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Abstract Spatial interpolation methods have been applied in
many environmental research studies. However, it is still a
controversial issue to select an appropriate interpolation meth-
od for the conversion of discrete sampling sites into continu-
ous maps. This study aimed at selecting an optimal interpola-
tion method to analyze the spatial pattern of atmospheric N
deposition in South China. N deposition was calculated by
259 moss sample data. Four spatial interpolation methods,
including inverse distance weighting (IDW), radial basis func-
tion (RBF), ordinary kriging (OK), and universal kriging
(UK), were utilized for modeling the spatial distribution of
N deposition. It is the first time that these methods were ap-
plied to analyze N deposition in South China. Validation
method was used to evaluate the interpolation precision of
the various methods, and the cross-validation method was
used to evaluate their interpolation accuracy. Comparison of
predicted values with measured values indicated that OK was
the optimal method for analyzing the spatial distribution of N
deposition in this study; it had the highest precision (mean
e r r o r (ME) = −0 .059 , r oo t -mean - squa r e e r r o r
(RMSE) = 5.240, mean relative error (MRE) = 0.129, mean
absolute error (MAE) = 4.007) and the lowest uncertainties
(standard deviation (SD) = 5.47, coefficient of variation
(CV) = 0.15). RBF produced similar results as good as OK,
while the worst performed interpolation method was UK. By

using the OK method for analyzing N deposition, this work
revealed systematic temporal and spatial variations in atmo-
spheric N deposition in South China.
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Introduction

Atmospheric N deposition is an important part of global bio-
geochemical N cycle (Goulding 1990). Intensive anthropogen-
ic activities have greatly increased the concentration of reactive
nitrogen into the environment and have large impacts on the
composition and source of N deposition (Galloway et al. 2004;
Huang et al. 2015; Liu et al. 2015; Lu et al. 2015). A large
number of studies have revealed a rapid increase in atmospher-
ic N deposition in China, with the deposition centered in the
southeast (Chen and Mulder 2007; Huang et al. 2010; Huang
et al. 2013; Jia et al. 2014; Lü and Tian 2014). It is well doc-
umented that the excess of N deposition has a severe adverse
effect on sensitive ecosystems and human health (Bouwman
et al. 2002; Clark and Tilman 2008; Liu et al. 2011; Nyberg
et al. 2000; Schwartz 1994). For the purpose of integrated nu-
trient management and evaluation of the ecological environ-
mental effect of N deposition, therefore, it is necessary to in-
vestigate the source, quantity, and temporal-spatial distribution
of atmospheric N deposition. The spatial information is of great
significance for the research of N deposition in different scales.
At present, massive papers have reported the deposition of
atmospheric nitrogen on a global, regional, or local scale (Cui
et al. 2014; Fenn et al. 2003; Galloway and Cowling 2002;
Galloway et al. 2008; Lü and Tian 2014; Nadim et al. 2001;
Pan et al. 2012). There are still some problems on the study of
N deposition, including (a) the number of monitoring sites is
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unevenly distributed and insufficient; (b) monitoring focus on
wet deposition, either dry deposition and fog deposition are not
measured or only partially quantified; and (c) technical difficul-
ties and high costs are still challenges for measuring the atmo-
spheric concentrations and deposition (Chang et al. 2013; Fenn
et al. 2003). Thus, interpolationmethods are used inmappingN
deposition pollution.

Spatial interpolation methods are divided into the following
two main categories: deterministic interpolation methods, such
as inverse distance weighting, and geostatistical interpolation
methods, such as kriging (Cressie 1992). In a geographic infor-
mation system (GIS), spatial interpolation methods are very
powerful tools for predicting the values of an attribute at
unsampled sites in order to generate spatially continuous data
(Atkinson 2005; Li and Heap 2011). In spite of their develop-
ment for over 50 years, spatial interpolation methods are main-
ly used for the analysis of precipitation, meteorological factors,
and soil elements. With the advances of computer technology,
GIS capabilities for spatial interpolation have improved. In re-
cent years, spatial interpolation methods integrated with GIS
are used for simulation of the spatial distribution of atmospheric
N deposition (Jia et al. 2014; Lü and Tian 2007, 2014; Zhu
et al. 2015). There are a lot of studies on comparison of spatial
interpolation methods for different objectives, but the results
are not conclusive. Some papers reported that kriging
outperformed other methods (Sun et al. 2009; Zhong 2010;
Zimmerman et al. 1999), while in others, inverse distance
weighting or radial basis function was as good or better
(Laslett et al. 1987; Lu and Wong 2008; Weber and Englund
1992). And, there have been few reports comparing different
interpolation methods for N deposition in China.

In view of the significant correlation between moss N con-
tent and atmospheric N deposition even at low levels, moss N
content is widely used to substitute direct measurements of N
deposition at locations without instrumental monitoring (Liu
et al. 2008a; Skinner et al. 2006). According to some previous
data, Liu et al. (2009) summarized an integrated relationship
between N deposition and tissue N contents in mosses and
assessed the level of atmospheric N deposition in Guiyang.
This good linear pattern was also successfully applied to the
estimation of atmospheric N deposition in the Yangtze River
drainage basin (Xiao et al. 2010b). Therefore, moss N content
was used to estimate atmospheric N deposition in this study.
The moss method also proved useful to assess the spatial
distribution of N deposition (Pesch et al. 2007; Skudnik
et al. 2016; Varela et al. 2013).

Considering the importance of spatial variation of atmo-
spheric N deposition, this study was undertaken to compare
the performance of four types of representative interpolation
methods, including inverse distance weighting (IDW), radial
basis function (RBF), ordinary kriging (OK), and universal
kriging (UK), by cross-validation and validation methods.
Then, a relatively appropriate interpolation method was

selected to explore the spatial distribution of estimated N de-
position in South China.

Data and analysis

Data sources

We collected the same moss as Xiao et al. (2010b) reported in
Yunnan, Guizhou (except Guiyang, Anshun, and Zunyi cit-
ies), and Anhui provinces from 2011 to 2013. All sampling
sites (259) were located in open habitats. All samples were
collected from natural rocks above ground level to avoid the
influence of surface water splashes, overlapping by canopies
and buildings, and other anthropogenic pollution. If mosses
were collected around urban parks or hills, the sampling sites
were located at least 500m frommain roads and at least 100m
from other roads or houses. At each sampling site, 5–10 sub-
samples were collected and combined into 1 representative
sample. After rinsing with 1.5 mol/L HCl, washing with de-
ionized water, and sonicating several times, all fresh samples
were dried in a vacuum oven at 70 °C and then were separate-
ly ground into fine powders. Moss N concentrations were
measured by an elemental analyzer (Model PE-2400 II,
PerkinElmer, USA) with an analytical precision of 1%. We
used the oatmeal standard (AR 2026) from Alpha Resources
Inc., USA (+1.83%), for our analysis, which gave a mean
(±standard deviation (SD)) N% value of 1.83 ± 0.01%.
Moss data in other regions, including Sichuan, Hunan,
Hubei, Guangzhou, Guangxi, Fujian, Zhejiang, Jiangsu, and
Jiangxi provinces; Chongqing and Shanghai municipalities;
and Guiyang, Anshun, and Zunyi cities, were summarized
from published sources for the 2006–2009 period (Liu et al.
2008b; Xiao et al. 2010a, b, 2011). The mean N deposition (y)
was calculated per site by tissue N contents of moss (x), and
the relevant equation is (Xiao et al. 2010b)

y ¼ 19:23x−14:04 ð1Þ

The data used in this study were placed in Geostatistical
Analyst of ArcGIS with a grid resolution of 6 × 6 km. Two-
hundred and fifty-nine sampling sites, which are shown in
Fig. 1, covered the whole of South China, including 14 prov-
inces (municipalities and autonomous regions).

Data exploration

The Explore Data tool of ArcGIS 10.2 (ESRI 2011) and SPSS
19.0 software (SPSS Inc., Chicago, IL, USA) were employed
to conduct data analyses, including the data’s distribution,
outlier identification, and trend analysis. In Fig. 2a, the normal
quantile-quantile plot (normal QQ plot) showed that the esti-
mated N deposition data tended to follow a normal
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distribution. The normal distribution test and normal distribu-
tion plot, which are shown in Table 1 and Fig. 2b, also re-
vealed the same result.

Outliers can have several detrimental effects on the predic-
tion surface because of effects on semivariogram modeling
and the influence of neighboring values (ESRI 2011).
Voronoi maps based on the cluster and entropy methods were
used to identify possible outliers. Because the estimated value
of one sampling point was unusually higher than that of the
surrounding points, it was removed before creating a surface.

Trend analysis is essential for data exploration. It can di-
rectly reflect the total change trend of spatial data. From the
trend analysis plot (Fig. 2c), we found that the spatial correla-
tion of the estimated data was strong. It showed that N depo-
sition gradually increased from the northwest to the southeast,
while the change trend was parabola in shape from the south-
west to the northeast. So, it was clear that there was spatially
significant difference in N deposition in South China, and its
spatial variation presented a quadratic trend.

Spatial autocorrelation analysis

Spatial autocorrelation analysis was carried out on the estimat-
ed N deposition data before interpolation. It is a method of
spatial statistics which can reveal the spatial structure of re-
gional variables. In general, spatial autocorrelation analysis is
used for quantitative description of interdependent relation-
ship between each of the variables in space. If similar values
are spatially close to each other, they are correlative; other-
wise, they are independent or randomly distributed in space.
The similarity of spatial variables is decided by Moran’s I. Its
value ranges from −1 to 1. Similar values in space cluster

Fig. 2 Data analysis test of
nitrogen deposition of sampling
points. a Normal QQ plot, b
normal distribution plot, and c
trend analysis plot

Fig. 1 Distribution of sampling points in South China
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together when Moran’s I is close to 1, while dissimilar values
cluster together whenMoran’s I is close to −1. Values in space
are irrelevant when Moran’s I is close to 0 (Moran 1948). The
Moran’s I index was 0.66, which was calculated by the meth-
od of inverse distance-weighted Euclidean distance. It implied
that the data of N deposition was highly spatially
autocorrelative.

Geostatistical method

Semivariogram

Semivariogram is used to describe the randomness and
structuredness of regional variables. It is a quantitative index
applied to characterize the autocorrelation of spatial data, with
the following expression (Cressie 1992):

γ hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

Z xið Þ−Z xi þ hð Þ½ �2 ð2Þ

where γ(h) is the semivariogram, h is the delay distance or step
size,N(h) is the number of point pairs with a distance of h, and
Z(xi) and Z(xi + h) are the measured values of Z(x) in locations
xi andxi + h, respectively.

A variety of standard functions is used in semivariogram
modeling. It is a critical step of the transformation from spatial
description to spatial prediction. However, the results were
distinct when different models were used for spatial interpo-
lation (Zhang et al. 2013). For the sake of high precision,
repeated comparisons should be conducted to select an opti-
mal model in the process of fitting semivariogram.

Spatial interpolation methods

A geostatistical analysis program in ArcGIS 10.2 was used to
interpolate the spatial data (ESRI 2011). A comparison of four
spatial interpolation methods was conducted to select an opti-
mal method.

Inverse distance weighting

The IDW method is one of the simplest and most common
interpolation methods. It is based on a similar principle that
the properties of two points are similar when they get close in
space or vice versa. It makes the distance between interpola-
tion sites and sampling sites as weights and takes a weighted
average estimation for the values of unsampled sites. Higher
weighting values will be assigned to those points which are
closer to the interpolation point (Isaaks and Srivastava 1989).
Formally, the estimation of unknown values is in the follow-
ing manner:

Z s0ð Þ ¼
XN
i¼1

λiZ sið Þ ð3Þ

where Z s0ð Þ is the estimated value in location s0, N is the
number of sampling sites around predicted sites, λi is the
weight which is usually inversely proportional to the distance
between sampling sites and predicted sites, and Z(si) is the
measured value in location si.

The weight formula can be given as

λi ¼ d−pi0
.XN

i¼1

d−pi0 ;
XN
i¼1

λi ¼ 1 ð4Þ

where di0 is the distance between s0 and si and p is an exponent
usually set to 2. With the increase of the distance between
sampling sites and predicted sites, the weight declines expo-
nentially. The weights assigned to the predicted sites are pro-
portional, and they are made to sum to 1.

Radial basis function

The RBF method is an exact interpolation method; namely,
the interpolation surface must go through every known point.
It is a monotone function of Euclidean distance between a
certain point X and a center point X0. RBF is applied to inter-
polate a large number of data points so as to generate a smooth
surface (Powell 1990). The estimator is as follows:

Z s0ð Þ ¼
XN
i¼1

Z sið ÞG di0ð Þ
.XN

i¼1

G di0ð Þ ð5Þ

where G(di0) is the monotone function of Euclidean distance;
other parameters are the same as the abovementioned
parameters.

Ordinary kriging

OK is one of the most common kriging interpolation methods.
It provides an unbiased estimate for variables in regions where
the available data are spatially autocorrelative. On the premise

Table 1 Tests of normality by one-sample Kolmogorov-Smirnov test

N deposition

N 258

Normal parametersa, b Mean 34.5346

Standard deviation 7.6444

Most extreme differences Absolute 0.065

Positive 0.041

Negative −0.065
Kolmogorov-Smirnov Z 1.042

Asymp. Sig. (two-tailed) 0.228

a Test distribution is normal
b Calculated from data
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of meeting the intrinsic hypothesis, its estimator is the same as
IDW. The only difference is that a semivariogram is used to
determine the weight (Cressie 1990).

Universal kriging

The OK method proposes an assumption that regional vari-
ables meet second-order stationary hypothesis. However, the
assumption is not consistent with the actual situation some-
times. In the presence of a drift, a new optimal linear estima-
tion method is used for spatial interpolation. The UK method
assumes that the available data exhibit a dominant trend and
the trend can be fitted by a certain function or polynomial. We
need to analyze the change trend of the data, firstly, in order to
get a simulated model. Then, a kriging method is conducted to
analyze the residual data. Finally, the results of trend-surface
and residual analysis are summed to generate a final result
(Matheron 1969).

Comparison of the precision and accuracy of interpolation
methods

Validation method was used to evaluate the precision of dif-
ferent interpolation methods in this study. Two subsets were
constructed for 258 data by the Geostatistical Analyst tool in
ArcGIS 10.2. The Create Subset tool was used to specify the
size of training subset. We changed the default percentage of
training and test subsets, which are 50 and 50%, respectively,
based on the previous experience. As shown in Fig. 1, 70% of
the sampling sites (N = 181) were separated out as training
subsets (also known as training points) and the remaining 30%
(N = 77) were as test subsets (also known as test points).
Training subsets were used to model the spatial structure and
produce a surface. Values of the other 79 sampling sites re-
moved were estimated via abovementioned four interpolation
methods based on the other surrounding sites. Then, a corre-
lation analysis was made for predicted values and estimated
values so as to assess the precision of spatial interpolation
methods. Commonly used evaluation indicators include
Pearson’s correlation (R), mean error (ME), mean relative er-
ror (MRE), mean absolute error (MAE), and root-mean-
square error (RMSE). These indices take the form

R ¼ 1

n−1

Xn
i¼1

xi−x
Sx

 !
yi−y
Sy

 !
ð6Þ

ME ¼ 1

n

Xn
i¼1

pi−oið Þ ð7Þ

MRE ¼ 1

n

Xn
i¼1

oi−pi
oi

����
���� ð8Þ

MAE ¼ 1

n

Xn
i¼1

pi−oij j ð9Þ

RMSE ¼ 1

n

Xn
i¼1

pi−oið Þ2
" #1=2

ð10Þ

In Eq. (6), xi−xSx
, x, and Sx represent the standardized variable,

sample mean, and sample standard deviation, respectively. In
Eqs. (7), (8), (9), and (10), n is the number of sampling sites, oi
is the estimated values, and pi is the predicted values.

ME reflects the degree of overall estimation bias. MRE is
used to determine the accuracy of predicted values compared
with estimated values. MAE and RMSE are the best measure
indicators for interpolation precision. A high MAE suggests
that an interpolation method does a poor job in prediction,
while RMSE provides a measure of error size. Although
RMSE and MAE are similar measure indicators, RMSE is
more sensitive to extreme values than MAE (Li and Heap
2011). The evaluation standard is that the lower ME, MRE,
MAE, and RMSE of interpolation results are, the higher inter-
polation precision will be.

Cross-validation is a commonly used method for compar-
ing the accuracy of interpolationmethods. Every sampling site
is individually removed, and its value is estimated by the other
surrounding sites. This process continues until values of all
sampling sites are estimated (Stone 1974). Two commonly
used indicators for evaluating uncertainties of interpolation
methods are coefficient of variation (CV) and SD. CV is a
normalized indicator of dispersion tendency, while SD is used
to indicate dispersion tendency of results (Mirzaei and
Sakizadeh 2016). Smaller CV and SD values indicate less
uncertainty of interpolation methods.

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−x
� �2
n−1

vuuuut .
x ð11Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−x
� �2
n−1

vuuuut ð12Þ

In Eqs. (11) and (12), all parameters are the same as above.

Results

Selection of semivariogram models

For two, in the study used, kriging methods (OK and UK), it is
essential to select an optimal semivatiogram model for data
analysis. In this paper, a cross-validation analysis was

2582 Environ Sci Pollut Res (2017) 24:2578–2588



implemented to evaluate the precision of kriging
semivariogram models. The linear regression analysis method
was used to make a comparison between estimated values and
predicted values, and then, an optimal semivariogram model
was selected (Wu and Yan 2007). The selection criteria are as
follows: (a) the lower the standard error (SE) of regression
coefficient is, the higher the precision of model simulation
will be; (b) the higher the correlation coefficient (R2) is, the
better the regression effect of simulation results will be; and
(c) the lower the predicted value of standard error (SE predic-
tion) is, the smaller the prediction error of models will be.
Table 2 shows the precision cross-validation results of five
models, including spherical, exponential, Gaussian, hole ef-
fect, and J-Bessel models. In the OK method, all cross-
validation indicators of five models showed little change.
The SE and SE prediction for the hole effect model had the
smallest values (0.035 and 1.238), and the R2 for hole effect
model has the largest (0.510). Therefore, the hole effect model
(nugget 23; sill 21; and practical range 529,656 m) was the
optimal theoretical semivariance function for the OK method.
On the contrary, the SE, R2, and SE prediction values of the
five models for the UK method ranged from 0.041 to 0.094,
0.007 to 0.523, and 1.437 to 24.355, respectively. The SE and
SE prediction for the J-Bessel model had the smallest values
(0.041 and 1.437), and the R2 value was the largest (0.523). It
was clear that the J-Bessel model (nugget 16; sill 30; and
practical range 529,656 m) was optimal for the UK method.

Precision and accuracy of different interpolation methods

Table 3 shows that predicted values estimated by different in-
terpolation methods were significantly related to estimated
values, and the R for IDW was the largest (0.728). The ME,
whichmeasured the bias, showed that bias was very small (near
zero) for the OK (−0.059) method, whereas the UK method
(−2.963) had comparatively more bias. MRE provides a mea-
sure of interpolation accuracy, with lower values indicating
more accurate methods. The difference in MRE for the IDW,

RBF, and OK methods was very small, with the minimum of
0.129 for OK, while UK had the largest MRE (2.402).
Therefore, OK was more accurate than the other methods.
RMSE and MAE are two similar measure indicators for inter-
polation precision. The interpolation of atmospheric N deposi-
tion data resulted in RMSE andMAE between 5.240 and 9.707
and 4.007 and 6.685, respectively. The highest precision was
obtained by OK (RMSE = 5.240, MAE = 4.007). The RBF
method performed nearly as well as OK. Among the different
methods, UK interpolation had the largest error. As a whole,
taking all the indicators into consideration, the OK method
showed the best performance than the other methods, although
the RBF method also produced similarly good results.

The values of SD and CV for all different interpolation
methods fluctuated between 5.47 and 7.17 and 0.15 and 0.21
(Table 4). The first three methods had similar prediction accu-
racy. SD and CV values of 7.17 and 0.21 indicated that the
uncertainty of the UK method was the largest. The smallest
SD and CV values were 5.47 and 0.15 for the OK method,
respectively. Thus, interpolation results obtained fromOKwere
the most accurate. This result also was supported by Fig. 3. A
regression coefficient closer to 1.00 and a higher R2 value in-
dicate more reliable results of interpolation. As can be seen in
Fig. 3, the regression coefficient and R2 for OK (0.99 and 0.56)
were higher than that for the other methods. It was clear that the

Table 2 Cross-validation for
precision evaluation of
semivariogram models

Model Lag
size
(m)

Number of point
pairs in each lag

OK UK

SE R2 SE
prediction

SE R2 SE
prediction

Spherical 44,138 32 0.036 0.493 1.270 0.044 0.475 1.540

Exponential 0.037 0.492 1.300 0.086 0.087 3.031

Gaussian 0.036 0.470 1.286 0.094 0.228 3.332

Hole effect 0.035 0.510 1.238 0.689 0.007 24.355

J-Bessel 0.036 0.489 1.287 0.041 0.523 1.437

SE standard error of regression coefficient, R2 correlation coefficient, SE prediction predicted value of standard
error

Table 3 Results of precision and correlation test for different
interpolation methods

ME RMSE MRE MAE R Significance

IDW 1.422 6.443 0.145 4.621 0.728 0.000**

RBF 0.346 5.295 0.136 4.084 0.714 0.000**

OK −0.059 5.240 0.129 4.007 0.628 0.000**

UK −2.963 9.707 2.402 6.685 0.327 0.003*

*P < 0.01 indicates that predicted values are significantly correlated with
measured values

**P < 0.001 indicates that predicted values are highly, significantly cor-
related with measured values
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rank of prediction accuracies for the four interpolation methods
was OK > RBF > IDW > UK.

Spatial distribution of atmospheric N deposition

The spatial distribution of atmospheric N deposition in South
China was interpolated in turn using the IDW method, the
BRF method, and the kriging methods (OK and UK). To
explore the effect of the four interpolation methods on the
spatial variation of N deposition, we made a comparison for
interpolation maps. All interpolation methods reflected the
overall trend of N deposition (Fig. 4). Obviously, the deposi-
tion rate of atmospheric N increased from northwest to south-
east. And, deposition centered in the southeastern part. As
shown in Fig. 4, different surface smoothness was produced
by three interpolation methods, including IDW, RBF, and OK.
The IDW method resulted in obvious Bbull’s-eye^ effect in
some areas. This effect was improved by the RBF method,
while the OK method generated a relatively smoother surface
than the first two methods. In addition, there were no

considerable differences in the spatial variation of N deposi-
tion estimated by these three methods. The deposition rate
ranged between 10 and 70 kg N ha−1 yr−1. However, the UK
method had a significant influence on the estimation of N
deposition. N deposition in most areas was overestimated,
while serious interpolation errors appeared in the northwestern
end of South China and its southwestern end with sparse sam-
pling sites. The comparison results confirmed that the OK
method can effectively avoid the system errors and was more
precise than the other methods for reflecting the spatial distri-
bution of N deposition.

Discussion

With their special physiological properties, mosses have been
identified as a reliable biomonitor of N deposition (Pitcairn
et al. 2006). A good linear equation, which integrated from
previous reported data (Bragazza et al. 2005; Pitcairn et al.
1995, 2001; 2002; Solga et al. 2005), was used to calculate
atmospheric N deposition in this study. This equation also was
successfully applied in our previous study (Liu et al. 2009;
Xiao et al. 2010b). The spatial variation of N deposition was
then interpolated using the IDW, RBF, OK, and UK methods.
Spatial interpolation methods have been widely used in vari-
ous environmental research studies. Their effectiveness is re-
lated to interpolation precision and accuracy. However, most
studies focus on interpolation accuracy (Gong et al. 2014;

Table 4 The coefficient
of variation and standard
deviation of cross-
validation results for dif-
ferent interpolation
methods

Method SD CV

IDW 5.80 0.16

RBF 5.73 0.16

OK 5.47 0.15

UK 7.17 0.21

Fig. 3 The cross-validation anal-
yses of different interpolation
methods. a IDW, b RBF, c OK,
and d UK
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Lloyd 2005; Yao et al. 2013; Zimmerman et al. 1999). The
present study, for the first time, compared the interpolation
accuracy and precision of the common four methods.

Interpolation processes generally induce uncertainty in re-
sults (Liu et al. 2014). The main factors affecting the perfor-
mance of spatial interpolation methods are the number of
samples, sampling design, and the choice of interpolation
methods (Kravchenko 2003; Li and Heap 2011). One of the
premises of optimal interpolation method is high interpolation
precision. It stated that sampling design significantly affected
the performance of the methods in terms of RMSE and MAE
(Li and Heap 2011). Because of irregularly spaced data, these
two precision indicators in this study indicated some differ-
ences between different interpolation methods, varied from
5.240 to 9.707 and 4.007 to 6.685, respectively (Table 3).
All precision indicators were lower for OK than that for other
methods, although the difference between RBF and OK was
small. Interpolation precision is not the unique criterion of
interpolation optimality. An optimal interpolation method
should also provide accurate predicted results. Cross-
validation is a widely used and effective method for the eval-
uation of interpolation methods (Gong et al. 2014; Lloyd
2005). However, the number of monitoring sites usually in-
troduces bias into results. Cheng et al. (2008) and Wagner
et al. (2012) reported that a large bias was induced to interpo-
lation results especially in low-density monitoring sites, unless
sites were designed to meet the interpolation requirements.
Limited sampling wells had an impact on the estimation of
groundwater quality in the Andimeshk-Shush Plain in Iran
(Mirzaei and Sakizadeh 2016). In our study, with a limited
number of sampling sites in remote areas, the results were
subjected to bias. SD and CV results for different interpolation
methods showed that interpolation accuracy was the best for

OK, while the uncertainty originated from UK was more than
any other methods (Table 4).

Interpolation optimality also depends on how well the in-
terpolation methods reflect the spatial variation of research
subjects (Xie et al. 2011). The results in this study demonstrat-
ed that the choice of different interpolation methods had in-
fluence on the spatial distribution of N deposition (Fig. 4).
Serious interpolation errors were produced by UK in the bor-
der, although all methods reflected the overall trend of N de-
position. The smoothing effect of OK was much stronger than
IDWand RBF. Xie et al. (2011) reported that some real infor-
mation in a local region was likely to be smoothed out by OK.
Journel et al.’s (2000) research also indicated that an optimal
interpolation method should produce estimation maps with
relatively low interpolation smoothing. With the purpose of
analyzing the spatial distribution of N deposition, the predic-
tion result should be as precise as possible. There was no
doubt that OK had the strongest ability to predict the overall
trend of N deposition in South China. What is also notable is
that numerous other environmental variables (such as precip-
itation, altitude, and canopy drip) could influence the moss N
content and then have an effect on the spatial distribution of
estimated N deposition (Meyer et al. 2015; Pesch et al. 2008;
Schröder et al. 2010; Skudnik et al. 2014, 2015).

Many studies have shown that model parameters have an
important effect on simulation results (Liu et al. 2014; Mirzaei
and Sakizadeh 2016). In general, IDW and RBF are easy to
use and need less input parameters. In contrast, the kriging
method needs more parameters, and its calculation process is
more complex (Liu et al. 2014). Typically, kriging interpola-
tion comprises of the following steps: statistic test, data trans-
formation and inverse transformation, spatial structure analy-
sis, and semivariance function fitting (Xie et al. 2011). It is

Fig. 4 Spatial patterns of
atmospheric nitrogen deposition
in South China (kg N ha−1 yr−1)
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worth noting that a lot of decisions and calculation steps are
done automatically by the ArcGIS software. Thus, the
semivariance fitting is empirical in most cases; different re-
searcher may have different conclusions (Xie et al. 2011). Jia
et al. (2014) found that the kriging method worked well to
predict the spatial patterns of N deposition in China.
However, Kravchenko (2003) pointed out that kriging was
as accurate as IDW when variogram parameters were deter-
mined from sample variograms but was less precise when a
reliable sample could not be obtained from the data. It should
be noted that the kriging methods are not optimal for all envi-
ronmental research studies. In this study, the OK method pro-
vided a best linear unbiased estimation accounting for the
statistical distribution of estimated N deposition data. It pro-
duced a better local accuracy in the border through minimiza-
tion of a covariance-based error variance. Therefore, the more
complex calculating process and more parameters might be
the reason for lower uncertainty for OK. These redeeming
features made it an appealing method.

It should be clear that in addition to the above impact fac-
tors, there are other factors which also affect the performance
of spatial interpolation methods. Previous findings showed
that when sample density was high, most methods produced
similar results. When sample density is relatively low, the
performance of spatial interpolation methods was better when
the sample density increases (Stahl et al. 2006). The uncer-
tainty of interpolation results might relate to the spatial auto-
correlation. Samples with a strong spatial autocorrelation were
mapped more accurately than samples that had weak spatial
autocorrelation (Liu et al. 2014). In this study, we did not
consider the characteristics of sampling areas and monitored
pollutants. It is recommended that further research studies
should be done when the OK method is used in the spatial
analysis of atmospheric N deposition in other regions.

Conclusion

OK was the optimal method for exploring the spatial distribu-
tion of atmospheric N deposition in this study. This conclusion
was based on moss data in South China in the period of 2006
and 2013, which were in turn interpolated using the IDW,
RBF, OK, and UK methods. Validation was used to evaluate
the interpolation precision of different methods. The results
showed that OK had the highest precision (ME = −0.059,
RMSE = 5.240, MRE = 0.129, MAE = 4.007). Cross-
validation was then used to evaluate the interpolation accura-
cy. Measures of uncertainty indicated that OK had the lowest
coefficient of variation (0.15) and standard deviation of esti-
mation errors (5.47). Uncertainties of three methods (IDW,
RBF, and OK) were very similar. Atmospheric N deposition
in South China obviously increased from northwest to south-
east. The highest deposition was located in the southeastern

part. However, different interpolation methods generated dif-
ferent predictions in local areas. The smoothing effect of OK
was stronger than that of the other methods. Serious interpo-
lation errors, produced by UK, appeared in the northwestern
and southwestern borders with sparse sampling sites.
Although RBF also produced similarly good results, we
would recommend the OK method to be used in this study,
especially for scarce sampling site that was insufficient to fit a
semivariogram model. These differences among the perfor-
mance of four interpolation methods were attributed largely
to three main factors, including the number of samples, sam-
pling design, and the choice of interpolation methods.
However, it should be noted that other factors, such as sample
density and spatial autocorrelation, also might affect the per-
formance of interpolation methods (Liu et al. 2014; Stahl et al.
2006). Thus, more research studies are needed to be done
when the OK method is applied in estimating atmospheric N
deposition.
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