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Abstract

The Emeishan flood basalt is a large igneous province (LIP) erupted in southwestern China dur-
ing the Permian Triassic period. Seismic images of the deep crustal structure beneath the Emeishan
large igneous province (ELIP) indicate unusually high seismic velocities (Vp = 7.1 – 7.8 km/s) at the
base of the crust. The thickness of these high-velocity layers ranges from 8 km in the western section
to 24 km in the east, and are generally interpreted as large igneous intrusions. In this paper, we use
the petrological code MELTS to quantify the crystal fractionation of Emeishan primary melts at the
base of the crust as they ascended to the surface. Using the thickness and the seismic velocity (Vp)
of these high-velocity layers as constraints, MELTS rigorously calculates the amount and the com-
position of the fractionated solid phases and the major oxide concentrations in the residual liquids.
The computed compositions of the residual liquids are rich in TiO2 and FeOtot, consistent with the
observed compositions of most Emeishan basalts. Moreover, the calculated seismic velocities (Vp) of
fractionated solid phases are also consistent with the geophysical observations. Mass balance calcu-
lation shows that the entire volume of the Emeishan basalts is about 8.9×106km3. The results also
explain the absence of huge layered gabbro intrusions (V-Ti-magnetite deposits) in the west section
of ELIP, and indicate that the east section is a potential mineral exploration region for V-Ti-magne-
tite deposits.

Introduction

FLOOD BASALTS are the largest volcanic events
known on Earth. They are characterized by enor-
mous volumes (~105–107 km3) of relatively homoge-
neous tholeiitic basalts erupted in a relatively short
time span (1–2 m.y.) (Coffin and Eldholm, 1994;
Hooper, 2000). Several researchers have estab-
lished that the Emeishan flood basalts (EFB) in par-
ticular are consistent with emplacement by a mantle
plume (Chung and Jahn, 1995; Chung et al., 1998;
Xu and Chung, 2001; Xu et al., 2001a). The Emeis-
han large igneous province (ELIP), which consists of
massive flood basalts and numerous contemporane-
ous mafic intrusions, culminated in a main stage of
flood magmatism at ~251–253Ma (Lo et al., 2002).
The primary melts of the Emeishan flood basalts
(EFBs) are thought to be picritic (Chung and
Jahn,1995; Xu and Chung, 2001; Xu et al., 2001a).

However, most basaltic lavas from the Emeishan
LIP (ELIP) are more evolved, with MgO ≈7% (Zhang
et al., 1988; Xu et al., 2001a). They are far from the
expected composition of melts in equilibrium with
mantle peridotites (Cox, 1980). The discrepancy
between the composition of the primary picritic
melts and the observed compositions of the erupted
lavas indicates that primary mantle melts underwent
significant crystal fractionation before being
erupted. According to Cox (1980), primary picritic
magmas may have ponded and fractionated near the
Moho due to the density contrast between picritic
magma and crust. This process produces ultramafic
cumulates and residual low-MgO basaltic magma.
The fractionated cumulates and intrusions would be
expected to cause underplating and thickening of
the crust — features that should be detectable by
geophysical observations. The high-seismic-velocity
layers (Vp = 7.1 – 7.8 km/s) at the base of the crust
beneath this province (Liu et al., 2000; Yuan, 1989)
may correspond to the underplated cumulate pile1Corresponding author; email: zhudan-gy@163.net
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472 ZHU ET AL.

from magmas derived from Emeishan mantle
plumes. Geochemical evidence also suggests that
the high-seismic-velocity layers underlying the
ELIP were formed by EFB magmas. Cenozoic mafic
potassic and ultrapotassic magmas in the ELIP (Xu
et al., 2001b; Chung et al., 1997; Deng et al., 1998)
are considered to be derived from the high-seismic-
velocity-layers, which are called the “crust-mantle
mixed layers” (Deng et al., 1998), and the Pb iso-
tope age inherited by these magmas is 220~250 Ma
(Deng et al., 1998), consistent with the age of the
EFB magmas (Lo et al., 2002).

There is now a growing body of seismic data on
the deep crustal structure of hotspot tracks, such as
Hawaii and the Marquesas Islands; of oceanic
plateaus such as Ontong Java; and of continental
flood basalt provinces, such as the Columbia River
Plateau (Farnetani et al., 1996 and references
therein). The seismic data consistently indicate
crustal thickening and the existence of high-velocity
layers at the base of the crust. Farnetani et al. (1996)
have established a model for these high-velocity lay-
ers. However, their results are not accurate, because
the primary melts used are taken from melting
experiments that are not appropriate for the specific
geological process of lower-crustal flood basalt
fractionation.

In this paper we use the Emeishan primary melt
recently found (Xu and Chung, 2001; Xu et al.,
2001a), and the petrological code MELTS (Ghiorso
and Sack, 1995) to quantify the crystal fractionation
of Emeishan primary melts at the base of the crust
(at the Moho) before they ascended to the surface.
The results of the crystal fractionation calculation
are consistent with petrological characteristics of
the EFB magmas, show the compositions of the
high-seismic-velocity layer beneath the ELIP, and
also predict the tectonic position of V-Ti-magnetite
deposits. The calculation also provides a mass bal-
ance that allows an estimate of the entire volume of
EFB material, erupted or intruded. 

Background

The ELIP is located along the western margin of
the Yangtze craton in southwestern China. The base-
ment of the ELIP consists mainly of metamorphic
rocks of Middle Proterozoic age. The Emeishan
basalts are exposed in a rhombic area of ~250,000
km2 within Yunnan, Sichuan, and Guizhou prov-
inces (detailed descriptions are available in Zhang
et al., 1988). The ELIP has been divided into three

subsections termed the west, middle, and east
sections (Zhang et al., 1988). The Red River shear
zone is considered as its western boundary (Zhang et
al., 1988). The Qinghe and Chenghai faults mark
boundaries of the west section and middle sections
of the ELIP, whereas the Ganluo-Xiaojiang faults
divide the middle from the east section (Fig. 1).
Thickness of EFB varies from over 5000 m in the
west (i.e., the Binchuan Profile in Yunnan Province)
to several hundred meters in the east. However, the
thickest section may originally have been in the
middle section, now removed due to intense erosion
during the Late Permian–Early Triassic. From the
results of paleocontinental reconstruction, the mid-
dle section of the ELIP overlay the high-standing
core of the Kangdian paleocontinent during Late
Permian–Early Triassic time, and the estimated
thickness of its erosion is over 5 km; in contrast, the
west and east sections are delta to littoral facies
(Pan et al., 1987). So the initial thickness of the
basalt sections is estimated at 5 km and 8 km,
respectively, in the west and middle sections of this
province.

The high-seismic-velocity layers beneath the
ELIP have two sublayers with velocities of 7.1–7.5
km/s and 7.5–7.8 km/s, respectively. These two lay-
ers together (Vp = 7.1 – 7.8 km/s) reach a thickness
of 25 km beneath the middle section of this prov-
ince, thinning to 8 km beneath the west section. The
east section has a stable thickness of 20 km (Liu et
al. 2000).

The EFB is classified into two major magma
types: high-Ti (HT) and low-Ti (LT) basalts. The HT
basalts form the main body of EFBs, and are charac-
terized by high TiO2 (3.65–5%), high Fe2O3 (12.7–
16.4%), and low MgO (<7%) contents (Xu et al.,
2001a).

Methods

We use the thermodynamic code MELTS
(Ghiorso and Sack, 1995) to model fractional crys-
tallization of the EFBs. The initial composition of
the primary melts of EFBs is in Table 1 (Chung and
Jahn, 1995; Xu et al., 2001a). The depth of the
Moho beneath the ELIP is presently about 40
km(≈12 kbar), but this is the result of subsequent
folding (Cong, 1988). Instead we estimate the pres-
sure of crystallization using Putirka’s thermobarom-
eter (Putirka et al., 1996; Putirka, 1997) and data
from Zhang (Zhang et al., 1988). The results show
two major average pressure values: (1) 6 kbar (≈20
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EMEISHAN FLOOD BASALTS 473

km, presumably representing the depth of Moho at
that time); and (2) 1 kbar (representing a subordi-
nate high-level crystallization of EFBs in the upper
crust). The oxygen fugacity used in the calculation
is the quartz-fayalite-magnetite (QFM) buffer. This
condition was selected because most tholeiitic
basalts are considered to have crystallized under

these fO2 conditions (Walker et al., 1979; Helz and
Thornber, 1987).

Results and Discussion

The results of fractional crystallization using
MELTS are shown in Table 1 and Figure 2. The

FIG. 1. Geological map of Southwestern China, showing the distribution of the EFBs and contemporaneous mafic
intrusions within the ELIP (South China) (Modified from Zhou et al., 2002 and Song et al., 2001). The lower right inset
illustrates distribution of major terranes in China and study area (modified after Chung and Jahn, 1995). Abbreviations:
CH-QHF = Chenghai-Qinghe fault; XSHF = Xianshuihe fault; ANHF=Anninghe fault; GL-XJF = Ganluo-Xiaojiang
fault; SGT = Songpan-Ganze Teerane; YB = Yangze Block.
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474 ZHU ET AL.

calculated trends of Al2O3, Na2O + K2O and CaO vs.
MgO are perfectly consistent with the evolved trend
analyzed for the EFBs (Figs. 2B–2D). CaO increases
with decreasing MgO as a result of olivine and
orthopyroxene fractional crystallization, and then
decreases as clinopyroxene reaches the liquidus at
about MgO = 10.3%. The discrepancy between the
calculated and observed trends in SiO2 (Fig. 2A) is
due to known systematic errors in MELTS. That the
calculated trends of Fe2O3 (total) and TiO2 lie above
the observed trends suggests that the composition in
the selected primary melt was atypically high in
these oxides, because the calculated trends are par-
allel to the data arrays (Figs. 2E and 2F). Moreover,
the observed microphenocrysts of magnetite and
Ti-magnetite in most of the EFBs indicate that
low-pressure crystal fractionation reduces both TiO2
and FeO* in the EFBs.

Plagioclase does not appear as a liquidus phase
during fractional crystallization at 6 kbar. This is
consistent with the absent or slightly negative Eu
anomalies (Cong, 1988) in the EFBs and the mono-
tonic increase in Al2O3 with decreasing MgO during
crystal fractionation (Fig. 2B). The observed phe-
nocrysts of plagioclase in most of the EFBs are due
to minor low-pressure crystallization of plagioclase
(plagioclase is the main liquidus phase of the resid-
ual melt when brought to low pressure). However,
phenocrysts of plagioclase were not separated from

the residual liquid due to the high density of the
residual liquid (the density of the ferrobasaltic
residual liquid at 1209°C and 6 kbar is 2.91 g/cm3,
whereas the density of plagioclase is 2.64 g/cm3). 

The fractionated phases in the model of the EFB
calculation yield a cumulate with calculated seismic
velocities of 7.60–7.85 km/s (according to the aver-
aging method of Farnetani et al., 1996). These values
are at the high end of the observed seismic velocities
of 7.1–7.8 km/s (assuming that the effects of pressure
and temperature on seismic velocity counteract with
each other) (Rudnick and Fountain, 1995). However,
petrography of layered mafic intrusions shows that
mafic cumulus can trap 5–30 volume percent liquid
(Kerr and Tait, 1986; Miller and Ripley, 1996). If the
two high seismic velocity layers of 7.1–7.5km/s and
7.5–7.8 km/s trapped 15% and 7% liquid, respec-
tively, the calculated values would be approximately
equal to the measured velocities. The compositions
of estimated high-seismic-velocity layers obtained
by mixing the model cumulate composition with
residual liquid to obtain the appropriate seismic
velocities are shown in Table 1. The two layers are
pyroxenite (Vp = 7.1 – 7.5 km/s) and olivine-pyrox-
enite (Vp = 7.5 – 7.8 km/s), respectively.

The results of the mass balance calculation show
the volume proportion of the solid phases and resid-
ual liquid for the west and middle sections of
the ELIP (Fig. 3). Volume proportions are approxi-

TABLE 1. Calculation Results

Oxide SiO2 TiO2 Al2O3 FeO1 MgO CaO Na2O K2O P2O5 Fraction of each phase Density

Ol Opx Cpx Sp melt g/cm3

Primary melt2 46.75 2.88 8.12 12.73 17.20 9.22 1.43 0.93 0.24 3.19

Intermediate 
liquid3

44.10 4.55 11.92 15.29 8.55 10.68 2.29 1.53 0.40 3.15

Final liquid4 42.60 5.63 14.16 17.17 5.7 8.25 3.00 2.12 0.55 3.11

(Vp = 7.5–7.8 
km/s) layer

48.91 0.45 4.41 9.90 29.66 5.90 0.31 0.11 0.03 22.1 41.7 28.1 1.0 7.05 3.19

(Vp = 7.1 – 7.5 
km/s) layer

46.44 1.49 9.28 11.22 15.44 14.36 0.89 0.32 0.08 82.9 2.1 15.06 3.19

1Total iron. 
2Primary melt is from Xu and Chung (2001). 
3The evolved liquid after the primary melt has undergone 40% crystal fractionation. 
4The evolved liquid after the primary melt has undergone 54% crystal fractionation. 
5The fraction of the trapped intermediate composition liquid. 
6The fraction of the trapped final composition liquid.
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EMEISHAN FLOOD BASALTS 475

mately equal to the mass proportions due to the sim-
ilar densities of each phase (see Table 1). The
primary magmas have undergone 54% fractional
crystallization at the Moho and the fractionated
phases formed the high seismic velocity layers with
a thickness of 8 km and 24 km in the west and the
middle sections, respectively. After subtracting the
trapped liquid, the total residual mass is about 44%
of the total mass, which is the sum of the basalts and
the intrusions in the upper crust. The initial thick-
ness of basalt in the profile in the west and middle
sections is thought to be 5 km and 8 km (see above),
which are 35% and 19% of total mass, respectively.
Assuming basalts and intrusions have similar densi-
ties, the mass fraction of intrusions in the upper
crust is 9% and 25% and the “thickness” of the
intrusions in the upper crust will be 1 km and 12 km
in the west and middle sections, respectively (Fig.

3). These calculated results are consistent with
observed facts: several huge layered gabbro intru-
sions (V-Ti-magnetite deposits, such as Panzhihua,
Baima, Taihe and Hongge) are present in the middle
section, whereas only small intrusions occur in the
west (Yao et al., 1993). The east section has a thick-
ness of 20 km of high-seismic-velocity layers, and is
a potential mineral exploration target for V-Ti-mag-
netite deposits). 

The average thickness of high-seismic-velocity
layers is 20 km, and the total area of ELIP is
~250.000 km2. So using the above calculating meth-
ods, the entire volume of Emeishan basalts is about
8.9 × 106 km3, and the volume of the eruptive
basalts and associated intrusions in the upper crust
is 3.9 × 106 km3. This value is apparently much
greater than the 0.3 × 106 km3 estimated by Xu et al.
(2001a) based on preserved outcrop, only because

FIG. 2. Variation diagrams for major oxides plotted against MgO for the EFB magmas and the evolved trend of calcu-
lation at 6 kbar and the QFM buffer. All data of the EFB magmas are from Chung and Jahn (1995); Xu et al., 2001c; and
Song et al., 2001).
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476 ZHU ET AL.

our estimate accounts for erosion as well as associ-
ated intrusions.

Conclusions

The crystal fractionation calculations of the
EFBs using MELTS show that the primary magma
underwent about 54% differentiation at the base of
crust and that the fractionated solid phases are con-
sistent with the high-seismic-velocity layers in the
lower crust if some trapped melt was retained in the
cumulates. The compositions of the residual liquid
are rich in TiO2 and FeOtot, consistent with most of
the analyzed compositions of Emeishan basalts after
a small amount of subsequent low-pressure plagio-
clase and oxide fractionation. Mass balance calcula-
tions show that the entire volume of Emeishan
basalts is about 8.9 × 106 km3. Moreover, the results
explain the occurrence of huge layered gabbro intru-
sions (V-Ti-magnetite deposits) in the middle sec-
tion and their absence in the west section of ELIP,
and predict that the east section is a potential target
for V-Ti-magnetite exploration.
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