环境汞污染*

冯新斌1** 仇广乐1 付学吾1 何天容2 李 平1 王少锋3

(1. 中国科学院地球化学研究所 环境地球化学国家重点实验室 贵阳 550002;

2. 贵州大学喀斯特环境与地质灾害防治重点实验室 贵阳 550003;

3. 中国科学院沈阳应用生态研究所 沈阳 110016)

摘 要由于特殊的物理化学性质和强的毒性, 汞已 经成为全球关注的污染物。本文对目前大气汞的 来源、汞在大气中的形态分布及在全球大气分布的特点和汞在大气中的迁移转化规律等方面进行了详细地 介绍, 提出了大气汞研究的展望。评述了近年来水生生态系统汞的生物地球化学循环研究领域的新进展及 存在问题, 提出了对汞甲基化机理认识的研究要进一步加强的观点。对汞矿开采和混汞法炼金区环境汞污 染及对居民健康的危害研究进展进行了详细地评述, 指出矿区居民汞暴露的主要途径。最后, 本文还总结了 目前人体暴露不同形态汞对人体健康影响的最新进展。

关键词 汞 甲基汞 大气 水生生态系统 矿山 人体暴露 中图分类号: X501; O614.24⁺3 文献标识码: A 文章编号: 1005-281X (2009)02 8-0436-22

Mercury Pollution in the Environment

Feng Xinbin^{1**} Qiu Guangle¹ Fu Xuewu¹ He Tianrong² Li Ping¹ Wang Shaofeng³ (1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550003, China;
 Shenyang Insitute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract Due to special physicochemical property and extreme toxicity, mercury is regarded as a global pollutant. The progress on the emission sources of mercury to the air, the distribution and speciation of mercury in ambient air in the global scale and the transformation of mercury in the troposphere is critically reviewed. We also highlighted the future research needs regarding mercury cycling in the global atmosphere. The new achievements on mercury biogeochemical cycling in aquatic systems are summarized and it is pointed out that more study is urgently needed to scrutinize the mechanism of mercury methylation in aquatic systems. The status of mercury pollution to the local environment and it impacts on human health in mercury mining and gold mining areas are summarized, and the major pathway of mercury exposure to local inhabitants are pointed out. Finally, we summarize the recent progress on the health impacts of people who exposed to different mercury species.

Key words mercury; methylmercury; atmosphere; aquatic system; mining; human exposure

Contents

- 1 Advances of atmospheric mercury
- 1.1 Atmospheric mercury sources

- 1. 2 Distribution of mercury species in atmosphere
- 1. 3 Transportation and transformation of mercury species in atmosphere
- 1. 4 Dry and wet deposition of atmospheric mercury

收稿: 2008 年 10 月

^{*}国家自然科学基金项目(No. 40532014)资助

- 1.5 Summaries and prospect
- 2 Advances of mercury pollutions in aquatic acosystem
- 2.1 Sources, sinkes, and distributions of mercury species in water bodies
- 2.2 Methylation of mercury in water bodies
- 2.3 Bioaccumulation of mercury by aquatic biota
- 2.4 Mass balance models of mercury in aquatic acosystem
- 3 Advances of mercury pollution in mine environment
- 3.1 Studys of mercury pollution in mine environment
- 3.2 Distributions of mercury species in mine environment
- 3.3 Methylation of mercury in mine environment
- 3.4 Mercury exposure and health-based risk assessment of mercury in organism in mine environment
- 4 Study of mercury exposure and health impact on human
- 4.1 Exposure and health impact of inorganic mercury on human
- 4.2 Exposure and health impact of methylmercury on human

汞(Hg)是环境中毒性最强的重金属元素之一。 20世纪50年代日本发生的水俣病事件,使人们充 分认识到汞,尤其是甲基汞(MeHg)对人体和动物的 毒害。20世纪60-80年代,各国学者对人为污染的 水生生态系统汞的循环演化规律进行了深入研究, 并对MeHg 对人体毒害的机理进行了深入探讨,获 得了MeHg 可以通过水生食物链富集放大,在高营 养级生物中高度富集和MeHg 能通过人体血障和脑 障对人的中枢神经系统产生危害的认识。

随着对汞在生态环境系统中危害性认识的不断 深入,从20世纪 @ 年代起,人们开始控制汞的使用 量和排放量。总体来看,在汞污染排放量降低后,多 数严重工业污染区水体中鱼类或其它生物体内 Hg 含量水平明显下降^[1],汞污染问题似乎得到了有效 控制,或者说找到了解决的办法。然而,20世纪 80 年代末和 90 年代,科学家在没有人为和自然汞污染 来源的北欧和北美偏远地区的大片湖泊中发现鱼体 高 MeHg 负荷^[2-3],并证实人为排放的汞通过大气长 距离迁移后的沉降是产生这一汞污染的主要原因。 由此,在西方发达国家兴起了新一轮环境汞污染的 研究热潮。在瑞典哥德堡大学无机化学系 Oliver Lindqvist 教授的倡议下,于 1990 年在瑞典召开了首 届汞全球污染物的国际学术会议,之后,这一国际学 术会议每2-3年定期召开一届,第八届会议已于 2006年8月在美国召开。在最近召开的几届会议 上,与会人数已超过500人,足以证明国际学术界对 环境汞污染研究的重视程度。

由此可见,由于特殊的物理化学性质,汞是通过 大气进行跨国界传输的全球性污染物。近年来,国 际环境学术界围绕大气汞的来源和迁移转化规律、 水生生态系统汞的生物地球化学循环演化规律、汞 污染严重地区汞的生物地球化学和人体汞暴露的危 害等方面开展了大量的研究工作。本文将对上述各 研究领域取得的进展进行系统地总结和概括。

1 大气汞污染研究进展

由于特殊的物理化学性质, 汞是唯一主要以气 相形式存在于大气的重金属元素。作为环境中汞的 重要传输通道,大气在全球汞的生物地球化学循环 中起着极其重要的作用^{3-5]}。大气汞依据物理化学 形态主要分为气态单质汞 (Hg^0, GEM) 、活性气态汞 (包括Hg(OH)₂, HgCl₂, HgBr₂ 等二价汞化合物和极 少量的二价有机汞)和颗粒汞(吸附于大气气溶胶的 汞),而气态单质汞和活性气态汞常通称为气态总 汞。气态总汞约占大气汞的 90% 以上, 而颗粒汞的 比例在10%以下。气态汞又以气态单质汞为主,而 活性汞只占气态总汞的1%-3%。气态单质汞具 有较低的水溶性和干沉降速率,且化学反应惰性大, 其在大气中的滞留时间可达 0.5-2 年^[67],能随大 气环流迁移数千到数万公里。活性气态汞和颗粒汞 具有较高的水溶性和干沉降速率,其大气滞留时间 通常在几小时到几周,一般不参与长距离的大气传 输^[8.9]。当然,与大气中细粒气溶胶结合的颗粒汞 也可以在大气中长距离迁移^[89]。

在过去的 100 年中,约 20 万吨的汞被释放到大 气中,目前仍有3 500t左右的汞存留在大气中。和工 业革命前相比,工业革命后人为活动汞释放强度的 不断增加,已经导致大气汞浓度显著的升高,目前全 球大气汞的含量水平较工业革命前平均增加了 3 倍 左右^[10,1]。20 世纪 80 年代后期,人们在没有人为 污染源的北美和北欧偏远地区湖泊鱼体中陆续发现 了汞含量超标的现象,而大气汞经长距离传输后在 这些地区沉降是造成汞污染的主要原因。至此,这 种全新的汞污染模式引起了全球科学家的普遍关 注,而汞作为一种全球性污染物的概念也正式被

indayist 教授的倡议下,于 1990 年在瑞典召开了首, 提出。 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

1.1 大气汞的来源

大气汞的来源包括自然源和人为源,其中人为 源主要包括化石燃料的燃烧、城市垃圾和医疗垃圾 焚烧、有色金属冶炼、氯碱工业、水泥制造、土法炼金 和炼汞活动等^[12-14]。而自然源则主要包括火山与 地热活动、土壤和水体表面挥发作用、植物的蒸腾作 用、森林火灾等[15-19]。近些年来,人们对全球人为 源的汞排放清单进行了大量的研究,目前普遍认为, 全球人为源每年约向大气排放2100t汞,其中气态单 质汞、活性气态汞和颗粒汞的释放量分别为1480、 480 和 140t^[12]。和人为源不同,自然源以气态单质 汞的释放为主。大气汞的自然来源更为复杂多样, 且受自然气候条件控制较为显著,因此目前对自然 源汞释放的精确估算还存在一定难度,普遍接受的 一个释放量范围是1000-4000吨/年。近年来的一 些研究发现,大气汞沉降后的再释放同样也是大气 汞的一个重要来源。由于大气汞的沉降主要以化学 活性较强的 Hg²⁺ 为主, 在太阳辐射(特别是紫外辐 射)和一些还原性条件的作用下,大量沉降的汞被转 化为 Hg^0 后会被重新释放到大气中^[20-22]。一些模 型的估算指出,大气汞的再释放每年可向大气排放 约2 000t的汞,约占沉降总量的 50 %左右^[23-25]。

近期的全球人为源汞排放清单的计算表明,亚 洲是全球人为向大气排汞最多的地区,每年约向大 气排放了超过1000t汞,约占全球排放总量的50% 以上^[13]。尽管目前对我国人为活动排汞清单的研 究工作还很欠缺,我国已被认为是全球大气汞排放 最多的国家之一。目前学术界初步估算认为,我国 人为源的大气汞排放量在500-700吨/年,我国对 能源的较大需求及较为落后的污染排放控制能力是 造成我国汞释放较多的主要原因^[14,36,27]。燃煤和有 色金属冶炼是我国两个最大的人为汞释放源,年均 释放量约占总释放量的80%。由于目前我国燃煤 消耗量及对锌、铅等有色金属产品的需求仍有增加 的趋势,这意味着我国排汞量还有增加的趋势^[25]。

我国自然源的汞释放也是一个不容忽视的问题,研究指出,全球汞矿化带等土壤汞相对富集区域 的汞释放是非常重要大气汞释放源¹¹⁹,而我国西南 及东南地区则正好分布在环太平洋汞矿化带上。另 一方面,我国大量的人为源汞的排放势必会导致大 气汞沉降的增加,而沉降后汞的再释放也可能是一 个大气汞的重要来源。目前我国关于地表汞释放通 量的研究还比较缺乏,但已有的研究已经表明,我国 的土壤汞释放通量要显著高于国外同类型地区,是 区域性大气汞的一个重要来源[27-31]。

- 1.2 大气中不同形态汞的分布特征
- 1.2.1 全球大气汞的时间和空间分布特征

近代工业革命以来,受全球人为活动直接汞释 放和再释放强度不断增加的影响,目前全球大气汞 的平均含量水平较工业革命前约增加了3倍左 右^[10]。在 1977—1980 年、1990 年和1994 年, 通过对 大西洋大气气态总汞的监测,人们发现1990年之前 气态总汞浓度具有逐年增加的特征, 而 90 年代后略 有下降^[32 33]。Lindberg 等^[7] 综合近些年来全球大气 本底观测台站的观测数据指出,自1977年有大气汞 监测数据以来,北半球大气汞的背景含量到 20 世纪 80年代后期达到最大值,然后逐渐降低,到1996年 达到最小值,目前一段时间内维持在1.5-1.7ng°m⁻³的含量水平上;相对而言,南半球背景区 的大气气态总汞的变化则不是很明显,基本维持在 1.1-1.3ng°m⁻³(图1)。大气汞具有明显的区域性 分布特征,自然源强烈释放区域如火山地热活动、土 壤汞背景较高的汞矿区的大气汞浓度通常可达几百 到上万ng°m^{-3[34-38};另外,工业活动如有色金属冶 炼、火力发电场及人为活动较为密集的地区对大气

的士壤汞释放通量要显著高于国外同类型地区,是 distribution in ambient air^{17]} 21994-2014 Clinia Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 汞造成的污染也比较明显^[39-4]。

目前对大气颗粒汞和活性气态汞的研究也只有 20年的时间^[43-45],由于颗粒汞和活性气态汞的大气 滞留时间非常短(几小时到几星期),其含量受释放 源、环境条件及大气物理化学反应的影响较为强烈, 因此含量通常出现较大波动,目前还没有关于其较 长时间序列方面的研究。偏远地区较少受人为活动 的影响,其活性气态汞和颗粒汞浓度通常在 50pg°m⁻³以下^[46]。然而,人们在南极和北极地区的 春季和夏季发现,大气光化学反应能够导致气态单 质汞向活性气态和颗粒汞快速转化,颗粒汞和活性 气态汞浓度可以达到几百pg°m⁻³,占到大气总汞浓 度的 60%以上^[47]。和偏远地区相比,城市及污染源 附近的颗粒汞和活性气态汞要明显偏高,通常在几 十到数千pg°m⁻³。郑伟^[48] 对贵阳市的活性气态和 颗粒汞监测发现,其年均浓度分别达到 132 和 $1.020 \text{ pg} \circ \text{m}^{-3}$,要明显高于四川省贡嘎山地区的浓度 (RGM: 6. $2 \text{pg} \text{ °m}^{-3}$, TPM: 30. $7 \text{pg} \text{ °m}^{-3}$)^[49].

1.2.2 我国大气汞的分布特征及影响因素

表1给出了我国一些城市及偏远地区的大气汞 分布情况,可以看出,大气汞的区域性差异是十分显 著的,其中城市地区的气态总汞、活性气态汞和颗粒 汞的浓度分别在 5.4—18.4ng°m⁻³、132pg°m⁻³和 22—2 630pg°m⁻³,明显高于偏远地区的含量,分别 为 2.7—7.5ng°m⁻³、6.2—90pg°m⁻³和 30.7— 660pg°m⁻³。我国城市及偏远地区的气态总汞、活性 气态汞和颗粒汞均远高于欧美同类型地区的浓度, 这主要是由于我国较强的人为活动排汞造成的。对 于城镇而言,工业污染源(火电厂、水泥厂、垃圾焚烧 表2 汞在大气中的化学反应

等)和家庭居民活动(如家用燃煤、机动车辆排放等) 的汞释放是造成大气汞浓度偏高的重要原因,而偏 远地区的大气汞主要受区域性汞排放的影响。

表1 国内一些地区大气不同形态汞的分布

Table 1 The distribution of different mercury species in ambient air in China

sites	type	TGM	RGM	TPM
		$\mathrm{ng}^{\circ}\mathrm{m}^{-3}$	$pg^{\circ}m^{-3}$	${\rm pg{}^{\circ}m^{-3}}$
Guiyang ^[39]	urban	8.40	132	1.02×10^{3}
Beijing ^[40]	urban	6.2-167		1.18×10^{3}
Chongqing ^[50]	urban	8.5		
Xinzhu, Taiwan ^[51]	urban	6.3-9.4		
Tainan, Taiwa n ^[51]			2.63×10^{3}	
Changchun ^[52]	urban	18 4	22-1 980	
Guangzhou ^[53]	urban	5.4		
Huaxi, Guiyang ^[48]	rural	6. 2	90	660
Baihua lake, Guizhou ^[54]	rural	7. 5		
		5. 9		
Hongfeng lake, Guizhou ^[30]	rural	2.7		
		7. 7		
Changba Mountain, Ji lin ^[55]	remote	3. 58	65	77
Gongga Mountain, Sichuan ^[49, 56]	remote	3. 98	6. 2	30. 7

1.3 大气不同形态汞的迁移转化行为

大气中汞的形态转化对汞的全球生物地球化学 循环起着极其关键的作用。由于 Hg⁰ 具有极低的水 溶性和干沉降速率,因此其很难通过干湿沉降被清 除;然而,占大气汞很低比例的活性气态汞和颗粒汞 则极易发生沉降。因此,不同形态汞的转化就直接 决定着汞在大气中的居留时间及迁移距离。图 2 给 出了大气汞物理化学转化行为的示意图。汞在大气 中的转化可分为气相和液相两个部分,其中气相中 汞的反应主要是原子态汞向二价汞的转化和二价汞 向颗粒汞的转化。

Table 2 Chemical reactions of mercury in the atmospher
--

reaction	reaction rate constant (K)	ref
gas phase		
$Hg^{0}_{(g)} + O_{3(g)} - HgO_{(g s)} + O_{2(g)}$	$(3.0\pm2)\times10^{-19}\mathrm{cm}^{3}\mathrm{^{\circ}mol}^{-1}\mathrm{s}^{-1}$	57
Hg+OH°	$8 \times 10^{-14} \text{cm}^3 ^{\circ}\text{mol}^{-1} ^{\circ}\text{s}^{-1}$	58
Hg+Br°HgBr	$K_1 = 1. 1 \times 10^{-12} (T/298)^{-2.37} cm^{3} \cdot mol^{-1} \cdot s^{-1}$	59
$HgBr^{\circ} + X \longrightarrow HgBrX (X = Br, OH)$	$K_2 = 2.5 \times 10^{-10} \exp(T/298)^{-0.57} \text{ cm}^{3} \text{ mol}^{-1} \text{ s}^{-1}$	59
$\operatorname{Hg}^{0}_{(g)} + \operatorname{Cl}_{2(g)} \longrightarrow \operatorname{HgCl}_{2(g)}$	$4 \times 10^{-18} \mathrm{cm}^3 \mathrm{~}^{\circ}\mathrm{mol}^{-1} \mathrm{~}^{\circ}\mathrm{s}^{-1}$	60
$Hg^{0}_{(g)} + H_2O_{2(g)} - Hg(OH)_{2(g)}$	8. $5 \times 10^{-19} \text{ cm}^3 ^{\circ}\text{mol}^{-1} ^{\circ}\text{s}^{-1}$	61
a quous phase		
$Hg^0 + O_3 - Hg^{2+} + OH^{\circ} + O_2$	4. 7× 10 ⁷ M ^{−1} ° s ^{−1}	62
$Hg^{0}+2OH^{\circ}-Hg^{2+}+2OH^{-}$	$2 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1}$	63
$Hg^0 + HOCl \longrightarrow Hg^{2+} + Cl^- + OH^-$	$2.9 \times 10^{6} \text{ M}^{-1} \cdot \text{s}^{-1}$	64
$Hg^{0} + OCl^{-} \longrightarrow Hg^{2+} + O^{2-} + Cl^{-}$	$1.9 \times 10^{7} \mathrm{M}^{-1} \mathrm{s}^{-1}$	64
$HgSO_3 \longrightarrow Hg^0 + SO_2 + O_3$	$0.0106 \mathrm{s}^{-1}$	65
$Hg^{II} + HO_2 \circ - Hg^0$	$1.7 \times 10^{4} \mathrm{M}^{-1} \mathrm{s}^{-1}$	66
$Hg(OH)_2 + h\nu - Hg^0$	$3 \times 10^{-7} \mathrm{s}^{-1}$	67

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 大气汞的物理化学转化^[7]

Fig. 2 Physicochemical transformation of mercury in the atmosphere 7

1.3.1 汞在气相的形态转化

表2列出的是气态和液态下汞的一些反应过程 及反应速率。人们对 O_3 对 Hg^0 的氧化作用的认识 较早 $^{[68]}$, 1994年, Hall $^{[57]}$ 重新对 Hg^{0} 和 O_{3} 的反应速 率进行了测定,并以此估算了大气汞的居留时间约 为2年。近年来,通过实验室和模型研究,人们逐渐 发现了一些新的大气 Hg⁰ 氧化模式,发现了新的氧 化剂如OH°、H₂O₂、Cl°、Br°(BrO°)。OH°和 $Br^{\circ}(BrO^{\circ})$ 与 Hg^{0} 的反应是目前发现的速率最快的 两个反应, Sommar 等¹⁵⁸和 Pal 等¹⁶⁹通过实验研究指 出,OH[•]对Hg⁰的氧化作用可能大大降低汞在大气 中的居留时间,大约为4-7个月。另一方面, Goodsite 等^[59]和 Holmes 等^[70]指出, Br[•]对 Hg⁰的氧化 则可能对大气汞的迁移和转化起决定性作用,由此 计算汞在大气中的居留时间为 0.5-1.7年,同时他 们还指出,由于 HgOH 在实际的大气环境下很不稳 定,极易发生分解,因此他们认为OH。对大气汞的清 除作用可能并不重要。目前关于气相中汞的还原机 制还不清楚,但对一些电厂烟气中不同形态汞的野 外测量则显示此类反应的存在,其反应机理有待进 一步的研究工作去解释。

1.3.2 汞在液相中形态转化

液相中 Hg^0 的氧化剂包括 O_3 、OH[•]、HOCl 和 OCl⁻。相对而言, O_3 和OH[•]是日变化较为明显的氧 化物, 白天的光化学反应决定着 O_3 和OH[•]在大气中 的含量, 同时也决定着大气液相中 O_3 和OH[•]的含 量。假设液相中 O_3 和OH[•]的浓度分别为 4×10^{-10} 和 1×10^{-12} M, Hg^0 在液相的半衰期分别为 40s和 $Gmin_{OOA}^{[71]}$ OCl_1 和HOCl 是海洋上空大气中非常重要 的氧化剂,它们主要来自于海盐气溶胶的挥发以及 O₃和海盐离子的光解反应,属于夜间氧化物。研究 指出,OCl⁻和 HOCl 对 Hg⁰ 的氧化反应是大气液相 中 Hg²⁺的重要来源。云雾 pH 值升高和低温环境能 够加速 OCl⁻和 HOCl 对 Hg⁰ 的氧化,反应速率在凌 晨日出前出现极值^[64]。

液相中溶解性 SO₂ 是最早发现的能与 H_g^{2+} 发 生还原反应的还原剂^[73]。大气中 H_gSO_3 的存在是 发生此反应的重要前提, 液相中的 H_gSO_3 极易发生 分解, 处于离子态的 H_g^{2+} 可以很快地被溶解性 SO₂ 还原 生 成 H_g^{0} 。其 他 汞 的 硫 酸 盐 化 合 物 如 $H_g(SO_3)_2^{2-}$ 则较为稳定, 一般不会被还原生成 H_g^{0} 。 HO₂ °是由 Pehkonen 和 Lin^{166} 发现的不随 H_g^{2+} 化合 物形态变化而影响反应速率的还原剂, 该反应首先 生成 H_g^{+} , 由于在液相中很不稳定, 很快会被还原成 H_g^{0} 。因此该反应总的反应速率取决于第一步的反 应速率。

$$\mathrm{HO}_{2} \,^{\diamond}\!\!+ \mathrm{Hg}^{2^{+}} \longrightarrow \mathrm{Hg}^{+}\!\!+ \mathrm{O}_{2} + \mathrm{H}^{+} \tag{1}$$

$$\mathrm{HO}_{2} \stackrel{\circ}{\hookrightarrow} \mathrm{Hg}^{+} \longrightarrow \mathrm{Hg}^{0} + \mathrm{O}_{2} + \mathrm{H}^{+} \qquad (2)$$

和 O_3 及OH[°]类似,大气中的HO₂[°]主要来自于 大气光化学反应,而液相中的HO₂[°]则来自于对气态 HO₂[°]的捕获。液相中氧化态汞的光致还原反应是 目前认识较为统一的 Hg^{0} 的还原途径,基本上液相 中所有的二价汞化合物均能在紫外线(< 300nm)照 射下发生还原反应生成 Hg^{0} 或 Hg^{+} 。Xiao 等^[73]对 液相中 $HgOH_{3}HgS_{2}^{2^{-}}$ 的光致机理进行了研究,发现 这两种汞化合物能够吸收波长在 290nm 以上的紫外 线发生还原反应,但相对而言,HgOH 的反应速率要 比 $HgS_{2}^{2^{-}}$ 的反应速率快得多。

1.3.3 颗粒物对汞的吸附和解吸附

大气中颗粒汞的形成主要是来自于气溶胶对液 相和气相中 Hg^0 和 Hg^{2+} 的吸附作用,颗粒汞的含量 取决于大气汞和气溶胶含量。此外,一些环境条件 也可能影响到气态汞向颗粒态汞的转化,比如环境 温度的降低能导致更多的气态汞向颗粒态转化^[74]。 大气颗粒物的存在能够很大程度上影响大气汞的化 学反应,比如气溶胶对 Hg^{2+} 的吸附能够加速 Hg^{2+} 还 原反应的进行^[73],但目前对此类反应的内在机理还 不是很清楚。

1.4 大气汞的干湿沉降

汞的形态决定着其沉降特征, 气态单质汞由于 具有极低的水溶性, 通常不参与湿沉降^[76 77]。 气态 单 质 汞 的 于 沉 降 速 率 一 般 在 0.010. 19 cm °s^{-1[78.79}, 远低于颗粒汞(0. 1—2. 1 cm °s⁻¹)和 活性气态汞(0. 4—7. 6 cm °s⁻¹)的干沉降速率^[78-80]。 汞的沉降速率除了取决于汞的形态外, 还取决于环 境条件和地表类型, 如森林植被覆盖区域的活性气 态汞的沉降速率要高于草地或裸露地表的沉降速 率^[79-81]; 对于颗粒汞而言, 陆表的沉降速率要高于 水体的沉降速率, 而冬季的沉降速率高于夏季, 风速 和大气相对湿度的增加对颗粒汞的沉降起促进作 用^[82.83]。

尽管颗粒汞和活性气态汞在大气中占很低的比 例,但它们却是大气汞沉降的最主要来源(> 80%)^[∞.77]。近代工业革命以来,由于大气汞浓度的 不断升高,当前的大气汞沉降通量水平较工业革命 前约增长了 1-3 倍^[10]。近年来,欧洲和北美一些 地区采取了严格限制大气汞排放的措施,而这些地 区大气汞的湿沉降通量出现了明显的下降^[84 85],目 前欧洲和北美偏远地区的大气汞湿沉降通量为每年 3-15^µg °m^{-2[31]}。我国是汞排放大国,然而,目前国 内关于大气汞沉降方面的研究却较少,但已有的研 究发现,我国大气汞的湿沉降通量远高于国外地 区^[31.86-88],这可能是由我国大量汞释放造成的。

森林生态系统能够很大程度上增加大气汞的湿 沉降通量,这是因为植被叶片所吸附的大量颗粒汞 和活性气态汞会随降雨被冲刷进入地表生态系统。 如付学吾等^[31]对贡嘎山地区针叶林和杜鹃林大气 汞湿沉降的研究就发现,森林地区大气汞的湿沉降 通量约是空旷地区湿沉降通量的 2-3 倍。

目前关于大气汞干沉降通量直接测定的研究较 少, Sakata 和 Maromoto^[39] 采用大气干湿沉降自动采 集仪对日本 10 个采样点的干沉降通量进行了研究, 结果发现日本的平均干沉降通量为每年8.0 $^{\mu}$ g m⁻², 略低于湿沉降通量(每年12.8 $^{\mu}$ g °m⁻²)。Zhang 等^[90] 利用动态通量袋方法测量了大气汞向植物叶片干沉 降通量,湿地植被覆盖地区大气汞的干沉降通量约 为每年8.9 4 g °m⁻²。尽管 Hg⁰ 在大气汞中占很高的 比例(>90%),但由于具有较低的干沉降速率,一些 模型研究认为其对大气汞干沉降通量的贡献较 小^[76]。然而,对于一些植被覆盖区域而言,Hg⁰ 沉降 的所占比例可能会有所升高,甚至可以占到总沉降 通量的 90%以上^[90],这主要是因为植物叶片能直接 吸收大气中Hg⁰。

1.5 总结与展望

近些年来,随着人们对汞污染危害认识的不断 深入,关于大气汞方面的研究也取得了长足的进步, 主要集中在全球范围内不同区域背景的观测、人为 源和自然源排汞清单的建立、汞在大气中化学动力 学等几个方面。尽管已有的研究工作显示全球大气 汞浓度的升高现象已经得到控制,且只在极少数地 区发现大气汞超标以致直接威胁到人类健康的现 象,但是大气汞及其带来的其他生态系统的污染问 题依然存在,特别是大气汞沉降所造成的偏远地区 汞负荷及汞甲基化风险的升高,已经引起了全球各 方学者的关注。另外,全球大气汞排放的区域性差 异十分明显,整体上看,发达国家的排放量已经得到 控制,然而,对于大多数的发展国家而言,大气汞排 放量升高的压力十分严峻。更为遗憾的是,正是对 这些发展中国家的大气汞及相关方面的研究十分缺 乏,严重影响着全球汞生物地球化学研究工作的 开展。

就目前来看,关于大气汞需要加强研究的方向 有:(1)发展中国家人为源排放清单的建立。我国被 认为是全球人为向大气排汞最多的国家,然而,对我 国人为源释汞清单的研究还比较缺乏。就目前来 看,发现新的较大释放源不大可能,但我国一些工业 污染源采用的污染控制措施差别很大,因此其释放 因子也会有较大差异,这是制约我国人为源汞排放 研究的一个关键环节。(2)增强自然源如植物、土壤 及人为源再释放方面的研究。相对于人为源,自然 源的汞释放影响因素更加复杂,可变性较大,目前需 深入自然源汞释放机理、控制因素及模型化方面的 研究。另外,采用多种研究手段解决目前较为薄弱 的汞的再释放问题。(3)加大大气汞化学行为方面 的研究,此前的关于大气汞化学动力学方面的研究 多集中于实验室和模型研究,目前对现实环境中的 应用还缺乏可靠性。(4)丰富大气中不同形态汞及 干湿沉降通量方面的研究工作,建立更多的野外观 测站点,研究大气中不同形态汞的分布特征及影响 因素,同时,对大气汞的干湿沉降通量进行长期科学 的观测,为全球汞的生物地球化学研究提供可靠的 基础数据并对模型研究不断加以修正。

2 水生生态系统中汞污染研究进展

2.1 水体中各种汞形态的源、汇及分布特征

汞在天然水生生态系统中以多种形态存在,如 Hg^{0} 、 Hg^{2+} 、Hg(OH)_n、 $HgCl_n$ 、HgO、HgS、 CH_3Hg^{+} 、 CH₃Hg(OH)、CH₃HgCl、CH₃Hg(SR)及(CH₃Hg)₂S等。 为了便于研究,人们通常根据实验操作程序结合汞 在水生环境中存在的化学形态把汞定义为总汞、溶 解态及颗粒态总汞、溶解气态汞、活性汞、总甲基汞、 二甲基汞,溶解态及颗粒态甲基汞、胶体态甲基汞等 形态。

总汞指特定环境中各种汞形态的总含量。目前 天然水体中总汞最常用的测定方法为金汞齐富集结 合冷原子荧光法测定[91 92]。由于近 20 年来,水生 生态系统中汞的循环受到全球日益关注, 各种水生 系统包括污染的、未被污染的水体中总汞的含量都 得到广泛的调查研究^[93-97]。一般天然水体中汞浓 度低于5ng°L^{-1[93, 94]}。汞在溶解相和颗粒相之间的 分配关系通常用分配系数 K_{d} (K_{d} = 颗粒相汞 浓度 $(ng \cdot kg^{-1})$ 溶解相汞浓度 $(ng \cdot L^{-1})$)来表示。很多研 究表明,在所有的重金属中,汞是具有最高 K_d 的金 属之一^[98],即水体中很大部分汞以颗粒态存 在^[99-10]。特别是富含有机质的颗粒,对汞有更大的 吸附性[104.105]。沉积物中的总汞含量主要与其母岩 汞含量及其污染情况有关。在未受污染的沉积物 中, 总汞含量约为 0.002-0.3mg °kg^{-1[106-108]}, 其在 垂直剖面上通常有在表层富集的分布趋势¹⁰⁷⁻¹⁰⁹。 而在受到严重污染的沉积物中,总汞在垂直剖面上 的分布特征常常反映了汞污染历史[110]。

水体中溶解气态汞的主要形态为 $H_g^{0[111-13]}$,另 外还有少量的二甲基汞。溶解气态汞的浓度通常低 于0. $2ng^{\circ}L^{-1[97,114-117]}$ 。对水体中 Hg^{0} 的源、汇及其 定量研究可帮助理解汞在水体和大气间的交换和循 环,并对怎样减少汞在湖泊中的浓度及其生物链上 的富集有着重要的意义。在一些大湖和渗漏湖的研 究表明从水体中挥发到大气中的汞已经达到该水生 生态系统中汞输入总量的 $50\%^{(118-19]}$ 。 Hg^{2+} 的光化 学还原反应是湖泊 Hg^{0} 的主要来源机制^[20,12],另 外 Hg^{2+} 的生物和非生物的化学还原和一价汞的歧 化反应也是湖泊 Hg^{0} 产生的重要机理。很多研究发 现在天然水体表层水中 Hg^{0} 浓度变化和太阳辐射强 度变化具有很好的一致性^[12,116-54]。水体中溶解态 汞随着水体深度的增加而迅速降低的剖面分布趋势 也反映了光在 Hg^{0} 形成中扮演的重要角色^[123,124]。

在很多文献中活性汞是根据实验操作程序而定 义的: 即能直接被 SnCl₂ 还原的二 价汞。这些汞通 常以游离的二价汞离子存在, 具有很高的活性, 能与 很多无机和有机配位体反应, 能被还原生成 Hg^0 , 也 能通过各种途径被甲基化而形成毒性很高的甲基汞 或二甲基汞, 具有很高的生物可利用性。此外, Hg^{2+} 还能和很多有机和无机配位体如 OH^- 、 CI^- 、 S^{2-} 发 生各种.络合和螯合反应。随着环境条件的改变, Hg²⁺不断进行着这些平衡反应以达到各种汞形态在 水中的平衡。故水体中活性汞浓度通常受到 pH、盐 度、二价汞的还原以及甲基化过程所控制。比如,很 多研究发现表层水中活性汞通常低于次表层活性 汞,就和表层水体阳光充足,活性汞强烈的光致还原 反应有关^[112,125,126]。

天然水体有机汞主要为甲基汞和二甲基汞两种 形态,它们都是由二价无机汞通过各种甲基化途径 而形成的。现在最常用的水体甲基汞的测定方法为 蒸馏、乙基化反应结合恒温气相色谱分离、冷原子荧 光来检测[127-129]。甲基汞在天然水体中普遍存在, 而且性质稳定,不易挥发和分解,相反二甲基汞易挥 发,故一般淡水体中很难检测到,只有在深层海水 中,二甲基汞才是主要的有机汞形态[130,131]。在天 然水体的表层水中,甲基汞浓度一般在 0.02- $0.3 \operatorname{ng}^{\circ} \operatorname{L}^{-1}$ 之间, 但在很多分层水体的缺氧层中, 甲 基汞浓度却可高达1ng°L⁻¹以上^{109,127,133}。在未受 到 污 染 的 沉 积 物 中,甲 基 汞 浓 度 一 般 小 于 5ng °g⁻¹(dw)^[106, 13, 134],但在受到污染的沉积物中, 甲基汞浓度却能达到30ng °g -1[13]。沉积物中甲基 汞占总汞的比例一般小于2.5[%]^{106,136,137},但在沉积 物孔隙水中,甲基汞在总汞的比例却可达到百分之 几十[138-140]。

水体中各种汞形态的输入源包括河流及地表径 流输入、地下水的输入、沉积物汞的再悬浮和向水体 的扩散、大气汞干湿沉降以及汞形态的相互转化,而 汇主要包括河流的输出、颗粒态汞的沉降、气态汞的 挥发、生物的吸收以及向其他形态汞的转化。很多 研究表明,在湖泊、水库以及海湾系统中,水体汞源 主要来自河流输入^[98.141-144]或大气汞沉 降^[142,144,145]。但在一些沉积物遭受严重污染的水体 中,沉积物的重新悬浮和释放却成为水体汞重要的 输入源^[93,146]。水体汞最主要的汇是颗粒态汞的沉 降,绝大部分的汞都滞留在沉积物中^[%,14]-14]。在 分层水体中, MeHg 源主要来自水体汞自身的甲基 化[147, 148] 或沉积物 MeHg 的释放[149, 150]。在湖泊或海 湾系统中 MeHg 的汇通常是 MeHg 的去甲基化过程 以及向沉积物的沉降^[133,149,15]。而在水库系统中, 由于水库多为底层泄水,库底缺氧层的高 MeHg 随 水流出,使得河流 MeHg 输出成为水库 MeHg 一个重 要的汇^[110,132,153]。

可见,人们对水体各种汞形态的源、汇及分布特征的研究已经取得了很多成果,但要真正了解汞在水生态系统中的迁移转化机制,还需要做大量更深

入的研究工作。比如在汞的固、液分配问题上,多数 研究都停留在颗粒态和溶解态的分配上,而关于各 种汞形态在胶体物质中的分布研究却很少。水中或 沉积物中各种汞形态,尤其是 MeHg 和各种无机及 有机配位体之间的研究也有待进一步深入,这对了 解各种汞形态,尤其是甲基汞的迁移转化非常重要。 此外,对很多汞形态的分布机制也需要更多的研究 工作,比如对于沉积物汞为什么在表层富集还一直 存在着争论。

2.2 水体中汞的甲基化

水生生态系统中汞的甲基化无疑是水体汞循环 研究中最重要的研究内容。目前, 汞的同位素及其 示踪方法常被运用到自然环境甲基化过程的研究 中[153,154]。 汞的甲基化主要是一个微生物参与的过 程[55],在这个过程中甲基钴胺素是主要的环境甲基 供给者,但有时非生物的甲基化过程也能被观察到, 尤其是富含腐殖质的环境中^{156,157}。甲基化主要是 在厌氧条件下进行,相反在好氧环境中更有利于去 甲基化的进行,但在海洋生态系统中,甲基化过程在 表层好氧区域也能观察到[138,159]。大量的研究表明 硫酸盐还原细菌是主要的汞甲基化细菌^{60,61}。沉 积物中最大的甲基化率通常位于氧化还原界面下 面,在这里,也是硫酸盐还原的主要区域^{137,162}。在 一些分层湖泊的下层缺氧带中,也存在着相似的氧 化还原界面,在这个界面下,也可观察到硫酸盐还原 细菌甲基化汞的现象[163-165]。最新的研究表明,除 了硫酸盐还原细菌,铁还原细菌也可进行汞的甲基 化[166.167]。汞的甲基化除了受到微生物条件以及氧 化还原条件两个关键因子的影响外,还受到如温度、 pH、可利用的活性汞浓度、S 循环、有机质等其他众 多环境因子的影响。

适当的高温有利于甲基化的产生, 而低温有利 于去甲基化的进行^[168,169]。例如不管是在水中还是 沉积物中, 很多研究都观察到较低的 MeHg 浓度或 甲基化率都出现在冬季^[97,162,170]。水温对 MeHg 形 成的影响主要是通过影响水中微生物的活性, 从而 影响汞的生物甲基化产率^[151,171]。Komik 等^[151]的研 究表明, 一般当淡水体的水温达到 32 ℃时, 甲基汞 的产量最高; 当温度低于 10 ℃或高于 90 ℃时, 甲基 化率明显降低甚至完全停止。

水体 pH 值对 MeHg 的形成也有很重要的影响, 有研究认为在湖水中更低的 pH 可以提高汞的甲基 化速率。而 Lee 和 Hultberg¹⁷³的研究结果却表明: pH 的变化并不真接影响无机汞的甲基化率,而是增 大了环境中 MeHg 或其他形态汞的溶解度,而使流 域内的汞向水环境的输入量增加,使得水体中 MeHg 浓度升高。

硫的地球化学循环也是一个影响汞甲基化速率 的重要因素之一。硫酸盐还原细菌是主要的甲基化 细菌,因此硫酸盐浓度在甲基化过程中也起到重要 的作用。在高度缺氧的环境中,由于硫化汞的形成, 减少了可利用的活性二价汞,从而降低了汞的甲基 化速率。这也是沉积物中 MeHg 占总汞比例通常小 于 1%的原因^[179]。但 Furutani 和 Rudd^[159]的研究发 现在沉积物中即使硫化物的浓度达到了30^µg[°]g⁻¹的 情况下,Hg²⁺的甲基化仍然可以顺利进行。另外,也 有野外研究发现沉积物中 MeHg 浓度随着硫化物浓 度的增加而增加^[170]。

有机物在汞的甲基化过程中所起的作用至今还 不是很清楚。很多研究发现,水体、沉积物和生物体 中的甲基汞含量随着有机物含量的升高而增 加^[109 178 179]。在很多新建的水库里,常观察到异常 升高的鱼体甲基汞含量,一些研究认为水库淹没的 土壤和植被释放出大量的有机质是导致这种现象的 原因之一[180,181]。通常认为有机质对甲基化的影响 是由于丰富的营养物质可使微生物活动增强,从而 提高了甲基化率:还有研究发现腐殖酸和胡敏酸可 直接参与非生物甲基化过程[159]。另一方面,也有研 究^[182 18]表明,由于有机物可以和二价汞结合,降低 了生物可利用的汞浓度,从而降低了汞的甲基化率。 特别是在中性 pH 环境中, 高溶解有机碳浓度在很 大程度上可抑制甲基化的进行,而由于低 pH 不利 于汞和有机质之间螯合作用的发生,故这种抑制作 用并不明显。

虽然在过去 20 年里, 对汞的甲基化过程进行了 大量的研究, 也得到了很多丰硕的成果, 但由于甲基 化是一个受诸多因素影响的复杂过程, 到目前为止, 很多甲基化的具体机制还是不清楚, 也不能准确的 预测环境中的甲基化速率。比如诸多影响甲基化的 环境因子间的相互作用, 一个环境因子对甲基化的 影响在不同的环境中表现可能并不一样。由于大量 研究都是基于野外调查研究, 而每个水生生态系统 都具有自己独特的环境因子组合, 很难对这些研究 所得的数据进行比较, 有时两个不同的研究甚至得 到相反的结论, 故需要开展更为细致和系统的研究 工作以了解甲基化的具体机制。另外, 关于铁还原 细菌对甲基化的贡献及其具体机制的研究还很少,

H.的变化并不直接影响无机汞的甲基化率,而是增。需要更多的研究支持这一新的结论。

2.3 水生生物对汞的富集

汞特别是 MeHg 在水生生物体中有很强的富集 放大效应,其富集因子能达到 10⁴-10^{7[184]},所以即 使在 MeHg 含量很低的水环境中, 也可能在生物体 中观察到高浓度的 MeHg, 而且水生生物体 MeHg 在 总汞中所占的比例可达到 85% — 90% [185, 189]。在受 到汞污染的水生环境中,生物体中的高浓度汞通常 要在汞污染源停止或受污染物的沉积物被移除了很 多年后才能恢复到原来的水平[187, 188]。鱼类对 MeHg 的吸收主要是通过食物摄取,从水中直接吸收 的汞是很少的[180,189]。因此同一湖泊中鱼汞含量的 变化与其摄食习惯和生理特征有很大关系。通常鱼 在水生食物链中营养级别越高,其鱼体内汞含量也 **越高,即草食性<杂食性<肉食性鱼类^[105,190]。鱼** 体中汞的含量除了与食物摄取习惯有关,还受到其 他很多因素的控制,如鱼的年龄、尺寸、水体中的 pH、有机物含量、水体汞浓度等^[19]-19]。鱼体高汞含 量通常在低 pH 或低生长速率的湖泊中出现^[194,195]。 一些研究还表明,鱼体汞含量和沉积物汞含量高度 相关^[196,197]。鱼汞含量和水中DOC含量也有很大关 系, McMurtry 等^[198] 观察到, 当 DOC 浓度在4mg°L⁻¹ 以下时, 鱼汞含量和 DOC 含量成正相关关系。关于 水中的浮游植物和浮游动物汞的富集也有很多报 道。Gorski 等¹¹⁹⁹ 的研究发现,在 DOC 浓度大于 $5 mg^{\circ}L^{-1}$ 时,月牙藻对 MeHg 和二价汞的富集因子会 大幅度降低。和鱼体 MeHg 一样, 其他浮游动物的 MeHg 浓度也和体型大小成正比^[200, 201]。Gothberg 和 Greger^[202]在对水生植物空心菜的研究中发现,空心 菜不但能富集 MeHg, 还能将无机汞转化为 MeHg。

2.4 水生生态系统中汞的质量平衡模型

环境中多介质的质量平衡模型是一种定量研究 环境中各种污染物源、汇、迁移及转化的一种必要工 具。随着模型研究的发展,模型的功能也越来越强 大,不但能定量解释环境污染物的各种环境行为,而 且还能预测污染物在环境中的含量以及残留时间。

至20世纪90年代初,随着人们对水生生态系统中汞的生物地球化学循环的日益关注,湖泊、水库等水生生态系统中汞的质量平衡模型也开始迅速的发展起来。在1991年,Harris¹³³发展了基于淡水湖泊的汞模型 MERIDIAN,这个汞的模型包括 Hg²⁺、 MeHg 以及 HgS 在湖泊中的循环,考虑了大气、水、悬浮颗粒物、水生生物以及沉积物等环境介质,详细地描述了两种不同的鱼种类对水体中不同汞形态的吸收模式,并用一系列的方程式和大量的常数描述了

水体中各种汞形态的转换机制。MERC4 是应用的 比较多的模型,这个模型是在美国环保局建立的 WASP4 的基础上发展的,它能够模拟河流、湖泊、河 口等水生系统中汞形态的物理和生物地球化学循 环,以及某些汞形态之间的转换。Henry 等^[204] 以 MERC4 模型为基础建立了 OLMM (Onondaga Lake Mercury Model)模型。由于 Onondaga 湖是一个富营 养化湖泊,故 OLMM 模型还用 FBM2 (the Fish Bioenergetics Model2)和一个湖泊富营养化模型进行 了补充和校正。在 1995 年, Hudson 等^[173] 也建立了 一个相对复杂的汞循环模型(MCM),这个模型包括 了各种汞形态的转化、甲基化机制、水气界面交换以 及生物吸收等,同时也考虑了汞在悬浮物和水之间 的分配,但对沉降过程却缺乏考虑。相对高度复杂 的 MCM 模型, Diamond 等^[205-207] 在 QWASI (Quantitative Water Air Sediment Interaction)逸度/当量 模型的基础上建立了一个简单但同样能预测水生生 态系统中各种汞形态的迁移转化及归趋的模型,并 应用到湖泊和水库中汞的生物地球化学循环研究 中。Bhavhar 等^[208] 通过在逸度 /当量模型中耦合进 形态 络合模型,发展了 TRANSPEC 模型,更详尽地 模拟了水生态系统中各种汞形态的转化、络合及归 趋问题。这个模型的缺点在于假设水体中汞形态以 及络合都处于平衡状态,而这对于生物参与的汞形 态转化并不合理,比如汞的甲基化过程。为弥补此 不足, Gandhi 等^[209] 在 TRANSPEC 的基础上发展了 BIOTRANSPEC 模型,这个模型考虑了汞的生物甲基 化及去甲基化过程,以及汞的生物吸收。

用于湖泊或河流的模型一般是零维或一维模型, 而由于海滨水生生态系统相对淡水系统更为复杂,零 维和一维模型不能模拟和预测汞的地球化学循环过 程。Šrca等^[210, 211]在研究 Trieste 海湾时,发展了基于 MERIDIAN 的二维模型 STATRM。这个模型同时整合 了二维水动力学模型(PCFLOW2D-HD)和沉积物传输 模型(MIKE 21 MT)的模拟结果。另外针对海滨系统 的模型 还有 Abreu 等^[212]发展的 ECoS 模型以及 Rajar^[215, 214]发展的 PCFLOW3D 三维模型等。

3 矿山环境汞污染研究进展

工业化生产以来,大量的矿山活动向环境释放 了大量汞,造成了严重汞污染。目前,全球范围内的 混汞采金和汞冶炼(大规模矿山活动均已停止),是 产生环境汞污染的两类最重要的人类矿山活动,它 们生产过程中的大量"三废"——废渣、废水、废气, 会导致大量的金属汞、可溶态汞和气态汞进入环 境^[32]。据不完全统计,近400年以来全球仅混汞采 金活动,便向环境释放了约26000t汞^[21]。不同于其 他重金属元素,汞进入环境后在特定条件下会转化 为毒性更大、生物有效性更强的甲基汞(MeHg),并 通过各种途径进入食物链而构成对人类健康的危 害。因此,金属矿山活动引发的汞污染问题,越来越 受到人们的关注。

3.1 矿山环境汞的污染现状

全球范围内,混汞采金和汞矿山活动区域的大 气、水体和土壤等,均显示出高汞含量的特征 (表3)。

表 3 世界部分矿区环境中不同介质汞污染现状调查

Table 3 Mercury and methylmercury in soil, water, sediment, air, and calcine collected from mining areas worldwide

	mining area	soil		water		
		$THg/mg^{\circ}kg^{-1}$	$\mathrm{MeHg}^{\mu}\mathrm{g}^{\circ}\mathrm{kg}^{-1}$	$_{\rm THg}\mu_{ m g^\circ L^-}$	1	$MeHg/ng^{\circ}L^{-1}$
gold	Amazon	0. 29-3 84 ^[241]		0 0021-11	8. 2 ^[242, 243]	0. 026-0. 59 ^[242]
mining	Surinam ^[250]			0 011-0.9	3	0.05-3.8
area	Rwamagaza, Tanzania ^[251]	0. 005-9. 2		0 01-6.78	:	
	Phichit, Tailand ^[228, 229]	0.21-20960		0 43-4.27	,	
	Tongguan, China ^[239, 252, 353]	0.9-76	0.1-16	0 24-880		1.1-250
mercury	Almadén, Spain	6-8 889[253]		0 0076-20	3[254, 255]	0. 41-30 ^[254, 255]
mining	Idrijca, Slovenia	0.39-2759 ^[258]	1. 3-80[258]	0 0028-0.	322[259, 260]	0.01-0.6 ^[259, 260]
area	Alaska USA ^[263, 264]	0.05-5326	0.04-41	0 0001-2.	5	0.01-22
	Neva da, USA ^[235, 265, 266]			0 0021-2.	1	0. 039-0. 92
	Palawan, the Philippines ^[234, 267, 268]	0. 012-168. 7		0 12-31		< 0.02-3.1
	Guizhou, China ^[37, 218, 223, 233, 236–238, 240, 269, 354–356]	0.33-790	0.13-23	0 02-10.5	8	0.01-5.7
	mining area	sediment		air	tailing	
		$THg/mg^{\circ}kg^{-1}$	$M eHg \mu g kg^{-1}$	$\rm TGM\mu_{g{}^\circ}m^{-3}$	$THg/mg^{\circ}kg^{-1}$	$MeHg/\mu_g \circ kg^{-1}$
gold	Amazon	0.05-	0.19—	0 0013—	0.19—	
mining		9. 3 ^[241, 244, 245]	3. 76 ^[243, 246]	59 600 ^[247, 248]	1 555 ^{[241, 244, 2}	49]
area	Surinam ^[250]	0.11-0.15	< 0.02–1.4		0.0055-02	< 0. 02-0. 83
	Rwamagaza, Tanzania ^[251]	0.04-2.84			0. 2-193	
	Phichit, Tailand ^[228, 229]	96—402		5 0-76 260		
	Tongguan, China ^[239, 252, 353]	0.90-1200	0.10-30	0 007-33	30.3-2922	
mercury	Almadén, Spain	0.5-16 000 ^[256]		$0\ 002 - 9\ 48^{[256]}$	160-34 000[2:	$^{57]}$ < 0. 2 $-3~100^{[257]}$
mining area	Idrijca, Slovenia	0. 77— 727 ^[260, 261]	0. 09— 4. 86 ^[260]	0 01— 5 0 ^[217, 258]	0.58-1.055[20	ଅ
	Alaska, USA ^[263, 264]	1 000-5 500	< 5. 0-31			
	Nevada, USA ^[235, 265, 266]	0.008-170		0 063-0 54	14-14 000	< 0.05-96
	Palawan, the Philippines ^[234, 267, 268]	3.7-1 533	0.28-21	0 0009-0.065	3.68-660	0.13-3.2
	Guizhou, China ^[37, 218, 223, 233, 236–238, 240, 269, 354–356]	90—930	3.0-20	0 018-12.2	5.7-4400	0.17—3.9

3.1.1 矿山大气汞污染

3 000 $ng^{\circ}m^{-3[217, 218]}$ 。废弃冶炼场所附近高浓度大气 汞,主要是由于矿石的高温灼烧会导致部分 Hg^{0} 进 入冶炼炉壁或透入周围物质的晶格内,该部分汞当 温度降低时会缓慢地释放出来^[219, 20]。

矿区汞污染土壤的去气作用, 是大气汞的另一 个重要来源^[221-223]。调查表明, 我国滥木厂汞矿区 20世纪90年代停止生产活动至今10年后, 汞矿区 表层土壤向大气的汞释放通量仍高达 10 500ng°m⁻²°h⁻¹, 导致近地表大气汞含量高达 8.4—440ng°m^{-3[223]}。表层土壤汞的释放来源于土 壤中活性 Hg^{2+} 的光致还原作用和 Hg^{0} 的再释放。 野外监测结果亦表明, 随着光照强度增强, 土壤中汞 的释放作用加强, 近地表大气汞浓度升高; 汞矿区土 壤向大气的汞释放通量与土壤汞含量和光照强度具 有明显正相关性^[37, 218, 23]。

混汞采金过程中最主要的大气汞源是金汞齐的 灼烧过程,它会直接导致大量 Hg^0 的排放。监测数 据显示,炼金作坊里的大气汞含量可高达 100-6 460 μ_{g} °m^{-3[224-226]}。Drake 等^[227]监测到委内瑞拉 EI Callao 金矿区的大气汞平均含量达183 μ_{g} °m⁻³,变 化范围0.1-6 315 μ_{g} °m⁻³。泰国 Phichit 混汞采金区 的个例显示,当一天 7-8h 的炼金活动使用 60-150g 汞时,会导致 30-40g 的汞释放至大气,致附近 大气汞的干沉降量高达5.3-5.8 μ_{g} °m⁻²°h^{-1[23, 22]}。此外,混汞采金区汞污染土 壤也会向大气排放 Hg^0 ,部分区域表层土壤的释汞 通量可达420.1 μ_{g} °m⁻²°h^{-1[20, 23]}。

3.1.2 矿山水体汞污染

矿山废水是矿区汞元素迁移扩散的重要载体, 有大量汞随其流入地表河流而导致矿区水生系统汞 污染。汞矿区受炉渣等影响的废水中含有大量的 汞,美国加利福尼亚 Coast Range 汞矿区,废水中的 总汞(THg)含量达450 μ g°L^{-1[23]},我国贵州汞矿区的 地表河流受炉渣废水的影响,其 THg 含量也高达 10μ g°L^{-1[23]}。这些受炉渣淋滤水影响的地表水,通 常还含很高可溶态汞(HgD),菲律宾 Palawan Quicksilver 汞矿区的炉渣淋滤水中 HgD 含量高达 30μ g°L^{-1[234]}。部分调查数据显示,矿区水体中 HgD 含量随 THg 含量的增加而升高,两者之间呈现出弱 的正相性(图 3)。

图3 世界部分矿区地表水 THg 与 HgD 之间的关 系^[228 23]-20]

Fig. 3 The correlation between THg and HgD in waters from mining areas worldwide $^{\left[228,\ 233-240\right]}$

高含量汞的矿山废水不断汇入矿区地表河流, 1%)的水溶性很强的其他汞化合物,如:HgCl2、HgO、 造成了汞污染物向矿区周围环境及下游地区的迁 Hg3O2SO4和Hg2OCl等。而该地区炉渣渗滤实验则 移,使汞污染范围扩大。调查表明,斯洛文尼亚blish显示,渗滤液中.95%的汞形态为胶体结合态,其中

Idrija 汞矿自 1994 年闭坑至 1997 年 3 年间便有 1.5t 金属汞随着矿山废水迁移至下游 100km 的爱琴 海^[270],该部分汞在新的环境中,会成为"二次"汞污 染源。

亚马逊流域混汞采金区,通常未受汞污染的自 然水体汞浓度仅为 $0.003-0.005\mu$ g°L⁻¹,而采金区 水体汞浓度比源头要高出40-60倍,且具有枯水期 的含量高于丰水期含量的特征^[271-273]。我国潼关混 汞采金区水体总汞高达880 μ g°L^{-1[239]},其中颗粒态 汞占总汞比率>90%。

3.1.3 矿区土壤汞污染

受矿山活动影响,矿区土壤汞污染具有含量高、 变化范围广及表层污染重等特点。西班牙 A lmadén 汞矿区污染土壤总汞含量达8 889mg°kg^{-1[23]},美国 A laska 和斯洛文尼亚 Idrija 汞矿区土壤汞含量亦非 常高,分别为5 326mg°kg⁻¹和2 759mg°kg^{-1[258 264]}。 矿区这些严重汞污染的土壤通常受炉渣影响,而且 其中汞的主要存在形态是 HgS。

混汞采金区土壤同样表现出高含量汞的现象。 南美亚马逊流域采金区土壤汞污染调查表明,汞含 量范围 0.29-5.53mg°kg⁻¹,约80%以上样品超过背 景值 0.5-0.6mg°kg^{-1[241,244]},该区域内尾矿汞含量 0.2-193mg°kg^{-1[251]},可能是造成土壤汞含量的一 个重要因素。泰国 Phichit 采金区表层土壤汞含量 高达10564-20960mg°kg^{-1[28,29]}。混汞采金区土 壤剖面分析发现,汞污染土壤主要集中在表层 0-20cm 内,到30cm 以下土壤汞含量趋于背景值,且伴 有土壤有机含量递减的现象^[274],暗示表层土壤汞与 有机质结合。

3.2 矿山环境汞的形态分布

矿山环境中汞的迁移、转化及生物有效性,与汞 的存在形态有关。目前部分学者针对矿山环境中的 炉渣和污染土壤等对象,进行了大量的关于 X 射线 (XRD、XRF)、溶剂萃取及热解析(TDC)等测试技术 方面的汞形态分析工作。

3.2.1 炉渣汞形态

矿区冶炼渣是汞的一个重要释放源,其汞的释 放与形态有关。Kim 等^[275,276]运用 EXAFS (extended X-ray absorption fine structure)分析法,对美国加利福 尼亚和内华达汞矿区炉渣中汞形态进行了分析,发 现主要含汞矿物为辰砂和黑辰砂,其次为极少量(<1%)的水溶性很强的其他汞化合物,如:HgCl2、HgO、 Hg₃O₂SO₄和Hg₂OCl等。而该地区炉渣渗滤实验则 显示,渗滤液中.95%的汞形态为胶体结合态,其中 胶体矿物包括了赤铁矿、黄钾铁矾/明矾石和 Al-Si 质凝胶等,它们附着的颗粒物尺寸介于 10—200nm 间^[277]。西班牙 Almadén 汞矿区炉渣的 #-XRF 分析 表明,富汞颗粒物的汞含量与 Pb-Ni(S)呈正相关关 系,同时还发现 Hg 与 Fe-Mn 之间亦存在正相关 性^[278],显示了汞和其他元素间的地球化学关联性。 Hojdová 等^[279] 对捷克斯洛伐克 Jedová Hora 和 Svatá 汞矿区尾矿 XRD 分析表明,尾矿组份包括铁氧化物 (针铁矿、赤铁矿),粘土矿物(高岭石、伊利石)和石 英,汞则吸附于此类矿物表面。

TDC 分析显示, 炉渣加热过程会出现 5 个释汞 峰, 温度依次为< 100 °C、150 - 250 °C、250 - 350 °C、 420 - 550 °C和> 650 °C, 对应的汞形态分别为 H_g^0 、基 质结合态、 H_g S、 H_g SO₄ H_g O、矿物晶格汞^[219]。 多数 炉渣出现两个释汞峰, 对应温度 250 - 350 °C和 420 - 550 °C, 暗示炉渣汞的主要存在形态为汞的硫 化物和氧化物。通常吸附于粘土矿物和铁氧化物的 汞占 12% - 14%, H_g S 态汞占 80% - 90%, 其他汞形 态所占总汞量很低 < 1%^[279]。上述不同汞形态中, H_g SO₄ 和 H_g O 的水溶性很强, 该部分汞最易释放到 环境中。

3.2.2 土壤汞形态

土壤中的汞形态及其生物有效性,无疑会对其 生长的农作物产生重要影响。Kocman 等^[20] 对斯洛 文尼亚 Idnia 汞矿区土壤连续提取实验表明, Has 是 汞的主要存在形态,占总含量的60%-80%,其次 是Hg⁰。HgS 的含量与土壤中的粗颗粒组份含量具 明显正相关关系,当其含量降低时,挥发性的单质汞 含量比率升高,且与水溶态汞、酸溶态汞、有机结合 态汞的含量呈明显正相关性 $(R^2 = 0.71 - 0.95)$ 。上 述土壤汞形态分布类似于 Gosar 等^[32] 和 Biester 等^[30] 对该地区土壤的热解析结果,HgS 的含量占总 汞 89%,与土壤基质结合的汞形态占 11%,对应的 热解温度分别为 250-350 ℃和 200-250 ℃。 与斯洛 文尼亚 Idrija 汞矿区土壤类似,西班牙汞矿区土壤汞 的热解析结果亦表现为 HgS 为土壤汞的主要存在形 态,其次是吸附在土壤基质表面的 Hg^{0} ,对应的热解 温度分别是 310 ℃和 200-230 ℃ 235. 281 。但是,不同 于矿区附近污染土壤, Biester 等^[219 28] 对较远离矿区 的森林土壤研究结果发现,汞的主要存在形态为土 壤基质(腐殖酸)结合态,而HgS含量很低。采金区 土壤汞形态明显与汞矿区不同, Garé a-Sánchez 等^[20, 21] 发现,委内瑞拉 El Callao 混汞采金区 200ha 范围内土壤汞含量达 5-500mg°kg⁻¹, 接近 95% 的 汞形态为Hg⁰,但有关该方面的数据较少。

- 3.3 矿山环境汞的甲基化
- 3.3.1 炉渣汞甲基化

汞矿区炉渣含有的易溶富汞矿物,会导致炉渣 及周围环境介质成为汞甲基化的有利的场所。西班 牙 A lmad^én 和美国 Terlinggua 矿区炉渣 MeHg 含量分 别高达 3 100 g $^{\circ}$ kg⁻¹ 和 1 500 g $^{\circ}$ kg^{-1[257, 233}, 菲律宾 Palawan 汞矿和我国万山汞矿区炉渣,亦显示出较强 的汞甲基化现象^{[234, 269}。美国 Terlinggua 汞矿和西 班牙 Almad^én 汞矿区高含量 MeHg 的炉渣研究显示, 炉渣中汞的甲基化作用受制于活性 Hg²⁺ 的含量,两 者呈正相关关系, 与总汞含量关系并不明显 (图 4)。 研究显示, 西班牙 A lmad^én 矿区炉渣活性 Hg²⁺ 的含 量高达11 000mg $^{\circ}$ kg⁻¹, 高含量活性 Hg²⁺ 的条件下, 炉渣 汞 的 净 甲 基 化 速 率高 达 9 400— 13 000 ng $^{\circ}$ g⁻¹ $^{\circ}$ d^{-1[257, 133}。

Fig. 4 The correlation between mercury and methylmercury in calcines from Hg mining areas worldwide^[234, 299, 283, 284]

3.3.2 土壤汞甲基化

类似炉渣, 汞污染土壤同样表现出强的汞甲基 化。斯洛文尼亚 Idrija 汞矿区和美国 A laska 汞矿区 的土壤, MeHg 含量分别高达 80⁴⁴g[°]kg⁻¹和 41¹⁴g[°]kg^{-1[28, 264}, 我国万山汞矿区部分土壤 MeHg 含量超过20¹⁴g[°]kg^{-1[23, 269}。汞在土壤环境中的甲基 化过程取决于多种条件, 温度、有机质、土壤 pH、微 生物以及土壤的氧化还原条件等, 均可以对汞的甲 基化产生影响。不同季节的变化会显著影响汞的净 甲基化速率。实验表明, 夏季汞的去甲基化速率为 每天<1.9%, 明显低于春季汞的去甲基水化速率为 每天4.1%^[285]。Qiu 等^[23, 28, 269]对汞矿区土壤甲基 汞调查发现, 稻田土壤甲基汞含量明显高于旱土土 壤甲基汞含量, 认为稻田厌氧环境中丰富可溶性碳 和腐殖酸,导致了较强的甲基化作用。

3.3.3 水体汞甲基化

尽管矿区水体中的总甲基汞 (TMeHg)含量占 THg 比率很低, 一般<1%, 但部分水体中的汞, 依然 表现出了很强的甲基化趋势。美国 Coast Ranges 汞 矿区炉渣淋滤水 TMeHg 含量可达47ng°L^{-1[23]}, 西班 牙 Almadén 汞矿区污染水体中的 TM eHg 含量亦高达 $30ng°L^{-1[257]}$ 。调查表明, 当矿区汞污染水体中硫酸 盐浓度升高时, 硫酸盐还原菌活动大大增强, 可显著 提高水体汞 的甲基化能力^[266-287]。通常高含量 TMeHg 中的颗粒态占主导, 而当 TMeHg 含量汞 <2 5ng°L⁻¹时, TMeHg 含量和溶解态呈正相关关系 ($R^2 = 0.8646$), 其中溶解态占 TM eHg 比率可达 98%^[238]。矿区水体的甲基化, 会成为下游湿地、湖 泊和水库生态系统中新的汞污染源和甲基汞的 来源。

3.4 矿山环境生物汞暴露及人体健康风险

3.4.1 生物体汞暴露

矿山活动造成的土壤、大气、水体的严重汞污染,导致了矿区生物体的汞污染(表 4)。高浓度大 气汞的条件下,直接会导致通过叶面吸收大气汞的 植物体内富集汞。我国贵州汞矿区天然生长的苔藓 总汞含量达95 000 $^{\mu}$ g °kg⁻¹,总汞含量和近地表大气 汞浓度呈正相关关系^{[259} (图 5),说明矿区天然苔藓 能很好的反映大气汞污染程度。同时,该苔藓中还 发现了甲基汞,含量高达20 $^{\mu}$ g °kg⁻¹,暗示矿区大气 中存在大量甲基汞的可能,它们可能通过大气沉降 而进入植物体内。美国 Alaska 汞矿区,在柳树叶中 也发现了甲基汞的存在,其含量达11 $^{\mu}$ g °kg^{-1[254]}。 但是,由于植物会更容易吸收土壤中的有机 汞^[288-289],柳树叶中甲基汞来源可能与苔藓中甲基

图 5 汞矿区天然苔藓中总汞和周围近地表大气汞浓度 的关系^[26]

?1994-2014 China Academic Journal Electronic Publis

汞的来源不同。

矿区水生生态系统中的鱼、贝类,同样会表现出 对汞的富集。Kehrig 等^[20] 对南美亚马逊流域单一 肉食类鱼种(*Cichla spp.*)监测表明,总汞含量变化范 围 0.03-1.57mg°kg⁻¹,甲基汞含量 0.04-1.43mg°kg⁻¹,占总汞比率超过70%,受采金活动影 响的 Rio Tapajós 河内生活的 *Cichla spp.*甲基汞平均 含量0.55±0.38mg°kg⁻¹,明显高于其他河流的该类 鱼种。

表 4 世界部分矿山环境生物体汞含量

 Table 4
 Mercury and methylmercury in biota from mining areas

 worldwide

		THg	MeHg					
		$\mathrm{mg}\mathrm{^{\circ}}\mathrm{kg}^{-1}$	$\mu_{ m g^\circ kg^{-1}}$					
gold	Amazon ^[290]							
ming	predatory fish(Cichla spp.)	0.05-1.57	40-1 430					
areas	Rwamagaza, Tazania ^[251]							
	fish	0.002-2.65						
	nice	0.011-0.035						
	potato	< 0. 004 $-$ 0. 092						
	Grande Marsh, Columbia ^[273]							
	phytoplankton	0.459-0.573						
	zooplankton	0.823-0.966						
	Phichit, Tailand ^[228]							
	bivalve	0.0875-3.65						
	nice	0. 191-0. 298						
	Mindanao, the Philippines ^[29]							
	fish	0.109-0.494						
	mussel	0. 233-1. 208						
	banana	0.007-0.066						
	nce	0.009-0.058						
mercury	Almadén, Spain ^[292]							
mining	plant	0.52-5.12						
areas	Idnjca, Slovenia ^[261]							
	algae	1. 38—34. 3	7.3-159					
	chrysalis	< 0. 0001 $-$ 141	5 79-4 940					
	periphyton	0.137-86 1	2 48-458					
	A laska, USA ^[293]							
	fish	0.032-1.73	26-1 560					
	Palawan, the Philippines 267, 268							
	fish	0.002-4.37	1 3-931 6					
	Guizhou,							
	China ^[233, 237, 238, 269, 294, 295, 357]							
	nce	0.0049-1 12	1 61-174					
	corn	0.0089-0.57	0 25-1.3					
	cabbage	0.12-18	0 65-5.5					
	rape	0.47-0.69	0 57-0.83					
	moss	0.98—95	0 21-20					

高汞背景下矿区百姓食用的农作物,如谷类作物和蔬菜类等,亦遭受到了严重的汞污染(表4)。 我国贵州汞矿区蔬菜和稻米总汞含量分别高达

Fig. 5 The correlation between THg in mosses and TCM in ambient air from Hg mining areas^[269]

18mg°kg⁻¹和1.1mg°kg⁻¹,远远超出我国食品卫生饮 食标准规定的 0.01-0.02mg °kg^{-1[296]}。而更令人值 得关注的是,对比我国贵州汞矿区不同农作物可食 部分中的甲基汞含量可以发现,稻米含有很高的甲 基汞,高达174^µg°kg^{-1[29]},超出稻田土壤甲基汞几 十倍甚至近百倍。矿区同类粮食作物玉米中最高甲 基汞含量仅1. $3\mu_{g} \cdot kg^{-1}$,说明汞矿区稻米具有很强 的甲基汞富集能力。

3.4.2 矿区居民汞暴露的健康风险

汞元素具有很强的毒性和生物积累效应, 高汞 背景环境下生活的矿区居民,会通过长期的饮食、呼 吸及皮肤接触等途径,导致体内汞的大量积蓄(表 5)。Bose-O' Reilly 等^[297] 对印尼 Sulavesi 和津巴布韦 Kadoma 两混汞采金区 9-17 岁儿童的尿液、血液和 发样调查显示,长期生活在采金区和直接参与采金 活动的儿童汞暴露程度远远高于对照区的儿童,他 们的尿汞、血汞和发汞平均含量分别为 36.5 \pm 93. 06mg $^{\circ}kg^{^{-1}}\,$ Cr, 12.4 \pm 14. 66 $^{\mu}g\,^{\circ}L^{^{-1}}$ $\pi\,$ 4. 08 \pm 7.07mg°kg⁻¹,高出对照区 1-2个数量级,而直接参 与采金活动的童工,其尿汞、血汞和发汞分别高达 666. 87mg °kg⁻¹ Cr, 100. 8 μ g °L⁻¹和52. 96mg °kg⁻¹。 学 者 da Costa 等^[298] 运用 tPERG (transient pattern electroretinogram)和 tPVEP(transient pattern visual evoke potential)对亚马逊采金区冶金工人观测显示,当人 体受到严重汞暴露后,其视觉系统会受到严重损害。 部分混汞采金区调查数据显示,人体无机汞的暴露 导致尿汞的升高,明显高于血汞的升高,而血汞的升 高暗示人体甲基汞的暴露,发汞含量则与讲食鱼的 量有关^[297, 273]。

表 5 数据显示,我国贵州汞矿区居民受到了汞 的严重暴露,矿区居民头发中总汞和甲基汞含量高 达213mg°kg⁻¹和5.89mg°kg^{-1[38, 294, 302, 303]}。Li 等^[38] 对我国贵州土法炼汞区人群的尿汞、尿β2 微球蛋白 含量和健康状况等进行了详细的调查,结果显示土 法炼汞人群遭受了严重的汞蒸气暴露,人群尿汞和 尿β2 微球蛋白的平均含量分别高达779mg°kg⁻¹ Cr 和208.5mg °kg⁻¹ Cr, 远远高于对照区人群; 而部分调 查人群已经出现轻度慢性汞中毒的症状,表现出肾 脏遭受到了损伤。

矿区居民汞暴露途径复杂,呼吸、饮水、传统进 食以及皮肤接触等均会导致体内无机和有机汞的暴 露。上述分析已表明,我国贵州汞矿区稻米含有很 高的汞,尤其甲基汞。由于该地区居民以稻米为传 统主食,那么矿区居民通过时食稻米将会产生很大 的健康风险。贵州汞矿区稻米暴露实验表明,实验 动物进食大米 20 天后, 其脑、肝组织便产生了显著 的变化, 汞含量明显升高^[304-306], 表现出了明显的甲 基汞积累效应。最近 Feng 等^[294]和 Qiu 等^[295]对贵州 矿区居民稻米的甲基汞暴露风险评估表明,居民甲 基汞日暴露量高达1.8⁴g°kg⁻¹,远远高于美国环境 保护署规定的甲基汞日安全暴露量0.1^µg°kg^{-1[307]}。 以上调查研究暗示, 汞矿区稻米已经成为当地居民 暴露甲基汞的最主要的途径,并对人体造成了健康 风险。

表 5 世界部分矿山环境人体汞暴露现状调查

Table 5 Human exposure to mercury and methylmercury in mining areas worldwide

		urine	blood	$hair/mg^{\circ}kg^{-1}$	
		$\mathrm{mg}^{\circ}\mathrm{kg}^{-1}\mathrm{Cr}$	$\mu m g^{\circ} m L^{-1}$	THg	MeHg
gold mining areas	Amazon ^[299, 300]	1.0-255	2 0-29.3	0.40-32.0	
	Mindanao, the Philippines ^[301, 226]		2 74-29 48	0.31-68.68	0.73-5.81
	Phichit, Thailand ^[229]	9.95-32.0		20. 90—1. 22	
	Sulawesi, Indonesia, Kadoma, Zimbabwe ^[297]	0.43-666 87	1 0-100 8	0.42-52.96	0.09-5.86
mercury mining areas	Palawan, the Philippines ^[267, 301]			< 0. 10-18. 5	
	Guizhou, China ^[38, 294, 302, 303]	6.35-6 150	1 85-210.3	0.6-213	0.2-5 89

人体汞暴露及危害研究进展 4

人体汞暴露的健康影响取决于汞的化学形态、 暴露的途径以及暴露的程度。一般来说、汞的化学 形态划分为无机汞 $(元素汞 Hg^0, 二价汞 Hg^{2+}$ 等)和 有机汞(甲基汞等)。

无机汞人体汞暴露及健康危害 4.1

无机汞的人体暴露,对普通人群而言,主要为补 牙、服用一些中药、使用高汞含量的化妆品和香皂 等^[308]。职业暴露,主要针对生产或者使用汞及其化 合物的职业人群,如汞矿开采冶炼、氯碱车间、混汞 法炼金的金矿、温度计厂、一些金属冶炼车间的工人 及牙科医生等³⁰⁹。

无机汞进入体内的主要途径是呼吸、口腔摄取 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第 21 卷

和皮肤吸收。呼吸是汞蒸气暴露的最重要途径, 80%左右的吸入汞蒸气可以透过肺泡进入血液³¹⁰。 食物中的无机汞大约有7%通过口腔摄取而被吸 收^[310]。通过皮肤吸收的汞蒸气仅仅是通过呼吸吸 收的1%左右,但是使用一些高无机汞含量的美白 护肤品也可以造成汞吸收和积累^[310]。

血汞 和 尿 汞 通 常 用 来 评 价 无 机 汞 暴 露^[307, 310, 311]。血液可作为人体近期汞吸收的内剂量 标记物, 尤其适合急性汞中毒时吸收剂量及病情判 断。尿汞可作为慢性汞中毒体 内剂量的良好标记 物。对职业性汞暴露人员而言, 世界卫生组织推荐 的最大允许尿汞含量为 $50^{\mu}g^{\circ}g^{-1}$ Cr^[310]; 一般人群尿 汞应低于 $5^{\mu}g^{\circ}g^{-1}$ Cr^[312]。呼出大气被视为汞蒸气暴 露的一个可能的生物标记物^[315, 314]。

无机汞的毒性主要表现为神经毒性和肾脏毒 性。中枢神经系统可能是汞蒸气暴露的最敏感的靶 器官,比较典型的症状包括:震颤、情绪不稳定、注意 力不集中、失眠、记忆衰退、说话震颤、视力模糊、肌 肉神经功能变化、头痛以及综合性神经异常等。肾 脏和中枢神经系统一样,是汞蒸气暴露的要害器官。 其他毒性包括致癌性、呼吸系统毒性、心血管疾病影 响、消化系统毒性、免疫系统影响、皮肤毒性和生殖 毒性等³¹⁰。

4.2 甲基汞人体汞暴露及健康危害

人类甲基汞暴露的主要途径是食用鱼类及其他 水产品,但也有其他来源的少量报道。贵州省汞矿 地区居民食用稻米是其MeHg暴露的主要途径^[24]。 甲基汞也存在于陆地动物的内脏器官^[315]以及鸡肉、 猪肉中^[316],这可能是以鱼肉作为家畜饲料饲养的 结果。

尽管大多数关于 MeHg 吸收的研究指出鱼体内 中近 100%的 MeHg 能被吸收,最近研究表明也可能 存在一定的可变性^[317,318]。在已知摄入剂量的情况 下,可以利用毒物动力学模型和生理-药物动力学模 型(PBPK)来评估体内的汞负荷^[319]。毒物动力学模 型的单一区间模型是一种稳定状态的模型,常用于 预测血液里的汞浓度^[320-32];PBPK 模型可以用来预 测 MeHg 摄入的变化以及生理变化(如怀孕、成长) 不同 组织内的 MeHg 浓度^[323-324]。硒可能在 MeHg 的吸收和排泄过程中具有一定的作用,但是不同研 究的结论并不一致^[327-329]。对于影响 MeHg 吸收的 因素需要进行深入细致的研究来更好地理解这个 难题。 记。血液反映最近 1-2 个半衰期(半衰期为 50-70 天)的暴露量; 而头发代表整个生长期的平均暴露水 平。头发总汞的 80% -98% 是 MeHg^[20,330], 通常头 发中汞的浓度是血液中的 250-300 倍^[30]。对头发 的分段分析能提供时间序列的暴露水平^[30-33], 因 为通常认为头发的生长速率为每月 1cm。最新的研 究表明, 对一根发丝采用 IA-ICP-MS 测量汞含量, 其 分辨率可以达到 微米级, 因此能够获得更多关于 MeHg 吸收和分布的信息^[34,35]。脚趾甲和手指甲 中汞的浓度也可作为汞暴露的生物标记, 大多用于 MeHg 对心血管影响的研究^[35,37]。

甲基汞的毒性主要为神经毒性,大脑和神经系 统被视为发生甲基汞中毒的靶器官,典型症状为末 梢感觉错乱、视野收缩、运动性共济失调、构音障碍、 听觉错乱以及震颤[38.39]。世界卫生组织估计甲基 汞中毒的临界血汞浓度为 200 $\mu_{g} \cdot L^{-1}$ (相应发汞浓 度约为50^µg[•]g⁻¹)^[30]。水俣病的毒性作用使人们认 识到胎儿暴露的致命性。对心血管影响的症状包括 心血管疾病(冠心病、急性心肌梗塞、缺血性心脏 病)、高血压的影响以及心律变异性的改变^[340 34]。 对生殖的影响,在20世纪50年代和60年代,日本 水俣市所有食鱼家庭出生的男性后代有所下 降^[342 34]。免疫系统效应,研究表明 MeHg 在基因敏 感的几个老鼠品种中产生自身免疫反应^[344 345]。但 是,MeHg 对心血管、生殖及免疫系统影响的研究总 体上还很少,需要在这些领域进行研究。鱼类容易 同化卤化物,包括多氯联苯(PCB)、二噁暎等,因此 MeHg 和 PCB 的协同作用以及和其他金属污染物的 复合效应需要进行大量的研究工作。Omega-3 脂肪 酸^[346 347]、硒和维生素^[348, 349]等营养成分对甲基汞毒 性的影响也需要进行大量的流行病学研究。

食物中化学物质的风险评估基于危险识别、暴露评估、剂量-反应计算以及风险描述。风险评估最普遍使用的是由 NAS /NRC 推荐的模型^[350] 和 JECFA 开发的模型^[351]。JECFA 的MeHg 最大允许摄入量为每周1. 6 μ g °kg⁻¹ (即每天0. 23 μ g °kg⁻¹,相当于发汞含量为每天2. 3 μ g/g), USEPA 的推荐值为0. 1 μ g °kg⁻¹ (相当于发汞含量为1. 0 μ g °g⁻¹)^[307]。

参考文献

- Wiener J G, Krabbenhoft D P, Heinz G H, et al. Ecotoxicology of Mercury, In: Handbook of Ecotoxicology (Eds. Hoffman D J, Rattner B A, Burtong C A, Caims J), 2003. 439–440
- [2] Meili M. Water Air Soil Pollut., 1991, 56: 19-727

发汞和血汞都可作为 MeHg 暴露的有效生物标。[3] Lindqvist Q, Jemlov A, Johansson K, et al. Water Air Soil Pollut.

1991, 55; 1-126

- [4] Johansson K, Bergback B, Tyler G. Water Air Soil Pollut., 2001, Focus 1: 279-297
- [5] Scholtz M T, van Heyst B J, Schroeder W H. Sci. Total Environ., 2003, 304: 185–207
- [6] Schroeder W H, Munthe J. Atmos. Environ., 1998, 32(5): 809-822
- [7] Lindberg S E, Bullock R, Ebinghaus R, et al. AM BIO, 2007, 36: 19-32
- [8] Sheu G R, Mason RP. Environ. Sci. Technol., 2001, 35: 1209-1216
- [9] Landis M S, Keeler G J, Al-Wali K I, et al. Atmos. Environ., 2004. 38, 613-622
- [10] Fitzgerald W F. Water Air Soil Pollut., 1995, 80: 245-254
- [11] Lamborg C H, Fitzgerald W F, O' Donell J, et al. Geochim. Cosmochim. Acta 2002, 66: 1105-1118
- [12] Pacyna E G, Pacyna J M, Steenhuisen F, et al. Atmos. Environ., 2006, 40, 4048-4063
- [13] Wilson S J, Steenhuisen F, Pacyna J M, et al. Atmos. Environ., 2005, 40, 4621-4632
- [14] Street D G, Hao J M, Wu Y, et al. Atmos. Environ., 2005, 39: 7789-7806
- [15] Lindberg S E, Hanson P J, Meyers T P, et al. Atmos. Environ., 1998, 32, 895-908
- [16] Gustin M S. Sci. Total Environ., 2003, 304: 153-167
- [17] Obrist D. Biogeochemistry, 2007, 85: 119-123
- [18] Ferrara R, Mazzolai B, Lanzillotta E, et al. Sci. Total Environ., 2000, 259: 115-121
- [19] Pyle D M, Mather T A. Atmos. Environ., 2003, 37: 5115-5124
- [20] Amyot M, Southworth G, Lindberg S E, et al. Atmos. Environ., 2004, 26, 4279-4289
- [21] Erichsen J A, Gustin M S, Lindberg S E. Environ. Sci. Technol., 2005, 39, 8001-8009
- [22] Xin M, Gustin M S, Hohnson D. Environ. Sci. Technol., 2007, 41: 4946-4951
- [23] Bergan T, Gallardo L, Rohde H. Atmos. Environ., 1999, 33: 1575-1585
- [24] Mason R P, Sheu G R. Global Biogeochem. Cy., 2002, 16, art. no. 1093
- [25] Seigneur G Vijayaraghavan K, Lohma K, et al. Environ. Sci. Technol., 2004, 38: 555-569
- [26] Wu Y, Wang S X, Street D G, et al. Environ. Sci. Technol., 2006, 40, 5312-5318
- [27] Li P, Chai T F, Carmichael G R, et al. Atmos. Environ., 2007, 41: 2804–2819
- [28] Feng X B, Wang S F, Qiu G L et al. J Geophys. Res., 2005, 110 (D14306), DOI: 10. 1029/2004JD005643
- [29] Fu X W, Feng X B, Wang S F. J Geophys. Res., 2008, 113, art. no. D20306
- [30] 王少锋(Wang S F). 中国科学院研究生院博士学位论文 (Doctoral Dissertation of Chinese Academy of Sciences), 2006

(Doctoral Dissertation of Chinese Academy of Sciences), 2008

- [32] Slemr F, Langer E. Nature, 1992, 355: 434-436
- [33] Slemr F, Junkermann W, Schmidt R W H, et al. Geophys. Res. Lett., 1995, 22: 2143-2146
- [34] Siegel B Z, Sieyel S M. Envrion. Sci. Technol., 1978, 12: 1036
- [35] Varekamp J C, Buseck P R. Appl. Geochem., 1986 1: 65
- [36] Ferrara R, Maserti B E, Andersson M, et al. Atmos. Environ., 1998, 32: 3897-3904
- [37] Wang S F, Feng X B, Qiu G L, et al. Atmos. Environ., 2007, 41: 5984-5993
- [38] Li P, Feng X B, Qiu G L, et al. Environ. Res., 2008, 107: 108-114
- [39] Feng X B, Wang S F, Tang S L, et al. J. Geophy. Res., 2004, 109, art. no. D03303
- [40] Liu S L, Nadim F, Perkins C, et al. Chemosphere., 2002, 48: 97-107
- [41] Wängberg I, Edner H, Ferrara R, et al. Sci. Total Environ., 2003, 304: 29-41
- [42] Zhang L, Wong M H. Environ. Int., 2007, 33: 108-121
- [43] Brosset C. Water Air Soil Pollut., 1987, 34: 145-166
- [44] Lindberg S E, Turner R R, Meyers T P, et al. Water Air Soil Pollut., 1991, 56: 577-594
- [45] Stratton W J, Lindberg S E. Water Air Soil Poll., 1995, 80: 1269-1278
- [46] Valente R J, Shea C, Humes K L, et al. Atmos. Environ., 2007, 241: 1861-1873
- [47] Lindberg S E, Landis M S, Stevens R K, et al. Atmos. Environ., 2001, 35: 5377-5378
- [48] 郑伟(Zheng W).中国科学院研究生院博士学位论文(Doctoral Dissertation of Chinese Academy of Sciences), 2007
- [49] Fu X W, Feng X B, Zhu W Z, et al. Appl. Geochem., 2008, 23: 408-418
- [50] 王平安(Wang P A), 张成(Zhang C), 王春晓(Wang C X)等.
 西南大学学报(J. Southwest Univ.), 2007, 29(3): 125-129
- [51] Kuo T H, Chang C F, Urba A, et al. Sci. Total Environ., 2006, 368: 10-18
- [52] Fang F M, Wang Q C, Li J F. Sci. Total Environ., 2001, 281: 229-236
- [53] Wang Z W, Chen Z S, Duan N, et al. J. Environ. Sci., 2007, 19: 176-180
- [54] Feng X B Yan H Y, Wang S F, et al. Atmos. Environ., 2004, 38: 4721-4732
- [55] 万奇(Wan Q), 冯新斌(Feng X B), 郑伟(Zheng W)等. 环境科
 学(Environ Sci.), 2008, 29(2): 296-299
- [56] Fu X W, Feng X B, Zhu W Z, et al. Atmos. Environ., 2008, 42: 970-979
- [57] Hall B. Water Air Soil Pollut., 1994, 80, 301-315
- [58] Sommar J, Gårdfeldt K, Strömberg D, et al. Atmos. Environ., 2001, 35: 3049-3054
- [59] Goodsite M E, Plane J M C, Skov H. Environ. Sci. Technol., 2004, 38(6): 1772-1776

[31],1分号号(Fu X,W). 中国科学院研究生院博士学位论文 1994-2014 China Academic Journal Electronic Publishing House. All Fights reserved. http://www.cnki.net 1994, 28, 589-1597

- [61] Tokos J J, Hall B. Calhoun J A, et al. Atmos. Environ., 1998, 32, 823-827
- [62] Munthe J. Atmos. Environ., 1992, 26: 1461-1468
- [63] Lin C J, Pehkonen S O. Atmos. Environ., 1997, 31: 4125-4137
- [64] Lin C J, Pehkonen S O. J. Geophy. Res., 1998, 103: 28093-28102
- [65] Pleijel K, Munthe J. Water Air Soil Pollut., 1995, 80: 317-324
- [66] Pehkonen S O, Lin C J. J. AWMA, 1998, 48: 144-150
- [67] Nriagu J.O. Sci. Total Environ., 1994, 154: 1-8
- [68] P' yankov V A J. General Chem., 1949, 19: 187–192
- [69] Pal B, Anya P A. 2004 Environ. Sci. Technol., 2004 38: 5555-5566
- [70] Holmes C D, Jacob D J, Yang X. Geophys. Res. Lett., 2006, 33, art. no. L20808
- [71] Lin C J, Pehkonen S O. Atmos. Environ., 1999, 33: 2067-2079
- [72] Munthe J, Xiao Z F, Lindqvist O. Water Air Soil Pollut., 1991, 56, 621-630
- [73] Xiao Z F, Munthe J, Stromberg D, Lindqvist O. Mercury as a Global Pollutant - D Integration and Synthesis. Lewis Publishers 1994. 581-592
- [74] Rutter A P, Schauer J J. Atmos. Environ., 2007, 41: 8647-8657
- [75] EPRI Expert Panel. Elec. Res. Ins. Report, 1994, No. TR-104214, Pab Alto, CA
- [76] Lee D S, Nemitz E, Fowler D, et al. Atmos. Environ., 2001, 35: 5455-5466
- [77] Seigneur C, Lohman K, Vijayaraghavan K, et al. Environ. Pollut., 2003, 123: 365–373
- [78] Xu X Y, Yang D R Miller J J, et al. Atmos. Environ., 1998, 34: 4933-4944
- [79] Poissant L. Pilote M, Xu X, et al. J. Geophys. Res., 2004, 109, D11301
- [80] Lindberg S E, Stratton W J. Environ. Sci. Technol., 1998 32: 49-57
- [81] Lindberg S E, Dong W, Meyers T. Atmos. Environ., 2002, 36: 5207-5219
- [82] Qi J H, Li P L, Li X G, et al. Atmos. Environ., 2005, 39: 2081-2088
- [83] Nho-Kim E Y, Michou M, Peoch V H. Atmos Environ., 2004, 38, 1933-1942
- [84] Munthe J, Kindbon K, Knuger O, et al. Water Air Soil pollut., 2001, 1: 99-110
- [85] Prestbo E M, leutner J M, Pollman C D. Proceedings of the International Conference of Mercury as a Global Pollutant. 2006
- [86] Fang F M, Wang Q C, Li J F. Sci. Total Environ., 2004, 330: 159-170
- [87] 刘俊华(Liu J H). 中国科学院博士学位论文(Doctoral Dissertation of Chinese A cademy of Sciences), 1997
- [88] Guo Y N, Feng X B, Li Z G, et al. Atmos Environ., 2008, 42: 7096-7103
- [89] Sakata M, Maromoto K. Atmos. Environ., 2005, 39: 3139-3146

7481-7493

- [91] Bloom N S, Fitzgerald W F. Anal. Chim. Acta, 1988 208: 151-161
- [92] 阎海鱼(Yan H Y), 冯新斌(Feng X B), 商立海(Shang L H)等.
 分析测试学报(J. Instrum. Anal.), 2003, 22(5): 10-13
- [93] Bbom N S. Moretto L M, Scopece P, et al. Mar. Chem., 2004, 91: 85-99
- [94] Sullivan K A, Mason R P. Sci. Total Environ., 1998, 213. 213– 228
- [95] 于常荣(Yu C R), 王炜(Wang W), 梁冬梅(Liang D M)等. 长 春地质学院学报(J. Changehun Univ. Earth Sci.), 1994, 24 (1): 102-109
- [96] 丁振华(Ding Z H), 王文华(Wang W H), 刘彩鹅(Liu C E)等.
 环境科学(Environ. Sic.), 2005 26(5): 62-66
- [97] He T, Feng X, Guo Y, et al. Environ. Pollut., 2008, 154: 56-67
- [98] Balcom P H, Hammerschmidt C R, Fitzgerald W F, et al. Mar. Chem., 2008 109: 1-17
- [99] Lyons W B Fitzgibbon T O, Welch K A, et al. Appl. Geochem., 2006, 21: 1880-1888
- [100] Guentzel J L, Portilla E, Keith K M, et al. Sci. Total Environ., 2007, 388: 316-324
- [101] Hissler G. Probst J L. Appl. Geochem., 2006, 21: 1837-1854
- [102] 张丰松(Zhang FS), 阎百兴(Yan BX), 何岩(He Y)等. 湿地
 科学(Wetland Sci.), 2007, 5(1): 58-63
- [103] 白薇扬(Bai W Y), 冯新斌(Feng X B), 金志升(JinZ S)等. 矿物学报(Acta. Miner. Sci.), 2007, (27)2; 218-224
- [104] 陈静生(Chen J S), 唐飞(Tang F), 贾振邦(Jia Z B)等. 环境科
 学学报(At cta Environ. Circums.), 1993, 13(4); 385-390
- [105] 何天容 (He T R). 中国科学院博士学位论文 (Doctoral Dissertation of Chinese Academy of Sciences), 2007.
- [106] 蒋红梅(Jiang H M). 中国科学院博士学位论文(Doctoral Dissertation of Chinese Academy of Sciences), 2005.
- [107] Lockhart W L, Wilkinson P, Billeck B N, et al. Biogeochemistry, 1998, 40: 163-73
- [108] Engstrom D R, Swain E B. Environ. Sci. Technol., 1997, 31: 960-967
- [109] He T, Lu J, Yang F, et al. Sci. Total Environ., 2007, 386: 53-64
- [110] 阎海鱼 (Yan H Y). 中国科学院博士学位论文 (Doctoral Dissertation of Chinese Academy of Sciences), 2005
- [111] Vandal G M, Mason R P, Fitzgerald W F. Water Air Soil Pollut., 1991, 56: 791-803
- [112] Kim J P, Fitzgerald W F. Science, 1986, 23: 1131-1133
- [113] Kotnik J, Horvat M, Tessier E, et al. Mar. Chem., 2007, 107: 13-30
- [114] Peretyazhko T, Charlet L, Muresan B, et al. Sci. Total Environ., 2006, 364: 260-271
- [115] Park J S, Oh S, Shin M Y, et al. Environ. Pollut., 2008, 154: 12-20
- [116] Dill C, Kuiken T, Zhang H, et al. Sci. Total Environ., 2006,

[90] 27 Zhang H. Poissant I. Xu X H. et al. Atmos. Environ., 2005, 39: 1794-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [117] Vaupotic J, Gregoric A, Kotnik J, et al. J. Environ. Radioactiv., 2008, 99: 1068-1074
- [118] Mason R P, Sullivan K A. Environ. Sci. Technol., 1997, 31: 942-947
- [119] Fitzgerald W F, Mason R P, Vandal G M. Water Air Soil Pollut., 1991, 56, 745-767
- [120] Amyot M, Mierle G, David R S. Environ. Sci. Technol., 1994, 28, 2366-2371
- [121] Amyot M, Lean D, Mierle G. Toxicol. Chem., 1997, 16: 2054-2063
- [122] Vette A. Doctoral Dissertation of University of Michigan. Ann. Arbor, 1998
- [123] 何天容(He T R), 冯新斌(Feng X B), 郭艳娜(Guo Y N)等. 环境科学研究(Res. Environ. Sci.), 2008 21(2): 14-17
- [124] 蒋红梅(Jiang H M), 冯新斌(Feng X B), 李广辉(Li G H)等.
 环境科学与技术(Environ. Sci. Technol.), 2006, 29(8): 34-36
- [125] Gill G A. Doctoral Dissertation of University of Connecticut, 1986. 230
- [126] Dalziel J.A. Mar. Chem., 1995, 49: 307-314
- [127] Bloom N.S. Can. J. Fish. Aquat. Sci., 1989, 46: 1131-1140
- [128] U. S. EPA. 2001, EPA-821-R-01e020
- [129] 蒋红梅(Jiang H M), 冯新斌(Feng X B), 梁琏(Liang L)等. 中 国环境科学(Chinese Environ. Sci.), 2004, 24(5): 568-571
- [130] Cossa D, Martin J M, Sanjuan J. Mar. Pollut. Bull., 1994, 28: 381-384
- [131] Mason R P. Rolfhus K R. Fitzgerald W F. Water Air Soil Pollut., 1995, 80, 665-667
- [132] Canavana C M, Caldwellb U C A, Bloom N S. Sci. Total Environ., 2000, 260: 159–170
- [133] Hines M E, Gray J E, Higueras P L, et al. RMZ-Materials Geoenviron., 2004, 51: 108-111
- [134] Hammerschmidt C R, Fitzgerald W F. Geochem. Cosmochim. Acta 2006, 70, 918-30
- [135] Hosokawa Y. Water Sci. Technol., 1993, 28: 339-348
- [136] Ogrinc N, Monperrus M, Kotnik J, et al. Mar. Chem., 2007, 107: 31-48
- [137] 何天容(He T R), 冯新斌(Feng X B), 郭艳娜(Guo Y N)等. 环境科学(Environ. Sci.), 2008 29(7): 1768-1774
- [138] Gagnon C, Pelletier E, Mucci A, et al. Limnol. Oceanogr., 1996, 41(3): 428-434
- [139] Covelli S, Faganeli J, Horvat M, et al. Estuar. Coast. Shelf. Sci., 1999, 48, 415-428
- [140] Naftz D, Angeroth C, Kenney T, et al. Appl. Geochem., 2008, 23, 1731-1744
- [141] Kim D, Wang Q, Sorial G A, et al. Sci. Total Environ., 2004, 327: 1-15
- [142] Rolfhus K R, Sakamoto H E, Cleckner L B, et al. Environ. Sci. Technol., 2003, 37: 865-872
- [143] Cossa D, Gobeil C. Can. J. Fish. Aquat. Sci., 2000, 57(Suppl. 1): 138-147

1999, 65: 77-96

- [145] Tsiros X, Ambrose R B. Chemosphere, 1999, 39(3): 477-492
- [146] 李宏伟(Li H W), 阎百兴(Yan B X), 徐治国(Xu X G)等. 环境科学学报(Acta Environ. Circums), 2006 26(5): 840-845
- [147] Regnell O, Ewald G. Limnol. Oceanogr., 1997, 42(8): 1784-1795
- [148] Eckley C S, Watras C J, Hintelmann H. Can. J. Fish. Aquat. Sci., 2005, 62: 400-411
- [149] Hammerschmidt C R, Fitzgerald W F, Lamborg C H, et al. Environ. Sci. Technol., 2006 40: 1204-1211
- [150] Furutani A, Rudd J W. Appl. Environ. Microbiol., 1980, 40: 770-776
- [151] Kotnik J, Horvat M, Fajon V, et al. Water Air Soil Pollut., 2002, 134: 319-339
- [152] 何天容(HeTR), 冯新斌(FengXB), 李仲根(LiZG)等. 湖泊
 科学(J. Lake Sci.), 2006, 18(6): 565-571
- [153] Sunderland E.M., Gobas F A P C, Heyes A, et al. Mar. Chem., 2004, 90: 91–105
- [154] Lambertsson L, Lundberg E, Nilsson M, et al. J. Anal. At. Spectrom., 2001, 16: 1296-1301
- [155] Raposo J C, Ozamiz G, Etxebarria N, et al. Environ. Pollut., 2008, 156: 482-488
- [156] Weber J.H. Chemosphere, 1993, 26(11): 2063-2077
- [157] Celo V, Lean D R S, Scott S L. Sci. Total Environ., 2006, 368: 126-137
- [158] Ullrich S M, Tanton T W, Abdrashi tova S A. Critical Reviews in Environ. Sci. Technol., 2001, 31(3): 241-293
- [159] Monperrus M, Tessier E, Amouroux D, et al. Mar. Chem., 2007, 107: 49-63
- [160] Gilmour C C, Henry E A. Environ. Pollut., 1991, 71: 131-69
- [161] Benoit J M, Gilmour C C, Mason R P, et al. Environ. Sci. Technol., 1999, 33, 951-957
- [162] Kothals ET, Winfrey M R. Appl. Environ. Microbiol., 1987, 53: 2397-2404
- [163] Mauro J B N, Guimaraes J R D, Hintelmann H, et al. Anal. Bioanal. Chem., 2002, 374: 983-989
- [164] Watras C J, Bloom N S, Claas S A, et al. Water Air Soil Pollut., 1995, 80: 735-745
- [165] Eckley CS, Hintelmann H. Sci. Total Environ., 2006, 368: 111-125
- [166] Fleming E J, Mack E E, Green P G, et al. Appl. Environ. Microbiol., 2006, 72(1): 457-464
- [167] Kerin E J, Glimour C C, Roden E, et al. Appl. Environ. Microbiol., 2006, 72(12): 7919-7921
- [168] Bodaly R A, Rudd J W M, Fudge R J P, et al. Can. J. Fish. A quat. S ci., 1993, 50: 980-987
- [169] Ramlal P S, Kelly C A, Rudd J W M, et al. Can. J. Fish. Aquat. Sci., 1993, 50: 972-979
- [170] Hintelmann H, Wilken R D. Sci. Total Environ., 1995, 166: 1-10
- [171] Bisogni J J, Lawrence A W. J. Water Pollut. Control Federation.,

[144] Mason R P. Lawson N.M. Lawrence A L et al. Mar. Chem. 1975, 47, 135–152 [1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第 21 卷

- [172] Miskimmin B M, Rudd J W M, Kelly C A. Can. J. Fish. Aquat. Sci., 1992, 49: 17-22
- [173] Hudson R J M, Gherini S A, Watras C J, et al. Mercury pollution: integration and synthesis (Eds. Watras C J, Huckabee J W). Lewis Publishers, 1994, 473-526
- [174] Bloom N S, Watras C J, Hurley J P. Water Air Soil Pollut., 1991, 56, 477-491
- [175] Lee Y H, Hultberg H. Environ. Toxicol. Chem., 1990, 9: 833-841
- [176] Jacobs L W, Keene D R. J. Environ. Qual., 1974, 3: 121-126
- [177] Sunderland E M, Gobas F A P C, Branfireun Brain A, et al. Mar. Chem., 2006, 102(1/2): 111-123
- [178] Fjeld E, Rognerud D. Can. J. Fish. Aquat. Sci., 1993, 50: 1158-1167
- [179] Balogh S J, Swain E B, Nollet Y H. Environ. Pollut., 2008, 154: 3-11
- [180] Bodaly R A, St Louis V L, Paterson M J, et al. Metal ions in biological systems: Mercury and it effects on the environment and biology (Eds. Sigel A, Sigel H). Marcel Dekker: New York, 1997
- [181] Heyes A, Moore T R, Rudd J W M. J. Environ. Qual., 1998, 27: 591-599
- [182] Driscoll C T, Blette V, Yan C, et al. Water Air Soil Pollut., 1995, 80, 499-508
- [183] Barkay T, Gillman M, Turner R R. Appl. Environ. Microbiol., 1997, 63, 4267-4271
- [184] Stein E D, Cohen Y, Winner A M. Crit. Rev. Environ. Sci. Technol., 1996, 26(1); 1-43
- [185] Bloom N.S. Can. J. Fish. Aquat. Sci., 1992, 49: 1010-1017
- [186] Campbell L, Verburg P, Dixon D G, et al. Sci. Total Environ., 2008, 402; 184-191
- [187] Kudo A. Water Sci. Technol. 1992, 26, 217-226
- [188] Francesconi K A, Lenanton R C J, Caputi N, et al. Mar. Environ. Res., 1997, 43: 27-40
- [189] Meili M. Metal Ions in Biological Systems. Vol. 34: Mercury and its effect on environment and biology (Eds. Sigel A, Sigel H). Marcel Dekker Inc., New York, 1997, 2: 21-51
- [190] Sharma C M, Borgstrøm R, Huitfeldt J S, et al. Sci. Total Environ., 2008, 399: 33-40
- [191] Simonin H A, Loukma J J, Skinner L C, et al. Environ. Pollut., 2008, 154: 107-115
- [192] Gammons C H, Slotton D G, Gerbrandt B, et al. Sci. Total Environ., 2006, 368: 637-648
- [193] Kinghom A, Solomon P, Chan H M. Sci. Total Environ., 2007, 372: 615-623
- [194] Chen C, Stemberger R, Kamman N, et al. Ecotoxicology, 2005, 14, 135-147
- [195] Munthe J, Bodaly R A, Branfireun B A, et al. AM BIO, 2007, 36: 33-44
- [196] Gambrell R P, DeLaune R D, Patrick W H, et al. J. Environ. Sci. Health, 2001, 36(5): 661-676
- [197] 苏秋克(SuQK), 祁士华(QiSH), 蒋敬业(Jiang JY)等. 水资

- [198] McMurtry M J, Wales D L, Scheider W A, et al. Can. J. Fish. A quat. Sci., 1989, 46: 426-434
- [199] Gorski P R, Amstrong D E, Hurley J P, et al. Environ. Pollut., 2008, 154: 116-123
- [200] Masson S, Tremblay A. Sci. Total Environ., 2003, 304: 377-390
- [201] Kainz M, Telmer K, Mazumder A. Sci. Total Environ., 2006, 368: 271-282
- $[\ 202]$ Gothberg A, Greger M. Chemosphere, 2006 $65:\ 2096{--}2105$
- [203] Harris R.C. Thesis, McMaster University, Hamilton Ontario, 1991, 278
- [204] Henry E A, Dodge-murphy L J, Bigham G N, et al. Water Air Soil Pollut., 1995, 80: 489–498
- [205] Diamond M, Ganapathy M, Peterson S, et al. Water Air Soil Pollut., 2000, 117: 133-156
- [206] Diamond M L. Water Air Soil Pollut., 1999, 111: 337-357
- [207] Diamond M L, Mackay D, Welbourn P M. Chemosphere, 1992, 25: 1907—1921
- [208] Bhavsar S P, Diamond M L, Evans L J, et al. Environ. Toxicol. Chem., 2004, 23: 1376-1385
- [209] Gandhi N, Bhavsar S P, Diamond M L, et al. Environ. Toxicol. Chem., 2007, 26(11): 2260-2273
- [210] Srca A. Acta Hydrotech, 1996 14 (14): 46
- [211] Srca A, Rajar R, Harris R C, et al. Environ. Modell. Softw., 1999, 14: 645-655
- [212] Abreu S N, Pereira M E, Duarte A C. Water Sci. Technol., 1998, 37 (6/7): 33-38
- [213] Rajar R. Zagar D, Sirca A, et al. Sci. Total Environ., 2000, 260: 109-123
- [214] Rajar R, Cetina M. Ecol. Modell., 1997, 101: 195-207
- [215] Lacerda L D. Water Air Soil Pollut., 1997, 97: 209-221
- [216] Gustin M S, Taylor G E, Leonard T L, et al. Environ. Sci. Technol., 1996, 30, 2572-2579
- [217] Kotnik J, Horvat M, Dizdarevič T. Atmos. Environ., 2005, 39: 7570-7579
- [218] Wang S, Feng X, Qiu G, et al. Atmos. Environ., 2007, 41: 5584-5594
- [219] Biester H, Gosar M, Müller G. J. Geochem. Explor., 1999, 65: 195-204
- [220] Biester H, Gosar M, Covelli S. Environ. Sci. Technol., 2000, 34: 3330-3336
- [221] Ferrara R, Masterti B E, Breder R. Water Air Soil Pollut., 1991, 56: 219-233
- [222] 冯新斌(Feng X B), 陈业材(Chen Y C), 朱卫国(Zhu W G). 环境科学(Envion. Sci.), 1996, 17: 20-22
- [223] Wang S, Feng X, Qiu G, et al. Atmos. Environ., 2005 39: 7459-7473
- [224] Villas Bôas R C. J. Geochem. Explor., 1997, 58: 217-222
- [225] Lin Y, Guo M, Gan W. Water Air Soil Pollut., 1997, 97: 233-239
- [226] Cortes-Maramba N, Reyes J P, Francisco-Rivera A T, et al. J. Environ. Manag., 2006, 81: 126-134

1994-2014 China Academic Journal Electronic Publishing House. All Fights reserved. http://www.cnki.net

Health, 2001, 74: 206-212

- [228] Pataranawat P, Parkpian P, Polprasert C, et al. J. Environ. Sci. Health, Part A, 2007, 42(8): 1081-1093
- [229] Umbangtalad S, Parkpian P, Visvanathan G et al. J. Environ. Sci. Health, Part A, 2007, 42(14): 2071–2079
- [230] Garé a-Sánchez A, Contreras F, Adams M, et al. Environ. Geochem. Health, 2006, 28: 529-540
- [231] Garé a-Sánchez A, Contreras F, Adams M, et al. Int. J. Environ. Health Res., 2006, 16(5): 361-373
- [232] Rytuba J J. Sci. Total Environ., 2000, 260, 57-71
- [233] Horvat M, Nolde N, Fajon V, et al. Sci. Total Environ., 2003, 304; 231-256
- [234] Gray J E, Greaves I A, Bustos D M, et al. Environ Geol., 2003, 43, 298-307
- [235] Borzongo J C, Heim K J, Warwick J J, et al. Environ. Pollut., 1996, 92: 193-201
- [236] 仇广乐(Qiu G L), 冯新斌(Feng X B), 王少峰(Wang S F). 地 球与环境(Earth and Enviorn.), 2004, 32: 77-82
- [237] Qiu G, Feng X, Wang S, et al. Sci. Total Environ, 2006, 368 (1): 56-68
- [238] Qiu G, Feng X, Wang S, et al. Environ. Pollut., 2006, 142(3): 549-558
- [239] Feng X, Dai Q, Qiu G, et al. Appl. Geochem., 2006, 21(11): 1955-1968
- [240] Li P, Feng X, Shang L et al. Appl. Geochem., 2008 23: 2055-2064
- [241] Egler S G, Rodrigues-Filho S, Villas-Bôas R C, et al. Sci. Total Environ., 2006, 368: 424-433
- [242] Boudou A, Maury-Brachet R, Coquery M, et al. Environ. Sci. Technol., 2005, 39: 2448-2454
- [243] Ball M M, Carrero P, Castro D, et al. Curr. Microb., 2007, 54: 149-154
- [244] RequeIme M E R, Ramos J E F, Angélica R S, et al. Appl. Geochem., 2003, 18: 371-381
- [245] Filho S R, Maddock J E L. J. Geochem. Explor., 1997, 58: 231-240
- [246] Bisinoti M C, J^únior É S, Jardim W F. J. Braz. Chem. Soc., 2007, 18, 544-553
- [247] Fadini P, Jardim W. Sci. Total Environ., 2001, 275: 71-82
- [248] Malm O, Pfeiffer W, Souza C. Main pathways of mercury in the Madeira river area. Rondonia, Brazil. Proceedings of the 8th International Conference on Heavy Metals in the Environment. Edinbugh, UK: Cep Consultants. 2006, 515-518
- [249] De Andrade Lima L R P, Bernardez L A, Barbosa L A D. J. Hazard Mater., 2008, 150: 747-753
- [250] Gray J.E., Labson V.F., Weaver J.N., et al. Geophys. Res. Lett., 2002, 29(23); art. no. 2105
- [251] Taybr H, Appleton J D, Lister R, et al. Sci. Total Environ., 2005, 343: 111-133
- [252] 戴前进(Dai Q J), 冯新斌(Feng X B), 仇广乐(Qiu G L)等. 环境化学(Environ. Chem.), 2004, 23(7): 460-464

2003, 80: 95-104

- [254] Berzas Nevado J J, Garé a Bermejo L F, Rodŕguez Marín-Doimeadios R C. Environ. Pollut., 2003, 122; 261-271
- [255] Loredo J, Álvarez R, Ordőñez A. Sci. Total Environ., 2005 340: 247-260
- [256] Higueras P. Oyarzun R. Lillo J. et al. Sci. Total Environ., 2006, 356: 112-124
- [257] Gray J E, Hines M E, Higueras P L, et al. Environ. Sci. Technol., 2004, 38, 4285-4292
- [258] Gnamıš A, Byme A R, Horvat M. Environ Sci. Technol., 2000, 34: 3337-3345
- [259] Horvat M, Jereb V, Fajon V, et al. Geochem. Explor. Environ. Anal., 2002, 2; 287-296
- [260] Hines M E, Horvat M, Faganeli J, et al. Environ. Res. Section A, 2000, 83: 129-139
- [261] Žitek S, Horvat H, Gibičar D, et al. Sci. Total Environ., 2007, 377: 407-415
- [262] Gosar M, Sajn R, Biester H. Sci. Total Environ., 2006, 369: 150-162
- [263] Gray J E, Theodorakos P M, Bailey E A, et al. Sci. Total Environ., 2000 260: 21–33
- [264] Bailey, E A, Gray J E, Theodorakos P M. Geochem. Explor. Environ Anal., 2002, 2: 275-285
- [265] Gustin M S, Coolbaugh M F, Engle M A, et al. Environ. Geol., 2003, 43: 339-351
- [266] Gray J E, Crock J G, Fey D L. Appl. Geochem., 2002 17: 1069-1079
- [267] Williams T M, Weeks J M, Apostol A N, et al. Environ. Geol., 1999, 39: 51-60
- [268] Maramba N P C, Reyes J P, Francisco-Rivera A T, et al. J. Environ. Manag., 2006, 81: 135-145
- [269] Qiu G, Feng X, Wang S, et al. Appl. Geochem., 2005 20: 627-638
- [270] Sirca A, Rajar R. Calibration of a 2D mercury transport and fate model of the Gulf of Trieste. Proceedings of the 4th International Conference on Water Pollution, Computational Mechanics Publication 1997. 503-512
- [271] Lyons W B, Wayne D M, Warwick J J, et al. Environ. Geol., 1998, 34: 143-150
- [272] Appleton J D, Williams T M, Breward N, et al. Sci. Total Environ, 1999, 228: 95-109
- [273] Mamugo-Negrete J, Benitez L N, Olivero-Verbel J. Arch. Environ. Contam. Toxicol., 2008, 55: 305-316
- [274] Van Straaten P. Sci. Total Environ., 2000, 259: 105-113
- [275] Kim C S, Brown G E, Rytuba J J. Sci. Total Environ., 2000, 261: 157-168
- [276] Kim C S, Rytuba J J, Brown G E. Appl. Geochem., 2004, 19: 379-393
- [277] Lowry G V, Shaw S, Kim C S, et al. Environ. Sci. Technol., 2004, 38: 5101-5111
- [278] Bernaus A, Gaona X, Esbí JM, et al. Environ. Sci. Technol.,

[253] Higheras P. Ovarzun R. Biester H. et al. J. Geochem. Explor. 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第 21 卷

- [279] Hojdová M, Navrátil T, Rohovec J. Bull. Environ. Contam. Toxicol., 2008, 80: 237-241
- [280] Koeman D, Horvat M, Kotnik J. J. Environ Monit., 2004, 6: 696-703
- [281] Biester H, Scholz C. Enviorn. Sci. Technol., 1997, 31: 233-239
- [282] Navarro A, Biester H, Mendoza J L, et al. Environ. Geol., 2006, 49: 1089-1101
- [283] Gray J E, Hines M E, Biester H. Appl. Geochem., 2006, 21: 1940-1954
- [284] Gray J E, Crock J G, Lasorsa B K. Geochem. Explor. Environ. Anal., 2002, 2: 143-149
- [285] Bailey E A, Gray J E. Hines M E. Mercury methylation and demethylation in soils near abandoned mercury mines in Alaska USA. (abs.): in Geol. Soc. Am. Abstr. Progr., Boston, MA, November 1–10, 2001, 33 no. 6, A-361
- [286] Rytuba J J, Enderlin D A. California Division of Mines and Geology Special Publication, 1999, 119; 214-234
- [287] Rytuba J J. Environ. Geol., 2003, 43: 326-338
- [288] Godbold D L. Water Air Soil Pollut., 1991, 56: 823-831
- [289] Ribeyre F, Boudou A. Ecotoxicol. Environ. Safety, 1994 28: 270-286
- [290] Kehrig H A, Howard B M, Malm O. Environ. Pollut., 2008, 154: 68-76
- [291] Appleton J D, Weeks JM, Calvez J P S, et al. Sci. Total Environ., 2006, 354: 198-211
- [292] Millá R Gamarra R, Schmid T, et al. Sci. Total Environ., 2006, 368: 79-87
- [293] Jewett S C, Zhang X, Naidu A S, et al. Chemosphere, 2003, 50: 383-392
- [294] Feng X, Li P, Qiu G, et al. Environ. Sci. Technol., 2008, 42: 326-332
- [295] Qiu G, Feng X, Li P, et al. J. Agric. Food Chem., 2008, 56: 2465-2468
- [296] 中国国家标准会委员会(Standarization Administration of People's Republic of China), GB2762-1994, 北京:中国标准出版社 (Beijing; Standards Press of China), 1994
- [297] Bose-O' Reilly S, Lettmeier B, Gothe R M, et al. Environ. Res., 2008, 107: 89-97
- [298] Da Costa G M, dos Anjos L M, Souza G S, et al. Environ. Res., 2008, 107: 98-107
- [299] Palheta D, Taylor A. Sci. Total Environ., 1995, 168, 63-69
- [300] Santa Rosa R M S, Müller R C S, Alves C N, et al. Sci. Total Environ., 2000, 261: 169–176
- [301] Williams T M, Apostol A N, Miranda C R. Environ. Geochem. Health, 2000, 22, 19–31
- [302] Sakamoto M, Feng X, Li P, et al. Environ. Health Preventive Med., 2007, 12: 66-70
- [303] Li P, Feng X, Qiu G, et al. Sci. Total Environ., 2008, 395: 72-79
- [304] 瞿丽雅 (Qu L Y). 贵州汞污染防治研究 (Protection of Hg Pollution in Guiyang Province). 贵阳: 贵州人民出版社 (Guiyang:

- [305] 金桂文(Jin G W), 冀秀玲(Ji X L), 卢静(Lu J)等. 环境与健 康杂志(J. Environ Health), 2005, 22: 180-183
- [306] 程金平(Cheng J P), 王文华(Wang W H), 贾金平(Jia J P)等. 金属矿山(Metal Mine), 2004, 11: 57-60, 76
- [307] U. S. EPA, Mercury study report to Congress. Report no. EPA-452/ R-97-003, 1997
- [308] Clarkson T W. Environ. Health Perspect., 2002, 110 (Suppl 1): 11-23
- [309] ATSDR. Toxicological profile for mercury. Agency for Toxic Substances and Disease Registry, Atlanta, USA, 1999
- [310] WHO. Inorganic Mercury. Environmental Health Criteria 118. World Health Organization, nternational Programme on Chemical Safety, Geneva, Switzerland, 1991
- [311] Barregard L. Scand. J. Work Environ. Health, 1993, 19 (Suppl 1): 45-49
- [312] UNIDO. Protocols for environmental and health assessment of mercury released by artisanal and small-scale gold miners (ASM). Vienna: United Nations Industrial Development Organization, 2003
- [313] Hursh J B, Clarkson T W, Cherian M G, et al. Arch. Environ. Health., 1976, 31: 302-309
- [314] Halbach S, Welzl G. Exposure to mercury vapor from dental amalgam estimated with Zeeman atomic absorption spectroscopy. 7th International Conference on Mercury as a Global Pollutant, Slovenia, 2004
- [315] Ysart G, Miller P, Croasdale M, et al. Food Addit. Contam., 2000, 17: 775-786
- [316] Lindberg A, Bjomberg K A, Vahter M, et al. Environ. Res., 2004, 96; 28-33
- [317] Chapman L. Chan H M. Environ. Health Perspect., 2000, 108 (Suppl 1): 29-56
- [318] Canuel R, de Grosbois S B, Atikesse L, et al. Environ. Health Perspect., 2006, 114: 302-306
- [319] NRC (National Research Council). Toxicological Effects of Methylmercury. National Academy Press, Washington, DC, 2000, 251-256
- [320] WHO. Methylmercury. Environmental Health Criteria 10, World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland, 1990
- [321] Smith J C, Allen P V, Tumer M D, et al. Toxicol. Appl. Pharmacol., 1994, 128: 251-256
- [322] Smith J C, Farris F F. Toxicol. Appl. Phamacol., 1996, 137: 245-252
- [323] O'Flaherty E J. Crit. Rev. Toxicol., 1998, 28: 271-317
- [324] Clewell H J, Gearhart J M, Gentry P R, et al. Risk Anal., 1999, 19: 547-558
- [325] Carrier G, Bouchard M, Brunet R C, et al. Toxicol. Appl. Pharmacol., 2001, 171: 50-60
- [326] Young J F, Wosilait W D, Luecke R H. J. Toxicol. Environ. Health A., 2001, 63: 19-52
- [327] Barany E, Bergdahl I A, Bratteby L E, et al. J. Trace Elem. Med. Biol., 2003, 17: 165-170

21994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

114: 297-301

- [329] Lemire M, Mergler D, Fillion M, et al. Sci. Total Environ, 2006, 366: 101-111
- [330] Dolbec J, Mergler D, Larribe F, et al. Sci. Total Environ., 2001, 27: 87-97
- [331] Cemichiari E, Brewer R, Myers G J, et al. Neurotoxicobgy, 1995, 16, 711-716
- [332] Lebel J, Roulet M, Mergler D, et al. Water Air Soil Pollut., 1997, 97: 31-44
- [333] Morrissette J, Takser L, St-Amour G, et al. Environ. Res., 2004, 95, 363-374
- [334] Legrand M, Lam R, Jensen-Fontaine M, et al. J. Anal. At. Spectrom., 2004, 19: 1287-1288
- [335] Legrand M, Passos C J, Mergler D, et al. Environ. Sci. Technol., 2005, 39: 4594-4598
- [336] Guallar E, Sanz-Gallardo M I, van't Veer P, et al. N. Engl. J. Med., 2002, 347: 1747-1754
- [337] Wickre J B, Folt C L, Sturup S, et al. Arch. Environ. Health, 2004, 59: 400-409
- [338] Harada M. Crit. Rev. Toxicol., 1995, 25: 1-24
- [339] Clarkson T W, Magos L, Myers G J. N. Engl. J. Med., 2003, 349: 1731-1737
- [340] Chan H M, Egeland G M. Nutr. Rev., 2004, 62, 68-72
- [341] Stem A H. Environ. Res., 2005, 98: 133-142
- [342] Sakamoto M, Nakano A, Akagi H. Environ. Res., 2001 87: 92-98
- [343] Itai Y, Fujino T, Ueno K, et al. Environ. Sci., 2004, 11: 83-97
- [344] Hultman P, Hansson-Georgiadis H. Toxicol. Appl. Pharmacol.,

1999, 154: 203-211

- [345] Haggqvist B, Havarinasab S, Bjom E, et al. Toxicobgy, 2005, 208: 149-164
- [346] Mahaffey K R. Environ. Res., 2004, 95: 414-428
- [347] Paletz E M, Craig-Schmidt M C, Newland M C. Neurotoxicol. Teratol., 2006, 28: 59-73
- [348] Andersen H R, Andersen O. Pharmacol. Toxicol., 1993, 73: 192-201
- [349] Chapman L, Chan H M. Environ. Health Perspect., 2000, 108 (Suppl. 1); 29-56
- [350] NRC/NAS (National Research Council/National Academy of Sciences Committee on the Institutional Means for Assessment of Risks in Public Health. Commission on Life Sciences. Risk Assessment in the Federal Government; Managing the Process, 1983
- [351] JECFA. Summary and conclusions of Sixty-First Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Roma, Italy, 20–29 June 2003. 67/SC
- [352] Jiang G B, Shi J B, Feng X B. Environ. Sci. Technol., 2006, 40: 3672-3678
- [353] Dai Q, Feng X, Qiu G, et al. J. Phys. IV, 2003 107: 345-348
- [354] Zhang G, Liu C Q, Wu P, et al. Appl. Geochem., 2004, 19: 1735—1744
- [355] Tan H, He J L, Liang L, et al. Sci. Total Environ., 2000, 259: 223-230
- [356] 丁振华(Ding Z H), 王文华(Wang W H), 瞿丽雅(Qu L Y)等. 环境科学(Environ. Sci.), 2004, 25(2): 111-114
- [357] Shi J, Liang L, He B, et al. Sino-Canada Workshop on Mercury Contamination in the Environment, 2004, 51-52