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Abstract: The electrical conductivity of trachyteandesite was measured in situ under conditions of pressure range from 0.5-2.0 GPa 
and temperature range from 773-1,323 K using a YJ-3000t multi-anvil press and a Solartron-1260 Impedance/Gain-phase Analyzer. 
The experimental results indicate that the electrical conductivity of trachyteandesite increases with increasing temperature and 
decreases with a rise in pressure. The relationship between the electrical conductivity (σ) and temperature (T) conforms to the 
Arrhenius equation within a certain temperature range. When the temperature rises to 923 K, the electrical conductivity of 
trachyandesite abruptly increases. This result demonstrates that trachyandesite begins to dehydrate at ~923 K and produces magnetite 
with a high-conductivity mineral phase after dehydration. The intergrowth of interconnected magnetite is the cause for the ~2 orders 
of magnitude increase in the electrical conductivity after dehydration. The interconnected high-conductivity mineral phase of 
magnetite in the dehydration product of the trachyandesite sample can be used to reasonably explain the high-conductivity anomalies 
in the South-Central Chilean subduction zone beneath the Andes. 
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1. Introduction 

Electrical conductivity is one of the most important 

parameters for providing constraints on the thermal 

structure and composition of the Earth’s interior, and 

it is significant for studying the structure, electronic 

and ionic transport processes, defect chemistry, and 

other physical properties of minerals and rocks [1-6]. 

Consequently, it is extremely important for studying 

the electrical conductivities of the rocks that are 

widely distributed in the Earth’s interior under 

appropriate thermodynamic conditions. 

Trachyandesite, one of the most important andesitic 

rocks, stably exists as the transition rock between 

basaltic trachyandesite and trachyte trachydacite. 

Previous studies mainly focused on the electrical 
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conductivities of trachyte protoliths and trachyte glass 

rather than fully considering a trachyandesite protolith 

[7-11]. Waff and Weill [7] measured the DC electrical 

conductivity of andesite with variations in the 

chemical composition under conditions of 

atmospheric pressure and different oxygen partial 

pressures, the results of which indicated that the 

effects of the alkali ion content of andesite are 

remarkable, whereas the iron content and oxygen 

fugacity have a relatively feeble influence on the 

electrical conductivity of a sample. Poe et al. [8] 

suggested that the transport process of pantelleritic 

trachyte glass is small polaron conduction at 

temperatures below 700 K and that ionic conduction 

becomes the main transport mechanism at 

temperatures higher than 973 K. In the ionic 

conduction regime, the electrical conductivity of the 

sample increased with increasing water content. Hui et 
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al. [9] measured the grain interior and grain boundary 

conductivities of quartz andesite at temperatures 

below 973 K and proposed that the contribution of 

grain boundary conductivity to the total conductivity 

of quartz andesite continually decreases with 

increasing temperature and pressure. Laumonier et al. 

[10] measured the electrical conductivity of dacitic 

glass with different water contents (3.3-12.2 wt%) at 

conditions of 673-1,623 K and 0.15-3.0 GPa, and a 

functional relationship between temperature, pressure 

and water content was established. The relationship 

between the total conductivities of the grain 

boundaries and the grain interiors was obtained. 

Recently, Guo et al. [11] investigated the electrical 

conductivities of hydrous andesite melts with 0.01-5.9 

wt% at 1,164-1,573 K and 0.5-1.0 GPa, and they 

found that the influence of water on the conductivities 

of andesitic melts is stronger than that for rhyolitic 

and dacitic melts. These authors proposed that the 

principal charge carrier was Na+ in the anhydrous 

andesitic melt but that divalent cations were dominant 

in hydrous andesitic melts. As one of the most 

important volcanic rocks, trachyandesite is widely 

distributed throughout island-arc environments and 

might still occupy substantial space within the Earth’s 

interior. In addition, systematic electrical conductivity 

measurements for trachyandesite at high temperatures 

and high pressures are crucial for understanding the 

physical properties of rocks in regional andesite-rich 

zones. 

In this study, the electrical conductivity of 

trachyandesite was measured at pressures of 0.5-2.0 

GPa and temperatures of 773-1,323 K in a frequency 

range of 10-1-106 Hz. After dehydration, a series of 

characteristic parameters in the Arrhenius equation, 

including the pre-exponential factor and activation 

enthalpy, were acquired. The influence of dehydration 

on the electrical conductivity of the sample was also 

explored at a given temperature and pressure. 

Furthermore, we discussed the detailed geophysical 

implications of trachyandesite at high temperatures (T) 

and pressures (P). 

2. Experimental Procedures 

2.1 Sample Preparation 

A sample of trachyandesite was collected from the 

town of Shizhu in the city of Yongkang, Zhejiang 

Province, China. The sample was fresh, non-fractured 

and nonoxidized, and it contained quartz, plagioclase 

and amphibole. To explore the chemical composition 

and corresponding mineralogical proportions, the 

sample was examined with an XRF (X-ray 

fluorescence) spectrometer, an electron microprobe 

analysis (EPMA) and an SEM (scanning electron 

microscope) at the State Key Laboratory of Ore 

Deposit Geochemistry, Institute of Geochemistry, 

Chinese Academy of Sciences, Guiyang, China. The 

TAS (total alkali and silica) classification of igneous 

rocks was used to confirm the precise name of the 

sample as trachyandesite (Fig. 1 and Table 1). From 

the representative optical microscope and 

back-scattered electron images, the main rock-forming 

minerals were determined to be plagioclase, 

amphibole and quartz phenocrysts, the corresponding 

volume ratios of which were approximately 50%, 30% 

and 20%, respectively, as shown in Fig. 2. 

Before running the experiment, the trachyandesite 

was cut into cylinders of 6 mm in diameter and 6 mm 
 

 
Fig. 1  TAS classification of igneous rocks. 
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Table 1  Chemical composition of whole rock analysis and main minerals of trachyandesite.  

Oxides (wt%) XRF for whole rock  EPMA for plagioclase  EPMA for amphibole  

SiO2 61.06 57.10 44.34 

Al2O3 17.5 26.60 10.93 

MgO 0.78 0.01 16.01 

CaO 3.51 8.30 11.97 

Na2O 3.29 6.25 2.20 

K2O 4.94 0.80 0.76 

FeO 4.78 0.29 8.70 

TiO2 0.69 0.01 1.26 

Cr2O3 / 0.02 0.25 

MnO2 0.13 0.01 0.09 

P2O5 0.20 / / 

L.O.I 2.94 / / 

Total 99.82 99.39 96.51 
 

 
Fig. 2  Acquired representative photomicrographs (plane-polarized reflection) of light images and back-scattered electron 
images using a scanning electron microscope of the trachyandesite protolith before the electrical conductivity measurements. 
Abbreviations: plagioclase (Pl), amphibole (Amp) and quartz (Qz). 
 

in height. The cylindrical samples were then cleaned 

in an ultrasonic cleaning device using deionized water, 

acetone and ethanol in turn. To avoid the influence of 

absorbed water on the conductivity measurements, all 

of the cylindrical samples were baked at 323 K for 12 

h in an oven. 

2.2 High-Pressure Cell and Impedance Measurements 

The electrical conductivity measurements were 

carried out in a YJ-3000t multi-anvil apparatus and a 

Solartron-1260 Impedance/Gain-phase Analyzer at the 

Key Laboratory of High-Temperature and 

High-Pressure Study of the Earth’s Interior, Institute 

of Geochemistry, Chinese Academy of Sciences. 

Detailed descriptions of the equipment and the 

experimental process can be found in previous studies 

conducted by Dai et al. [12, 13] and Hu et al. [14]. As 

shown in Fig. 3, a cubic pyrophyllite block (spec: 32.5 

× 32.5 × 32.5 mm3) was adopted as the pressure 

medium, and the heater was composed of three-layer 

stainless steel sheets (total thickness: 0.5 mm) in the 

shape of a tube. Alumina and magnesia sleeves were 

applied to ensure that the sample was in a relatively 

insulated environment, and 0.025-mm-thickness 

nickel foil was placed between the alumina and 

magnesia sleeves to shield the sample from external 

electromagnetic and spurious signal interference. The 

electrodes placed on the  bottom and  top of the sample 
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Fig. 3  Experimental setup for electrical conductivity 
measurements at high pressure. 
 

were composed of two nickel disks (thickness: 0.5 

mm; diameter: 6 mm). To avoid the influence of 

dehydration on the impedance spectroscopy 

measurements, all equipment, including the 

pyrophyllite and the alumina and magnesia sleeves, 

were heated at 1,173 K for 12 h in a muffle furnace. 

Their temperatures were monitored using a NiCr-NiAl 

thermocouple with a deviation of ±10 K. 

During the experiments, the pressures were slowly 

raised at a speed of 1.0 GPa/h to the designed value. 

Then, under constant pressure conditions, the 

temperature was gradually increased at a rate of 100 

K/h to the designated preset value in steps of 50-100 

K. Once the temperature reached the desired value, a 

Solartron-1260 Impedance/Gain-phase Analyzer was 

operated to collect the impedance spectroscopy 

measurements with a sinusoidal signal voltage of 1.0 

V in the frequency range of 10-1 to 106 Hz. To ensure 

the reliability of the experimental results, the 

impedance spectra of the samples were measured 

several times at each temperature until the impedance 

arcs remained nearly unchanged. 

3. Results 

Nyquist and Bode diagrams of the complex 

impedance of trachyandesite under conditions of 1.5 

GPa and 773-1,323 K in the frequency range of 

10-1-106 Hz are shown in Figs. 4 and 5. As observed in 

Fig. 4, the semicircular diameters of the impedance 

arcs decrease rapidly as the temperature increases. 

Each semicircular impedance arc contains two parts, 

which correspond to different characteristic relaxation 

time constants. At high frequencies (~102-106 Hz), 

one semicircular arc represents the conduction process 

of the grain interior, while the other part that appears 

at lower frequencies (~10-1-102 Hz) is related to the 

polarization process at the sample-electrode interface 

[15]. To ensure the precise fitting of the data and to 

acquire the conductivity results from the impedance 

spectra, we chose one equivalent circuit that was 

composed of the series connections RS-CS and RE-CE 

(RS and CS represent the resistance and capacitance of 

the bulk impedance for the sample, respectively; RE 

and CE represent the resistance and capacitance from 

the polarization effect of the sample-electrode interface, 
 

 
Fig. 4  Nyquist plane impedance of trachyandesite at 
frequencies from 10–1 to 106 Hz (right to left) obtained 
under conditions of 1.5 GPa and 773-1,323 K. Z' and Z" are 
the real and imaginary parts of the complex impedance, 
respectively. The equivalent circuit that is composed of the 
series connections of RS-CS and RE-CE (RS and CS represent 
the resistance and capacitance of the bulk impedance for 
the sample, respectively; RE and CE represent the resistance 
and capacitance from the polarization effect of the 
sample-electrode interface, respectively) was selected to 
model the impedance semicircles. 
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Fig. 5  Bode plane impedance of trachyandesite at 
frequencies from 10–1 to 106 Hz under conditions of 1.5 GPa 
and 773-1323 K. 
 

respectively) to model the semicircular impedance 

arcs and obtain the bulk resistance for the 

trachyandesite samples [16, 17]. In the Bode plane 

impedance of trachyandesite (Fig. 5), it is shown that 

the impedance modulus of the sample increases 

rapidly, and that the absolute value of the phase angle 

tends towards zero from high to low frequencies. 

According to impedance spectroscopy theory [18-21], 

the relationships between the real part (Z′), the 

imaginary part (Z″), the modulus (|Z|), and the phase 

angle (θ) are described as:  and 

. 

The bulk electrical conductivity of the sample is in 

accordance with the following expression: 

    (1) 

where L is the sample length (m), S is the 

cross-sectional area of the electrode (m2), and R is the 

resistance of the sample (Ω). 

At pressures of 0.5-2.0 GPa and temperatures of 

773-1,323 K, the relationship between the electrical 

conductivity of trachyandesite (σ) and the reciprocal 

of the temperature (1/T) was fitted using the Arrhenius 

equation: 

  (2) 

where σ0 is the pre-exponential factor (S/m), ΔH is the 

activation enthalpy (eV), k is the Boltzmann constant, 

and T is the absolute temperature (K). 

Fig. 6 shows the electrical conductivity of 

trachyandesite in the process of two heating and 

cooling cycles at a pressure of 2.0 GPa. In the first 

cycle, the electrical conductivity of trachyandesite 

slowly increases with an increase in the temperature 

up to 923 K and remarkably increases at temperatures 

higher than 923 K, which indicates that the 

dehydration reaction of trachyandesite occurs at 923 K 

under a given pressure of 2.0 GPa. After that, the 

electrical conductivity of the dehydration product of 

trachyandesite slowly continues to increase again. 

After the 1st heating cycle, the electrical conductivity 

of the dehydration product of trachyandesite displays 

a good repeatability in subsequent cycles. The 

influence of pressure on the electrical conductivity of 

the trachyandesite after dehydration in the temperature 

range of 773-1,323 K is illustrated in Fig. 7, and the 

fitted parameters of the Arrhenius equation are listed in 

Table 2. The electrical conductivity 
 

 
Fig. 6  Logarithm of the electrical conductivity versus the 
reciprocal of the temperature for trachyandesite in 
different heating/cooling cycles at 2.0 GPa. Data for the 
first heating cycle were excluded during the data fitting and 
analysis. 
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Fig. 7  Influence of pressure on the electrical conductivity 
of trachyandesite in the temperature range of 873-1173 K. 
 

of the dehydration product of trachyandesite decreases 

with a rise in pressure, and the influence of pressure 

on the electrical conductivity is relatively weaker than 

that of temperature. Due to the occurrence of a 

dehydration reaction, we found that amphibole 

completely disappeared from the dehydration product 

of trachyandesite, which is illustrated in the 

back-scattered electron images of the recovered 

sample in Fig. 8. At the same time, amphibole is 

accompanied by some new mineral phase assemblages, 

including magnetite, quartz and pyroxene, which are 

formed simultaneously, as shown in Table 3. 

4. Discussions 

4.1 Comparison with Previous Studies 

In the present study, we measured the electrical 

conductivity of trachyandesite and explored the 

influence of dehydration reactions on the electrical 

conductivity under pressure conditions in the range of 

0.5-2.0 GPa and temperatures in the range of 

773-1,323 K. After dehydration, the electrical 

conductivity of the sample decreased as the pressure 

rose, the activation enthalpy (∆H) slightly decreased 

from 0.81 to 0.65 eV, and the logarithmic 

pre-exponential factor (Log σ0) also decreased from 

3.02 to 1.06. Dehydration reactions can greatly enhance 
 

Table 2  Fitted parameters for electrical conductivity of trachyandesite.  

Run No. P (GPa) T (K) Log σ0 (S/m) ΔH (eV) 　γ2 

DH2 0.5-cooling 773-1,323 3.00 ± 0.04 0.80 ± 0.01 99.91 

DH4 1.5-cooling 773-1,323 1.97 ± 0.07 0.74 ± 0.01 99.93 

DH5 
2.0-cooling 773-1,323 1.06 ± 0.04 0.65 ± 0.01 99.79 

2.0-heating 773-932 1.49 ± 0.49 0.99 ± 0.08 98.02 
 

 
Fig. 8  Acquired representative photomicrographs (plane-polarized reflection) of light images and back-scattered electron 
images using a scanning electron microscope of the dehydration products for trachyandesite. Abbreviations: pyroxene (Px), 
plagioclase (Pl), quartz (Qz) and magnetite (Mag). 
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Table 3  Mineralogical assemblage of trachyandesite before and after dehydration. Amp = amphibole, Px = pyroxene, Pl = 
plagioclase, Qz = quartz and Mag = magnetite.  

No. P (GPa) T (K) Mineral associations 

DH1 / / Amp (50%) + Pl (30%) + Qz (20%) 

DH2 0.5 773-1,323 Px (35%) + Pl (30%) + Qz (20%) + Mag (15%) 

DH3 1.5 773-1,323 Px (35%) + Pl (30%) + Qz (20%) + Mag (15%) 

DH4 2.0 773-1,323 Px (35%) + Pl (30%) + Qz (20%) + Mag (15%) 
 

the electrical conductivity with a profound effect on 

the electrical conductivity for water-bearing minerals 

and rocks in the subduction zone e.g., single crystal 

amphibole, brucite, serpentine, pyrophyllite, 

phlogopite, chloride, epidote, lawsonite, amphibolite, 

serpentinite, phyllite etc. [22-33]. Previous studies 

have already confirmed that the dehydration of single 

crystal amphibole and amphibole-bearing rocks occurs 

when temperatures exceed 873 K [23, 29]. In this 

study, the amphibole is the unique water-bearing 

mineral in our trachyandesite sample, and therefore, 

the dehydration of the rock originated from within the 

water-bearing amphibole. The observable dehydration 

temperature of trachyandesite (923 K) is very close to 

the results of previous studies [29]. The back-scattered 

electron images acquired using a scanning electron 

microscope for the recovered sample show that the 

dehydration reaction is sufficient and that all of the 

amphibole phenocrysts had thoroughly disappeared 

from the dehydration products, as is illustrated in Fig. 

8 and Table 3. Accordingly, some new mineral phase 

assemblages, including pyroxene, quartz and some 

magnetite, appeared simultaneously, which were 

derived from the dehydration of amphibole. Notably, 

the interconnected magnetite (~15%) belongs to a 

representative high-conductivity mineral phase within 

the dehydration products of trachyandesite [34, 35]. 

Schmidbauer et al. [23] suggested that free water in 

amphibole cannot be produced during the dehydration 

process, the reaction equation of which can be 

described as follows: 

  (3) 

The electrical conductivity of trachyandesite 

increases by nearly 2 orders of magnitude following 

dehydration. Interconnected magnetite is suggested to 

cause this remarkable enhancement of the 

conductivity for the dehydration product of the 

trachyandesite samples. Morris and Williams [36] 

found that the electrical conductivity of magnetite 

with a magnetic semiconductor increased by an order 

of magnitude owing to electron hopping between 

divalent and trivalent iron octahedral sites when the 

pressure rose from 0 to 20 GPa in a temperature range 

from 258 to 300 K. Kawano et al. [34] indicated that 

the electrical conductivity of synthesized serpentinite 

increases with an increase in the interconnected 

magnetite content during shear deformation and that 

the electrical conductivity of pure magnetite could 

reach nearly 103 S/m at 1.0 GPa and 750 K. Recently, 

Manthilake et al. [31] proposed that an interconnected 

network of a highly conductive and chemically impure 

magnetite mineral phase leads to an enhancement of 

the electrical conductivity for hydrous chlorite up to 7 

× 10−1 S/m after dehydration upon heating to 923 K at 

the pressure of respective 2.0 GPa and 4.0 GPa. Based 

on these obtained conductivity results for hydrous 

chloride, the authors found that the dehydration of 

chloride could be used to reasonably explain 

high-conductivity anomalies (~1 S/m) in the mantle 

wedge zone. Therefore, in the present study, it is 

suggested that the intergrowth of interconnected 

magnetite causes the remarkable increase in electrical 

conductivity for hydrous trachyandesite after 

dehydration. 

On the other hand, upon considering our new 

results regarding the influence of pressure on the 

electrical conductivity of trachyandesite, we compared 

our data with those from previous studies [7-11], as 

2+ - 2- 3+
2

1
Fe +OH H +O +Fe

2

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shown in Fig. 9. The influence of the alkali ion 

content (4.96-7.83 wt%), iron content and oxygen 

fugacity on the DC electrical conductivity of andesite 

was determined by Waff and Weill [7] at atmospheric 

pressure and high temperatures. In a comprehensive 

consideration of the differences in the alkali ion 

content (3.29 wt% Na2O in our trachyandesite sample 

and 4.96 wt% from Ref. [7]), the chemical 

composition effects and the method employed, there 

exists a good consistency in the electrical 

conductivities for andesite with those of our results. 

The previous results for andesites were measured 

using AC impedance spectroscopy techniques to 

obtain the electrical conductivities of trachyte 

protoliths and trachyte glass, including hydrous and 

anhydrous pantelleritic trachyte glass from Ref. [8], 

quartz andesite from Ref. [9], and dacitic glass with 

different water contents (3.3-12.2 wt%) from Ref. [10], 

which are consistent with our electrical conductivities 

for trachyandesite protoliths. Recently, Guo et al. [11] 
 

 
Fig. 9  Comparison of the results from this study at 
pressures of 0.5-2.0 GPa (black solid lines) with those of 
previous studies for the electrical conductivities of 
trachyandesite. The broken dashed and dotted yellow, blue, 
red, green and violet lines represent the electrical 
conductivities of trachyte protoliths and trachyte from Refs. 
[7-11], respectively. 

investigated the electrical conductivities of hydrous 

andesite melts with 0.01-5.9 wt% water contents at 

1,164-1,573 K and 0.5-1.0 GPa, which revealed some 

obvious discrepancies due to variations in the 

chemical composition, melting fractions and water 

contents in the experimental products at 

high-temperature conditions. 

4.2 Implications 

The Andes Mountains are located along the active 

edge of the South American Plate, and a large quantity 

of andesites is widespread throughout the 

middle-lower crust beneath the Andes. Previous 

geomagnetic and magnetotelluric sounding results 

have indicated that many high-conductivity layers 

exist in the middle-lower crust beneath the Andes 

[37-42]. Combining in situ laboratory conductivity 

measurements from high-pressure experiments with 

field magnetotelluric data is crucial to reveal the cause 

for these highly conductivity layers. There are 

abundant volcanic rocks in the vicinity of the Andes, 

and magma deposits in active volcanic environments 

have been proposed to cause highly conductive zones 

beneath volcanic arcs [41, 42]. However, another 

potential and crucial candidate for the explanation of 

such high-conductivity zones is the dehydration of 

hydrous minerals and rocks in the middle-lower crust 

beneath the Andes and the associated subduction zone. 

Therefore, it is valuable to investigate whether the 

dehydration of trachyandesite can cause the formation 

of highly conductive layers. 

We applied the electrical conductivities for the 

dehydration products of trachyandesite to establish a 

laboratory-based conductivity-depth profile. The 

corresponding profile for the middle-lower crust of the 

southern Andes can be constructed by converting the 

conductivity-temperature data into conductivity-depth 

results in combination with the parameters we 

determined in this study using the Arrhenius Eq. (2) 

under pressures of 0.5-2.0 GPa. The relationship 

between temperature and depth for stationary 
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continental crust can be described by the numerical 

solution of the heat conduction equation [43]: 

       (4) 

where T0 is the surface temperature (K), Q is the 

surface heat flow (mW/m2), z is the lithospheric layer 

depth (km), k is the thermal conductivity (W/mK), and 

A0 is the lithospheric radiogenic heat productivity 

(μW/m3). Previous results suggested parameter values 

for the lithospheric radiogenic heat productivity (A0) 

and the thermal conductivity (k) of 0.31 μW/m3 and 

2.6 W/mK, respectively [44]. In consideration of field 

magnetotelluric data (38-41°S and 71-74 W) from the 

coastline of the South-Central Chilean subduction 

zone beneath the Andes, a few discontinuous 

high-conductivity zones have been discovered at 

depths of 20-40 km, and the Moho is located at a 

depth of nearly 40 km in this area. The 

magnetotelluric results on the South-Central Chilean 

subduction zone beneath the Andes obtained by Ref. 

[42] are included in Fig. 10. 

Previous studies reported surface heat flow values 

for the Arauco basin of South-Central Chile (37-38°S) 

and the central Andes (28-30°S) are 33-51 mW/m2 

and 64 ± 4 mW/m2, respectively [45, 46]. Using Eq. 

(4), the relationship between the electrical 

conductivity of trachyandesite and depth at pressures 

of 0.5-2.0 GPa is shown in Fig. 10. The electrical 

conductivity of trachyandesite at depths of 20-40 km 

is obviously lower than that in the high-conductivity 

zone when the lower boundary of surface heat flow is 

33 mW/m2. Therefore, the data obtained here cannot 

reasonably explain the anomalies observed in the 

South-Central Chilean subduction zone beneath the 

Andes. Using the upper boundary of surface heat flow 

from the Arauco basin of the central Andes (64 

mW/m2), the electrical conductivity of trachyandesite 

at 0.5 GPa is similar to the values of the highest 

conductivity of the high-conductivity zone, which can  

be used to  explain the  high-conductivity 
 

 
Fig. 10  Two sets of laboratory-based conductivity-depth 
profiles as functions of different pressures compared with 
the magnetotelluric field results for the anomalous 
high-conductivity zones in the South-Central Chilean 
subduction zone beneath the Andes. The solid blue and red 
lines indicate the laboratory-based conductivity-depth 
profiles for trachyandesite are based on heat flow values of 
33 and 64 mW/m2 for the lower and upper boundaries of 
the Andes in the Arauco basin of South-Central Chile and 
the central Andes, respectively. The broken green line 
denotes the high-conductivity anomalies beneath the 
high-conductivity zones of the South-Central Chilean 
subduction zone beneath the Andes at depths of 25-35 km 
[42]. 
 

anomaly in this area. However, the results at 1.5-2.0 

GPa are nearly one order of magnitude lower than the 

data from the high-conductivity zone, which implies 

that it is not easy to evaluate whether the 

high-conductivity anomaly in the South-Central 

Chilean subduction zone beneath the Andes is caused 

by the dehydration product of trachyandesite. Of 

course, our results make it clear that magnetite content 

can play a crucial role in the electrical conductivity of 

the dehydration product of trachyandesite, and thus, 

the trachyandesite with various amphibole contents 

may result in different electrical conductivity values 

for the products of trachyandesite after dehydration. In 

conclusion, the interconnected high-conductivity 

mineral phase of magnetite in the dehydration product 

20
0 ( ) z ( ) z

2

AQ
T T

k k
  
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of the trachyandesite sample can be used to reasonably 

explain the high-conductivity anomalies in the 

South-Central Chilean subduction zone beneath the 

Andes. 

5. Conclusions 

The electrical conductivity of trachyandesite was 

measured under the conditions of 0.5-2.0 GPa and 

773-1,323 K. The electrical conductivity of 

trachyandesite increases by nearly 2 orders magnitude 

following the dehydration of the sample. After 

dehydration, the electrical conductivity of 

trachyandesite increases with increasing temperature 

and decreases with a rise in pressure. The intergrowth 

of interconnected Magnetite in the dehydration 

product is the most plausible reason for the 

high-conductivity anomalies for the South-Central 

Chilean subduction zone beneath the Andes. 
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