) 中,得出其成矿流体的密度介

图 8 合仁坪金矿床石英(A) 和钠长石(B) 流体包裹体盐度-均一温度散点图 Fig.8.Correlation between homogenization temperature and salinity of fluid inclusions in quartz (A) and calcite (B) from Herenping gold deposit.

于 0. 633~0. 997 g/cm³ 之间;根据温度与盐度的 交点可知,合仁坪金矿床的成矿流体的压力值范 围为 4~209 MPa (图 9),这表明该金矿是在低 密度、中低压条件下形成的。该矿的成矿压力变 化如此大,可能与流体沸腾作用有关^[24,26-27], 这与我们镜下观察到同一视域中不同气液比的包 裹体共存现象(图 4E) 相吻合。根据合仁坪金矿 床流体压力,推断出该矿的成矿深度为 1.2~ 6.8 km,因此该矿形成于中浅成条件下。

图 9 NaCl-H₂O 体系 t₇ 相图 (据文献[28]修改) Fig.9.Temperature-density diagram for NaCl-H₂O system (modified after Reference [25]).

3.3.2 成矿流体的 pH 值和 Eh 值

(1) pH 值。根据刘斌(2011) 提出的 NaCl-H₂O 体系包裹体的 pH 值公式^[29]:

$$[H^{+}]^{2} = \frac{K_{w}}{1 + \frac{\sqrt{m_{\text{NaCl}}K_{\text{NaCl}}}}{K_{\text{HCl}}}}$$
(1);

$$pH = -lg[H^+]$$
(2)

其中,(1) 中的平衡常数 K_w 、 K_{NaCl} 和 K_{HCl} 均引用 Ryzhenko 和 Bryzgalin (1984) 给出的数

据^[30],而 m_{NaCl}为包裹体盐度转换的 NaCl 的摩尔 浓度,结合公式(1)和(2)即可得出成矿流 体的 pH 值。

据之前测出的合仁坪金矿床中石英的温度, 取主成矿期石英的温度为 200 °C,盐度约为 5%, 压力取 20 MPa,得出 $K_w = 10 - 11.147$, $K_{NaCl} = 100.42$, $K_{HCl} = 100.06$, $m_{NaCl} = 0.9 mol/L$,经计 算可得合仁坪金矿床主成矿期石英阶段流体 pH = 5.75,呈弱碱性(在 200 °C,压力 MPa下, 纯水的 pH = 5.64),适合金的沉淀;碳酸盐阶段 方解石的温度值为 225 °C,盐度约为 5.8%,压 力 取 22.5 MPa ,得出 $K_w = 10^{-11}$, $K_{NaCl} = 100.135$, $K_{HCl} = 10 - 0.305$, $m_{NaCl} = 1.05 mol/L$, 经计算可得合仁坪金矿床碳酸盐阶段流体 pH = 5.69,呈弱碱性(在 225 °C,压力 22.5 MPa下, 纯水的 pH = 5.5)。

(2) Eh 值。根据 Ryzhenko 和 Bryzgalin(1984) 给出的 Eh 值计算公式计算^[30]:

 $Eh/V = -9.921 \times 10^{-5} T \times$

$$\left[\frac{1}{2} \lg K_1 - \frac{1}{2} \lg f_{0_2} + 2 \mathrm{pH}\right]$$
(3)

$$\lg f_{0_2} = \frac{1}{3} \lg K_1 - 0.20 \tag{4}$$

其中 K_1 引用 Ryzhenko 和 Bryzgalin (1984) 给出的数据^[30], 而 f_{0_2} 可以根据公式(4) 计算 得出。

经计算可得出石英阶段流体的 Eh 值约为 0.174 V,方解石阶段流体的 Eh 值约为0.146 V, 这说明合仁坪金矿床的成矿流体呈弱氧化性。这 与所测包裹体气相成分相吻合,即石英和方解石 中的氧化气体含量较高(激光拉曼光谱测试中该 矿床的气相成分主要为 CO₂ 和 H₂O)。

3.4 激光拉曼光谱分析

包裹体的激光拉曼光谱分析是一种对矿物中 单个流体包裹体进行定性的非破坏性分析方法, 本次共选用了 10 件样品在中国科学院地球化学研 究所进行激光拉曼光谱分析。研究表明,合仁坪 金矿床流体包裹体气相成分主要为 H_2O ,另外还 发现有 CO_2 、CO、CH₄、N₂等气体(图 10),其中 CO₂ 的含量最高,CH₄次之,CO和 N₂含量最低; 液相成分主要为 H_2O 和 CO_3^{2-} (图 11)。前人已有 的研究表明,流体如有 CH₄、N₂等有机质的加入, 会大大增加不混溶现象发生的几率,从而导致沸 腾作用的发生^[31];然后经由 CO₂等挥发分逸出, 促使流体介质发生强烈变化,使金等金属元素发 生沉淀而富集成矿。这预示着深部沉积物变质脱 水是该矿成矿流体形成的主要方式^[32-37]。

4 流体的 H、O 同位素

H、O 同位素研究表明,合仁坪金矿床中石 英的 δ^{18} O 值为 16.4‰~20.5‰,平均为 18.2‰; 而钠长石的 δ^{18} O 值变化范围为 15.4‰~17.7‰, 均值为 16.1‰,明显小于该矿中石英的 O 同位 素组成;石英中流体包裹体 δ D 测定值为-69‰~ -55‰,钠长石中流体包裹体的 δ^{18} D 测定值为 -67‰~-62‰。显然,相对于石英,钠长石中流 体的 δ D 值更加稳定。

根据 Clayton 等^[38]提出的石英与水之间的氧 同位素分馏方程 $10^{3} \ln \alpha = 3.38 \times 10^{6} / T^{2} - 2.90$,可 计算出与之平衡的水的 $\delta^{18}O_{H_{2}0}$ 值为 7.1% ~ 10.8% (表 2),均值为 8.2%;根据钠长石与水 之间的氧同位素分馏方程^[39]: $10^{3} \ln \alpha = 2.78 \times 10^{6} / T^{2} - 2.89$,可求得相对应的流体的 $\delta^{18}O$ 值为 9.02% ~ 10.53% (表 2),均值为 8.9% 。将上述

图 10 口 叶立 10 杯加 P 包裹 P C 相 成 C 拉 受 C 信 图 Fig. 10. Laser Raman spectra for gaseous phase of fluid inclusions in Herenping gold deposit.

图 11 合仁坪金矿床流体包裹体液相激光拉曼光谱图 Fig. 11. Laser Raman spectra for liquid phase of fluid inclusions in Herenping gold deposit.

表 3 合仁坪金矿床石英、钠长石氢氧同位素组成(‰) Table 3. Hydrogen and oxygen isotope compositions(‰) of quartz and albite from Herenping gold deposit

样品号	矿物	$\delta^{18} \mathrm{D}_{V\text{-}SMOW} \% $	$\delta^{18}\!O_{V\text{-}SMOW}\% $	$\delta^{18}\!O_{H_{2}O}$
HRP-23	石英	-60	16.4	7.4
HRP-27	石英	-55	18.2	8.8
HRP-50	石英	-62	17.8	7.4
CLG-14	石英	-59	17.0	8.0
CLG-23	石英	-60	17.8	7.5
CLG-38	石英	-57	19.0	7.1
QZC-10	石英	-58	18.6	10.8
QZC-17	石英	-69	20.5	8.9
HRP-6	钠长石	-64	15.6	7.3
HRP-18	钠长石	-62	16.5	9.2
HRP-24	钠长石	-63	16.1	10.2
CLG-5	钠长石	-67	17.7	10.5
CLG-21	钠长石	-65	15.7	8.8
CLG-39	钠长石	-64	15.5	8.2
QZC-13	钠长石	-67	15.4	8.1

δ¹⁸O_{H20} 值和 δD 值投影到 δD-δ¹⁸O_{H20}关系图中,可 以看出,合仁坪金矿床的成矿流体主要落于变质 水和岩浆水的重叠处及其附近(图 12)。众所周 知,湘西一带岩浆活动微弱,矿区及其外围没有 任何岩浆岩出露,因此,该矿的成矿流体不太可 能是来自岩浆水,成矿流体很可能是主要来源于 变质水。而且,与国内外典型脉型金矿类似,该 矿的成矿流体也表现出低盐度、富含 CO₂ 的特 征,这种特征很难用传统的岩浆热液形成模式进 行合理解释^[34]。

前人对湖南雪峰山地区石英脉型金矿床也进 行了较多氢、氧同位素研究。其中以黄金洞金矿 床为代表的湘东北地区石英的 δ^{18} O值为 16.14‰~17.12‰, δ^{18} O_{H,0}值为7.59‰~9.42‰, δD 为-85‰ - 55‰^[40];以沃溪金锑钨矿床为代 表的湘西地区石英的 $\delta^{18}O$ 值为 15.3‰ - 18.3‰, $\delta^{18}O_{H_{2}O}$ 值为 2‰ - 13.6‰, δD 值为 -81‰ --64‰^[2];以漠滨金矿床为代表的湘西南地区石 英的 $\delta^{18}O$ 值为 14.1‰ - 17.7‰, $\delta^{18}O_{H_{2}O}$ 值为 -0.4‰ -5.1‰, δD 为-65‰ - 37‰^[41-42]。他们 得出的结论是该区成矿流体来源于变质水,这表 明在雪峰山地区,变质热液成矿事件是普遍存在 的,不同金矿床之间可能存在着共同或相似的成 矿机制。

国外对加拿大 Superior 省 Abitibi 地区、 Cordillera 地区金矿的研究发现,金矿床中石英的 $δ^{18}$ O 变化范围小,均一化程度高^[43-45]。如果同 位素均一化现象在某地区的许多金矿床中普遍存 在,表明热液成矿事件是大规模的、区域性的现 象,它暗示成矿过程中,不同金矿床之间存在共 同的成矿机制^[45]。在雪峰山地区,湘东北的黄 金洞金矿(16.14‰~17.12‰)、湘西的沃溪 (15.3%) ~ 18.3%) 湘西南的漠滨金矿 (14.1%~17.7%),其石英的0同位素组成十分 一致,表明这些金矿床也应具有共同的成矿机 制。本文研究的合仁坪钠长石-石英脉型金矿, 尽管其脉体组成明显不同于石英脉型金矿,但其 石英和钠长石 0 同位素组成(分别为 16.4‰~ 20.5‰和15.4‰~17.7‰) 与区域上石英脉型金 矿相当吻合,表明它们应具有相同或相似的成矿 机制。因此,合仁坪金矿的成矿流体主要是来自 变质水,且这种变质作用很可能与加里东造山作 用有关。

5 流体成矿机制探讨

5.1 流体性质

合仁坪金矿床中的流体属于中低温、低盐 度、低密度、弱碱性的流体,流体中富含 CO_2 , 同时也含有少量的 CH_4 和 N_2 。

5.2 流体来源

氢、氧同位素显示合仁坪金矿床中的成矿流 体来源于变质水,与区域内黄金洞金矿床、沃溪 金锑钨矿床和漠滨金矿床的成矿流体来源于一 致,这表明在雪峰山地区,变质热液成矿事件是 普遍存在的。 根据邓穆昆等(2015)关于合仁坪金矿床稳 定同位素研究,该矿中硫和铅主要来自围岩以外 的深部地壳,而锶也明显高于地幔和赋矿地层的 锶同位素组成,成矿流体应来自外部,这种富放 射成因锶的流体很可能是来自深部富含放射成因 锶的更古老地壳。张婷等(2014)的研究也得出 该矿矿脉中钠长石的钠质不是来自赋矿围岩,而 是由成矿流体从外界带入的,来自更古老的基 底,而石英中的硅质则部分来自赋矿围岩^[11]。 所以合仁坪金矿床中的成矿流体主要是来源于深 部的变质流体。

5.3 流体演化

各个阶段流体包裹体的类型和均一温度既相 似也存在差异,所以成矿流体经历了一个复杂的 演化过程。从成矿早期到成矿晚期,流体包裹体 的均一温度、盐度和压力逐渐下降,而且盐度随 着均一温度的降低而降低,呈正相关性,但是值 得注意的是,该矿方解石的均一温度测定值明显 高于石英,这显然与地质事实不符,因为石英形 成于主成矿期,而方解石是形成于主成矿之后。 石英中流体包裹体均一温度测定值偏低,可能与 主成矿期成矿流体压力过高有关,前人的研究表 明,压力效应导致矿物中的流体包裹体均一温度 测定值偏低的重要原因^[14]。而且液压致裂角砾 岩(图 2D) 在该矿区普遍存在,也证实了其成矿 流体为一种超高压的流体。

5.4 矿石沉淀机制

一般来说,流体的混合作用和沸腾作用是矿 床中矿石沉淀的重要方式^[24],而合仁坪金矿床的 盐度和均一温度呈现良好的正相关性,成矿流体 的盐度随均一温度的降低而降低,这可能是高温、 高盐度的流体与另一种相对低温低盐度的流体发 生混合作用;同时,流体中包含有 CH₄、N₂等有 机质,极易发生不混溶现象,从而导致流体沸腾 作用的发生。而且该矿成矿流体的压力值范围为 4~209 MPa,变化如此之大说明与流体的沸腾作 用有关^[24 26-27],这与我们镜下观察到同一视域中 不同气液比的包裹体共存现象(图 4E) 相吻合。

合仁坪金矿床中,褪色化分布最为广泛,是 该区金矿最重要的找矿标志,这表明水岩反应也 是矿石沉淀的重要机制,而且合仁坪金矿床中成 矿流体的碳来源于赋矿围岩,水/岩反应导致围 岩中的碳酸盐溶解。

5.5 流体成矿过程

加里东期的造山作用导致了一系列深大断裂 的形成和变形变质作用的发生,这些变质作用引 起深部的变质流体循着断裂向上运移并萃取底部 岩石的成矿元素金,随着区域地壳的隆升,这些 含矿的变质流体迁移至浅部的断裂中,在遇到浅 部氧化性围岩(马底驿组地层)以及断裂裂隙时, 流体与围岩发生反应而沿马底驿组地层层间或裂 隙充填,流体温度、盐度和压力逐渐下降,导致 混合作用和沸腾作用的发生,从而使金沉淀成矿。 单,主要为 L-V 型富液相水溶液包裹体,以原生 包裹体为主。

(2) 合仁坪金矿床成矿流体属于中低温、低盐度的流体;流体密度为 0.633~0.997 g/cm³,成矿压力为 4~209 MPa,成矿深度为 1.2~
6.8 km,该矿床形成于中低压力、中浅成条件下。

(3) 该矿成矿流体的气相成分主要为 H_2O 和 CO_2 ,也含有 CH_4 、 N_2 和 CO,液相成分主要 为 H_2O 和 CO_3^{2-} ,该矿的成矿流体主要为 $H_2O-NaCl$ 体系。

(4) 合仁坪金矿床成矿流体主要来源于变质水,含有机质的沉积物变质脱水是该矿成矿流体 形成的主要方式。

(5) 流体混合作用和沸腾作用是导致该区金 矿石发生沉淀的重要机制。

6 结 论

(1) 合仁坪金矿床中的流体包裹体类型简

参考文献:

- [1] 丁碧英,杨燕征,廖凤先.湘西金矿矿物包裹体研究及矿床成因探讨 [J].中南矿冶学院学报,1981,12(2): 114-120.
- [2] 罗献林,易诗军,梁金城.论湘西沃溪金锑钨矿床的成因 [J].地质与勘探,1984,20(7): 1-10.
- [3] 牛贺才,马东升. 湘西江南型金矿床流体包裹的研究 [J]. 矿物学报,1991,11(4): 386-394.
- [4] 彭建堂,胡瑞忠,赵军红,符亚洲,林源贤. 湘西沃溪 Au-Sb-W 矿床中白钨矿 Sm-Nd 和石英 Ar-Ar 定年 [J]. 科学通报, 2003, 48 (18): 1976-1981.
- [5] 彭建堂,胡瑞忠,赵军红,符亚洲,袁顺达. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学 [J]. 地球化学,2005,34(2): 115-122.
- [6] 彭渤, Frei R, 涂湘林. 湘西沃溪 W-Sb-Au 矿床白钨矿 Nd-Sr-Pb 同位素对成矿流体的示踪 [J]. 地质学报, 2006, 80(4): 561-570.
- [7] 董树义,顾雪祥, Schulz O, Vavtar F, 刘建明,郑明华,程文斌. 湖南沃溪 W-Sb-Au 矿床成因的流体包裹体证据 [J]. 地质学报, 2008, 82(5): 641-647.
- [8] Zhu Y N, Peng J T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China [J]. Ore Geol Rev, 2015, 65: 56–69.
- [9] 王国强,彭建堂,张东亮,阳杰华,沈能平. 湘西柳林汊金矿带中钠长石的矿物学和地球化学特征 [J]. 矿物学报,2009,29(4): 463-470.
- [10] Peng J T , Hu A X , Deng M K , Hu S Q , Ting Z. Geological characteristics of the Herenping albite-quart lode gold deposit , Western Hunan , South China [J]. Acta Geol Sin , 2014 , 88(2): 781–782.
- [11]张婷,彭建堂. 湘西合仁坪钠长石-石英脉型金矿床围岩蚀变研究 [J]. 地球科学与资源学报, 2014, 36(4): 32-44.
- [12] 中国人民武装警察部队黄金指挥部. 湖南省沃溪式层控金矿地质 [M]. 北京: 地震出版社, 1996: 90-92.
- [13] Hall D L, Stemer S M, Bodnar R J. Freezing point depression of NaCl-KCl-H₂O solutions [J]. Economic Geology, 1988, 83(1): 197–202.
- [14] 涂光炽. 中国层控矿床地球化学 [M]. 北京: 科学出版社, 1984: 1-708.
- [15]余大龙. 漠滨金矿包裹体研究 [J]. 地球化学, 1990, 19(1): 72-80.
- [16] 阎明,马东升,刘英俊. 淘金冲金矿成矿流体地球化学和矿床成因研究 [J]. 矿床地质,1994,13(2): 156-162.
- [17] 彭建堂, 戴塔根. 湘西南金矿床成矿流体地球化学研究 [J]. 矿床地质, 1999, 18(1): 73-82.
- [18] Barnes H L. Geochemistry of hydrothermal ore deposits [M]. New York: John Wiley & Sons , 1979: 404-460.
- [19] Craw D, Johnstone R D, Rattenbury M S. Tectonic-hydrothermal Au-Cu mineralization in a metamorphic-meteoric fluid mixing zone, westland, New Zealand [A]. Proceedings of the 6th International Symposium on Water-Rock Interaction [C], Malvern, UK: WRI, 1989: 167-169.

- [20] Shibue Y. Mixing diagrams of hydrothermal solutions and their applications to some hydrothermal ore deposits in Japan [A]. Proceedings of the 6th International Symposium on Water-Rock Interaction [C]. Malvern, UK: WRI Water-Rock Interaction , 1989: 625-628.
- [21] Pan Y M, Fleet M E. Calc-silicate Alteration in the Hem lo gold deposit, Ontario; mineral assemblages, P-T-X constraints, and significance [J]. Economic Geology, 1992, 87(4): 1107–1120.
- [22] Pan Y M, Fleet M E. The late Archean Hem lo gold deposit, Ontario Canada: A review and synthesis [J]. Ore Geology Reviews, 1995, 9 (6): 455-488.
- [23] 张德会. 成矿流体中金的沉淀机理研究述评 [J]. 矿物岩石, 1997, 17(4): 122-130.
- [24] Wilkinson J J. Fluid inclusions in hydrothermal ore deposits [J]. Lithos , 2001 , 55 (1-4): 229-272.
- [25] 曾键年, 范永香. 流体混合作用导致金沉淀机理的实验研究 [J]. 地球科学, 2002, 27(1): 41-45.
- [26] Sibson R H , Robert F , Poulsen K H. High-angle reverse faults , fluid-pressure cycling , and mesothermal gold-quartz deposits [J]. Geology , 1988 , 16(6) : 551–555.
- [27] McCuaig T C, Kerrich R. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics [J]. Ore Geology Reviews, 1998, 12(6): 381-453.
- [28] Bischoff J L. Densities of liquids and vapors in boiling NaCl-H₂O solutions: A PVTX summary from 300 to 500 °C [J]. American Journal of Science, 1991, 291(4): 309-338.
- [29] 刘斌. 简单体系水溶液包裹体 pH和 Eh的计算 [J]. 岩石学报, 2011, 27(5): 1533-1542.
- [30] Ryzhenko B N, Bryzgalin O V. Reference neutrality points for the redox and acid-base properties of aqueous solutions at the parameters for hydrothermal ore formation [J]. Geokhimiya, 1984(7): 1056-106.
- [31] Naden J, Shepherd TJ. Role of methane and carbon dioxide in gold deposition [J]. Nature, 1989, 342(6251): 793-795.
- [32] Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geology Reviews, 1998, 13 (1-5): 7-27.
- [33] Hagemann S C , Cassidy K F. Archean orogenic lode Au deposits [J]. Reviews in Economic Geology , 2000 , 13: 9-68.
- [34] Ridley J R , Diamond L W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models [J]. Rev Econ Geol ,2000 ,13: 141-162.
- [35] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: A global synthesis [J]. Ore Geology Reviews, 2001, 18 (1-2): 1-75.
- [36]武广,孙丰月,赵财胜,丁清峰,王力.额尔古纳成矿带西北部金矿床流体包裹体研究[J].岩石学报,2007,23(9): 2227-2240.
- [37]武广,李忠权,糜梅,刘军,朱明田.大兴安岭北部砂宝斯金矿床成矿流体特征及矿床成因[J].矿物岩石,2008,28(1):31-38.
- [38] Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research , 1972, 77 (17): 3057-3067.
- [39] Matsuhisa Y, Goldsmith J R, Clayton R N. Oxygen isotope fractionation in the system quartz-albite-anorthite-water [J]. Geochim Cosmochim Acta, 1979, 43(7): 1131-1140.
- [40] 罗献林. 论湖南黄金洞金矿床的成因及成矿模式 [J]. 桂林冶金地质学院学报, 1988, 8(3): 225-239.
- [41] 余大龙. 漠滨金矿稳定同位素研究 [J]. 贵州工学院学报, 1987 (2): 99-109.
- [42] 刘英俊,孙承辕,马东升. 江南型金矿及其成矿地球化学背景 [M]. 南京: 南京大学出版社,1993: 171-193.
- [43] Fyfe W S, Kerrich R. Gold: Natural concentration process [A]. Foster R P In: Gold 82, the Geology, Geochemistry and Genesis of Gold Deposits [C]. Balkema, Rotterdam: A A Balkema Publishers, 1984: 99-126.
- [44] Kerrich R. The stable isotope geochemistry of Au-Ag vein deposits in the metamorphic rocks [J]. Assoc. Canada. Short Course Handbook, 1987, 13: 287-336.
- [45] Nesbitt B E, Muehlenbachs K, Murowchick J B. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera [J]. Economic Geology, 1989, 84(6): 1489–1506.