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Abstract The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant’s water use
efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic
environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with
plant functional groups and environmental factors throughout China. The high leaf δ13C in the database
appeared in central and western China, and the averaged leaf δ13C was �27.15‰, with a range from
�21.05‰ to�31.5‰. The order of the averaged δ13C for plant life forms frommost positive tomost negative
was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental
factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and
altitude, although the overall influences are still relatively weak, in particular the influence ofMAT and altitude.
And we further found that plant functional types are dominant factors that regulate the magnitude of leaf
δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf
δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C
with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model.
However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous
trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.

1. Introduction

Carbon isotope discrimination extensively exists in the process of global carbon cycling in terrestrial ecosys-
tems [Farquhar et al., 1989; Enting et al., 1995; Flanagan and Ehleringer, 1998]. Plants discriminate against the
heavier isotope (13C) during photosynthesis [Farquhar et al., 1989], resulting in a lower carbon isotope ratio in
leaf organic carbon (13C/12C) compared with atmospheric CO2. In earlier studies, leaf δ13C usually served as a
criterion with which to distinguish C3 and C4 photosynthetic pathways [Craig, 1953; Tieszen et al., 1979]. Since
the 1980s, many experiments have demonstrated that leaf δ13C is linearly related to the ratio of internal to
ambient CO2 concentration (ci/ca) [Farquhar et al., 1982], and leaf δ13C is primarily restricted by leaf conduc-
tance, RuBP carboxylation efficiency, and other environmental factors that affect the plant physiology and
biochemistry [Condon et al., 1987; Ehleringer et al., 1991; Virgona and Farquhar, 1996]. Therefore, variations
in leaf δ13C patterns can potentially record a feedback of climate-driven changes in modern plant physiology
and biogeochemistry [Hultine and Marshall, 2000; Evans and Von Caemmerer, 2013]. In addition, due to the
positive correlation between leaf δ13C and leaf water use efficiency (WUE), where WUE refers to amount of
water loss accompanies the assimilation of CO2 during photosynthesis, leaf δ13C usually serves as a proxy
for leaf water use efficiency (WUE) [Farquhar and Richards, 1984; Wright et al., 1994; Condon et al., 2002].
More recently, leaf δ13C has also been frequently applied to the grouping of plants in ecosystems [Brooks
et al., 1997] and the reconstruction of paleoclimate [Kohn, 2010].

The results from numerous field surveys and laboratory experiments have shown that leaf δ13C is largely
affected by plant functional groups (e.g., plant life form and phylogeny type) and environmental factors
(e.g., precipitation, air temperature, and altitude) [Sun et al., 2003;Wang et al., 2008]. In C4 plants, for example,
the extra C4 carbon fixation enables them to gather more 13C and to have higher δ13C values compared with
C3 plants [Farquhar et al., 1989; O’Leary, 1988]. Brooks et al. [1997] found that life forms (e.g.,
deciduous/evergreen trees, deciduous/evergreen shrubs, deciduous/evergreen forbs, and mosses) could
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explain 50% of the variation in leaf δ13C values in three boreal forest ecosystems in Northern America. And
they further pointed that similar functional traits (e.g., δ13C) could be used to group life forms [Brooks et al.,
1997]. Moreover, other genetic differences also more or less affect the leaf δ13C values, such as leaf long-
evity, anatomical characters (e.g., stomata density) [Sun et al., 2003], plant phylogeny type [Leavitt and
Newberry, 1992], and leaf nutritional status (e.g., SLA, specific leaf area; Narea, nitrogen per unit leaf area)
[Sparks and Ehleringer, 1997; Li et al., 2006].

Additionally, climate change not only determines the survival and distribution of vegetation regionally and
globally but also profoundly affects terrestrial plant morphology and functional traits (e.g., δ13C) [Condon
et al., 1987]. Diefendorf et al. [2010] presented a strong positive correlation between leaf carbon isotope
fractionation (Δleaf, which is negatively related to leaf δ13C) and mean annual precipitation (R2 = 0.55) using
a database that covered 3310 published leaf δ13C values from 105 sampling locations around the world.
Other authors further indicated that precipitation was the dominant factor controlling leaf δ13C at large
spatial scales, a finding that was almost unanimously supported by related research from different regions
[Van de Water et al., 2002; Zhang et al., 2003; Schulze et al., 1998]. Previous studies have reported conflicted
conclusions over the potential for changes in mean annual temperature to influence δ13C. Most studies sug-
gested that low temperatures could weaken the photosynthetic enzymatic reactions, resulting in increased
ci/ca and decreased leaf δ13C values [Tieszen, 1991; Körner et al., 1991; Arens et al., 2000]; however, there are
also some studies insisted that low temperatures could reduce the conductance of stoma and
concentration of intercellular CO2 [Panek and Waring, 1995], resulting in higher leaf δ13C values [Ning et al.,
2002]. Altitude usually serves as a unique environmental factor that integrates CO2 concentration, air
temperature, and VPD (vapor pressure deficit), compared with other climate variables, deeply influencing
the leaf δ13C values. In general, leaf δ13C increases with higher elevations, both regionally and globally
[Hultine and Marshall, 2000; Körner et al., 1988; Li et al., 2009]. And extensive studies have also shown the
correlation between foliar δ13C and other abiotic factors (e.g., irradiance and atmospheric CO2 concentration)
[Farquhar et al., 1989; Feng and Epstein, 1995] and edaphic factors (e.g., soil salinity) [Flanagan and Jefferies,
1988]. Recently, the importance of biochemical and physiological mechanisms in controlling the leaf δ13C
values of plant tissue has got growing concern. The biochemical and physiological mechanisms include
different carbohydrate storage strategies, coordination between stomatal conductance and photosynthetic
capacity, and adjustment of leaf area to water-conducting tissue [Epron et al., 2012; Dubbert et al., 2012;
Tcherkez et al., 2011; Cernusak et al., 2013].

Most studies have focused on the dissimilarity of leaf δ13C among different species or vegetation types, or on
the varied leaf δ13C patterns along distinct environmental gradients under natural or artificially controlled
conditions [Song et al., 2008; Wang et al., 2008]. However, these studies, especially those from China, have
primarily concentrated on a few sites or in partial areas for which there are abundant published data. Thus
far, no consistent conclusions have emerged regarding how environmental conditions affect plant leaf
δ13C and how living plants adapt to dynamic changes in habitat by adjusting their leaf δ13C values.
Additionally, few studies have simultaneously analyzed interbiome and intrabiome variations in leaf δ13C
along environmental gradients at lager scales.

Hence, we have built a national data set of leaf δ13C for China’s C3 terrestrial plants using published literature
as well as unpublished data from the Northeast China Transect [Prentice et al., 2011] and the Tibetan Plateau
[Song et al., 2008]. The objectives of this study are as follows: (1) to explore the spatial distribution pattern of
leaf δ13C throughout China, (2) to examine the variation in leaf δ13C values among plant functional groups
(e.g., life forms and plant phylogeny types) and analyze the correlations between leaf δ13C and environmental
factors, and (3) to develop amultivariate linear model for leaf δ13C and environmental factors for further study.

2. Materials and Methods
2.1. Leaf δ13C Database Construction

The database of leaf δ13C in China was constructed from published literature (in Chinese or English) between
1992 and 2016. We only included data on the leaf δ13C of terrestrial C3 plants under natural conditions.
Samplings from campuses or parks were rejected to avoid the influence of human activities or industrial
pollution. Leaf δ13C values below �31.5‰ were also rejected, as this level is considered to reflect
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sampling from the understory, where the δ13C of ambient CO2 is seriously affected by soil respiration [Kohn,
2010]. Then, we recorded the geographic location (latitude and longitude) for each sampling site, and the
averaged or estimated location was computationally inferred based on related articles if the locations were
lacking. Ultimately, our database consisted of 2538 observations from 480 sampling sites, including 649
species representing 137 families and 349 genera throughout China.

2.2. Environmental Data and Species Taxonomy

Annual values of precipitation, relative humidity, air temperature, and sunshine hours were derived from 756
meteorological stations between 1992 and 2013. Climate data were interpolated at 10 km resolution using a
smoothing spline interpolation software (ANUSPLIN version 4.36) [Hancock and Hutchinson, 2006]. Then, the
mean annual precipitation (MAP, mm), relative humidity (RH, %), mean annual temperature (MAT, °C), and
solar hours (SH, hours) were calculated for each site.

To compare the differences in plant functional groups, the species in our database were classified into differ-
ent life forms (i.e., herbs, subshrubs, shrubs, subtrees, and trees) and phylogeny types (i.e., dicots, monocots,
gymnosperms, and ferns). Where subshrub is a kind of plant between grass and shrub. Usually, the stems of
subshrub which are close to the ground are semilignified, while the rest part of stems are herbaceous. The
semilignified stem of subshrubs can bear hibernating buds which can help subshrubs to regenerate after
winter or suffering some disasters (e.g., frost, drought, or overgrazing). Subshrubs are found to grow under
stressful environments with poor-nutrient soil, high temperatures, and drought in previous study
[Mencuccini, 2003] and in our database. Examples of subshrubs include Reaumuria soongorica and
Artemisia desertorum. “Subtree” is a kind of low wood plant between shrub and tree. In fact, there is no clear
classification between trees and shrubs for some large shrubs and low trees. These large shrubs and low trees
are called “subtree” in this study, because they have main branches compared with shrubs but are lower than
common trees (higher than 6 m). Examples of subtrees include Olea europaea and Sapium discolor, whereas
different researchers often treat them as shrubs or trees based on morphological characteristics in different
sites. For example, Olea europaea is treated as shrub in Jaén province, southern Spain [Rey and Alcantara,
2000], but treated as tree in Pisa, Italy, and Córdoba, Spain [Marchi et al., 2008; Rallo et al., 2000]. In our data-
base, subtrees are found in environments with abundant precipitation and long-time sunshine. We deter-
mined whether the plant was a subshrub or subtree based on the original description in related papers or
from other papers sampling at adjacent areas [Chu, 2007; Sun, 2007]. According to leaf longevity, herbs were
further subdivided into annual or perennial and shrubs, and trees were further subdivided into evergreen
or deciduous.

2.3. Data Analysis

To compare the differences in leaf δ13C among plant functional groups, we calculated the means of leaf δ13C
for each life form and plant phylogeny type. The δ13C variation in different plant functional groups was exam-
ined by one-way analysis of variance and a least significant difference multiple comparison or Tamhane’s T2
method. All statistical analyses were conducted using SPSS software (2012, ver. 22.0; SPSS Inc., USA).

Then, we attempted to use the factors that were closely correlated with leaf δ13C to build a partial least
squares (PLS) regression model. In comparison to traditional multiple regression modes, PLS model type is
more effective for constructing a multiple linear relationship between dependent and independent variables
if these independent variables are severely autocorrelative [Haenlein and Kaplan, 2004; Rosipal and Krämer,
2006; Wold et al., 1984]. Moreover, the outliers were removed via residual analysis for correcting the PLS
model. Finally, we predicted the spatial distribution of leaf δ13C for C3 plants in China based on the interpola-
tion of the PLS model.

3. Results
3.1. The Spatial Distribution and Overview of Leaf δ13C in China

The frequency histogram of leaf δ13C showed a sequential variation, primarily ranging from �21.05‰ to
�31.51‰, with a mean value of �27.15‰. The sampled data of leaf δ13C were collected from almost all
of China, although most data were concentrated in central and western China (Figure 1). More intensive leaf
δ13C sampling was conducted on the Loess Plateau, on the Qinghai-Tibet Plateau, and in eastern Inner
Mongolia. Leaf δ13C sampling from southeastern China was relatively sparser. For the spatial patterns of leaf
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δ13C, we further analyzed the linear relationship between leaf δ13C and longitude, latitude, respectively
(Figure 2). Leaf δ13C slightly decreased as longitude increased (P< 0.01, slope =�0.038‰ per degree) but first
increased and then decreased as the latitude increased (P< 0.01, R2 = 0.14). Combinedwith Figure 1, we found
that high leaf δ13C mostly collected from central and western China, such as Loess Plateau and Qinghai-Tibet

Plateau, southern Xinjiang province,
and most areas of Inner Mongolia.

3.2. Patterns of Leaf δ13C Across
Life Forms and Phylogeny Types

Leaf δ13C was varied with different
plant species. Among all observations,
the maximum leaf δ13C (�21.05‰)
was found in Alhagi sparsifolia, a sub-
shrub sampled from Bihu Lake,
where the annual rainfall is only
164 mm. The minimum leaf δ13C
(�31.5‰) was found in Castanopsis
sp., an evergreen tree in Lingshishan
National Forest Park (in Fujian
Province), where the annual rainfall is
1780 mm. The inner-class average of
leaf δ13C varied markedly across the
life forms, ranging from �26.52‰ for
subshrubs to �28.99‰ for subtrees
(Table 1). The order of averaged leaf
δ13C from different life forms was as
follows:subshrubs(�26.52‰)>herbs
(�26.94‰) = shrubs (�27.17‰) >

trees (�27.69‰) > subtrees
Figure 2. Variation of leaf δ13C (‰) along longitude and latitude. The gray
bands represent 95% prediction intervals.

Figure 1. Spatial distribution and frequency histogram of leaf δ13C (‰) sampled from China.
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(�28.99‰) (Figure 3). Moreover, no
remarkable difference was found
between annual (�27.23‰) and per-
ennial herbs (�26.84‰), and no
notable distinction was found
between evergreens (�27.54‰)
and deciduous trees (�27.88‰).
Conversely, the leaf δ13C values of
evergreen shrubs (�28.57‰) were
~2‰ lower than deciduous
shrubs (�26.98‰).

In addition, the order of averaged leaf
δ13C for all phylogeny types was
monocots(�26.36‰)>gymnosperms
(�26.74‰)=dicots (�27.31‰)> ferns
(�28.97‰) (Figure 3 and Table 1). This
finding indicated that monocots
sampled at the sites in our study
have higher leaf δ13C than other
phylogeny types.

3.3. Relationships Between Leaf δ13C and Environmental Factors

Figure 4 shows the relationship between leaf δ13C (‰) and environmental factors for all life forms (Figure 4,
left column) and for each different life form (Figure 4, right column) in the sampling data. For all the observa-

tions (n = 2538) in our database, leaf
δ13C had negative correlations with
mean annual precipitation (MAP,
slope = �0.18‰/100 mm, R2 = 0.19)
and relative humidity (RH,
slope = �0.081/percent humidity,
R2 = 0.22), implying higher leaf δ13C
values in drought environments
compared with rainy and wet areas.
This correlation is also suited to each
life forms (Figure 4, right column, and
Table 2). Leaf δ13C was positively
related to solar hours (SH,
slope = 0.0019‰/hour, R2 = 0.21),
showing that leaf δ13C values could
increase with longer solar hours. By
contrast, leaf δ13C had slighter corre-
lation with altitude (slope = 0.28‰/
1000 m, R2 = 0.055). Leaf δ13C of most
life forms were positively related to
SH and altitude, except for subtrees,
deciduous shrubs, and deciduous
trees (e.g., deciduous shrubs and
deciduous trees are uncorrelated
with altitude). The relationship
between leaf δ13C values and mean
annual temperature (MAT) was
relatively weak and showed a
second-order quadratic curve

Table 1. Overall Patterns of Leaf δ13C Values for Plant Life Forms and
Phylogeny Types

N Min Max Average SD

Life Forms
Herbs 1303 �31.50 �21.60 �26.94 1.61
Annual herbs 166 �30.85 �22.20 �27.23 1.74
Perennial herbs 1023 �31.50 �21.60 �26.84 1.60
Subshrubs 148 �30.53 �21.05 �26.52 1.69
Shrubs 411 �31.41 �22.30 �27.17 1.85
Deciduous shrubs 359 �31.27 �22.30 �26.98 1.77
Evergreen shrubs 44 �31.41 �23.88 �28.57 1.88
Subtrees 75 �31.42 �26.10 �28.99 1.47
Trees 437 �31.50 �23.46 �27.69 1.75
Deciduous trees 188 �31.47 �23.46 �27.88 1.65
Evergreen trees 230 �31.50 �23.88 �27.54 1.84
Phylogeny Types
Dicots 1766 �31.5 �21.05 �27.31 1.76
Monocots 354 �31.167 �21.6 �26.36 1.57
Gymnosperms 137 �30.392 �23.88 �26.74 1.52
Ferns 22 �31.04 �23.4 �28.97 1.78

Figure 3. Mean comparison of leaf δ13C (‰) for the dominant plant (a) life
forms and (b) phylogeny types. The length of the column and error bars
represent mean values of leaf δ13C and its standard error. The signs with
lowercase letters (a, b, c, and d) indicate significant differences at P < 0.05.
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(R2 = 0.14, P < 0.01). The leaf δ13C of subtrees and deciduous trees increased as MAT increased, but the leaf
δ13C decreased for other life forms under the same conditions (or has no significant change for deciduous
shrubs). This phenomenon suggests that the response of leaf δ13C to rising air temperatures is complex
and varies for different life forms. In summary, leaf δ13C is affected by kinds of environmental factors, such

Figure 4. The relationship between leaf δ13C (‰) and five environmental factors: mean annual precipitation (MAP, mm/
year), relative humidity (RH, %), mean annual temperature (MAT, °C), sunshine hours (SH, hours), and altitude (m) for all
samples (All) and different life forms. The solid lines represent a strong relationship (the higher slope on the premise of
linear significantly) between leaf δ13C values and environmental factors among the life forms. Conversely, the dashed lines
represent a weaker linearity for the remaining life forms. The gray bands represent 95% prediction intervals.
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as MAP, RH, SH, altitude, and MAT, but the overall effects are still relatively weak, in particular the effect of
MAT and altitude. Besides, the slopes of leaf δ13C across environmental factors were significantly different
when the species were divided into life forms. We found that leaf δ13C from subshrubs, evergreen shrubs,
and evergreen trees show a slightly higher correlation with environmental factors than from other life forms
(Figure 4, right column, and Table 2).

According to the above results, we established a PLS regression of leaf δ13C with environmental factors as
follows:

Leaf δ13C ¼ �26:59þ 0:0063�MAT þ 0:068�SHþ 0:00020�altitude

� 0:00081�MAP � 0:0043�RH

R2 ¼ 0:33; n ¼ 2415

And then we attempted to apply this model into the entire study region (Figure 5). Figure 5 shows that leaf
δ13C is higher in western China, such as Qinghai-Tibet Plateau, Loess plateau, southern Xinjiang province, and
most areas of Inner Mongolia. Conversely, lower leaf δ13C appeared in northeastern and southeastern China.

4. Discussion
4.1. Overall Patterns of Leaf δ13C in China

This work presented an analysis of the leaf δ13C of a large number of terrestrial C3 plant species throughout
China. Our analysis indicated that the arithmetic mean of leaf δ13C from 2538 observations in China is
�27.15‰, which was nearly identical to the global average of leaf δ13C, �27.0‰. The latter was reported
by Kohn [2010], who collected leaf δ13C values from approximately 570 sites on a global scale. Moreover,
our result was slightly higher than the global average (�27.25‰) reported by O’Leary [1988]. The histogram
of δ13C values showed the range from �21.05‰ to �31.50‰, with the maximum δ13C in relatively arid
ecosystems and the minimum in the tropical rain forest. This range also demonstrated the vast niche breadth
and extensive adaptability of C3 plants in China.

On further analysis, we found that high leaf δ13C mostly appeared in central and western China, such as Loess
Plateau and Qinghai-Tibet Plateau, southern Xinjiang province, and most areas of Inner Mongolia.

4.2. Variations in Leaf δ13C Across Life Forms and Phylogeny Types

Various genetic and environmental factors generate the abundant diversity in the structure and function of
terrestrial plants [Díaz and Cabido, 2001; Swenson, 2012; Tilman et al., 1997]. In recent studies, one hot spot
has been determining which and how structural and functional traits can be used to identify plant species
and to infer the environmental conditions during the life of studied plants [Flynn et al., 2011; Norberg et al.,
2001; Suding et al., 2008]. In this study, we found obvious leaf δ13C distinction between life forms:
subshrubs > herbs = shrubs > trees > subtrees. Previous studies have also indicated a robust link between
leaf δ13C and life forms. Brooks et al. [1997] demonstrated that life forms could explain 50% of the variation in
leaf δ13C based on the sampling of the dominant species in three boreal forest ecosystems. They ascribed the

Table 2. Linear Regression of Leaf δ13C (‰) With Environmental Variables (MAP, RH, MAT, SH, and Altitude) in China

MAP RH MAT SH Altitude

Slope R2 Sig. Slope R2 Sig. Slope R2 Sig. Slope R2 Sig. Slope R2 Sig.

Annual herbs �0.0014 0.11 ** �0.060 0.076 ** �0.063 0.050 ** 0.0015 0.098 ** 0.00021 0.025 **
Perennial herbs �0.0017 0.12 ** �0.086 0.15 ** �0.072 0.064 ** 0.0020 0.18 ** 0.00019 0.033 **
Subshrubs �0.0028 0.071 ** �0.083 0.14 ** �0.087 0.031 * 0.0020 0.12 ** 0.00067 0.14 **
Deciduous shrubs �0.0023 0.17 ** �0.072 0.18 ** �0.036 0.0064 - 0.0017 0.20 ** 0.00087 0.00019 -
Evergreen shrubs �0.0025 0.45 ** �0.14 0.41 ** �0.14 0.39 ** 0.0028 0.38 ** 0.00060 0.14 **
Subtrees �0.0013 0.046 * �0.070 0.026 * 0.10 0.074 * 0.00058 - - 0.00021 - -
Deciduous trees �0.00073 0.018 * �0.040 0.058 ** 0.092 0.062 * 0.00070 0.028 * 0.00031 0.0099 -
Evergreen trees �0.0021 0.36 ** �0.11 0.43 ** �0.098 0.25 ** 0.0021 0.27 ** 0.00048 0.16 **

*P < 0.05;
**P < 0.01; - no significance.
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variation in leaf δ13C among different life forms to light intensity and leaf longevity, suggesting that
undergrowth leaves have lower leaf δ13C values compared with canopy leaves, because the light intensity
is reduced from canopy to undergrowth, and evergreen leaves also have lower δ13C values compared with
deciduous leaves due to the lower ci/ca ratios of intercellular than ambient CO2 for evergreen plants.
Medina and Minchin [1980] pointed the vertical stratification of leaf δ13C could also be caused by lower
δ13Cair values of soil emission (lower proportion of δ13 values of CO2 closer to ground). Based on the results
from Brooks et al. [1997] and Medina and Minchin [1980], the rank of leaf δ13C averaged across life forms
should be tree > shrub > herb (i.e., the vertical gradients of leaf δ13C in a forest), deciduous > evergreen
leaves at a single sampling site. However, Song et al. [2008] found that the leaf δ13C of dominant species on
the Tibetan Plateau follows the order xeromorphs > graminoid ~ sedges > alpine shrub > evergreen
broadleaved tree > evergreen coniferous, an order that was explained by the difference in species’
adaptation to water stress. These studies showed that the link between leaf δ13C and life forms varies
among different areas. In our study, we found that averaged leaf δ13C of herbs was higher than trees
and slightly higher than shrubs (Figure 3), which could be related to different nitrogen allocation
strategies in leaves. Trees and shrubs prefer to store more nitrogen and biomass in cell walls to increase
the structural toughness of leaves, and consequently less nitrogen in the photosynthetic apparatus,
which results reduced photosynthetic capacity [Hikosaka et al., 1998; Onoda et al., 2004; Warren and
Adams, 2004]. Conversely, herbs prefer to allocate more nitrogen into RuBPCase and thylakoid resulting
in increased photosynthetic capacity [Takashima et al., 2004; Wright et al., 2004]. Finally, the higher
photosynthetic capacity will reduce more CO2 concentration in leaf (ci), resulting in lower ci/ca and
higher leaf δ13C.

Therefore, plant functional grouping (e.g., life form and phylogeny type) is an important factor that regulates
the magnitude of leaf δ13C in the same or similar environments according to environmental adaptability and
reflects the adaptability of plants to that habitat. And these factors could partly determine the spatial distri-
bution of appropriate conditions for different species.

4.3. Response of Leaf δ13C to Different Climate Variables

Climate change has a lasting impact on spatial variation and its characteristics of vegetation, potentially
altering certain functional traits of plants, such as leaf δ13C [Diefendorf et al., 2010]. Previous studies

Figure 5. The spatial pattern of potential distributions of leaf δ13C values, which is simulated based on a partial least
squares model (R2 = 0.33, n = 2415).
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have proposed that variation in leaf δ13C is affected by water availability, temperature and altitude, and
so on [Diefendorf et al., 2010; Ning et al., 2002; Lin, 2008]. However, no consistent conclusion has been
reached about the type (positive or negative) and intensity of these effects.

In this study, we analyzed and quantified the relationship between water availability (including MAP and RH)
and leaf δ13C values based on our database. We found that leaf δ13C dropped by 0.18‰ for every 100 mm
increase in MAP and decreased by 0.81‰ for every 10% increase in RH in China, findings that align with
related studies at regional or global scales. Diefendorf et al. [2010] suggested that MAP is the strongest
predictor of Δleaf (i.e., leaf δ13C) among the climate variables in a global database because of the
markedly positive correlation of MAP with Δleaf. Water deficit might reduce either stomata conductance
or stomata density, leading to a lower ci/ca and a positive leaf δ13C [Sun et al., 2003; Warren et al., 2001].
However, in the wet environment, the slope of leaf δ13C with MAP will likely be “flattened” as high MAP,
indicating that carbon isotope discrimination remains relatively constant as MAP further increase [Kohn,
2010]. Subshrubs, leaf δ13C of evergreen shrubs, and evergreen trees showed a steeper slope as MAP
and RH increased, indicating that their leaf δ13C is more sensitive to water availability than other
life forms.

The response of leaf δ13C to MAT is important but relatively complex. Farquhar et al. [1984] noted that the
photosynthetic enzyme activities strengthened as temperature increased, resulting in a lower ratio of ci/ca
and higher δ13C within a certain range. Conversely, low temperature was believed to reduce the transmission
rate of ci and lead to a low ratio of ci/ca and high δ13C. In this study, we found a second-order quadratic curve
for the relationship of leaf δ13C with MAT, where leaf δ13C reached its peak value when MAT = �0.14°C. The
leaf δ13C of subtrees and deciduous trees slightly increased as MAT increased, but the leaf δ13C slightly
decreased for other life forms under the same conditions (or has no significant change for deciduous shrubs),
resulting in a quadratic function of leaf δ13C with MAT when all the data were pooled. We also found a weakly
positive correlation of leaf δ13C with elevation (slope = 0.28‰ per 1000 m). Many studies treated altitude as a
special environmental factor that integrated several climate factors such as temperature, relative humidity,
partial pressure of CO2, and vapor pressure deficit (VPD) [Körner et al., 1991; Morecroft and Woodward,
1990]. Variation of leaf δ13C values along altitude gradients has been reported to be consistently positive
in different locations around the world [Hultine and Marshall, 2000; Marshall and Zhang, 1994; Körner et al.,
1988]. For instance, Körner and Farquhar [1988] analyzed the 150 leaf δ13C samplings frommountains around
the world, including Australia, China, New Zealand, and Venezuela, and discovered a 1.2 ± 0.9‰ increase for
every 1000 m increase in elevation. At upper elevations, cold temperature, reduced CO2 partial pressure and
low VPD could individually or synergistically decrease leaf δ13C through controlling the stomatal conduc-
tance, CO2 transmission velocity, or photosynthetic efficiency [Craig, 1957; Körner et al., 1991; Morecroft
and Woodward, 1990].

Hence, high leaf δ13C mostly appeared in central and western China, such as Loess Plateau and Qinghai-Tibet
Plateau, southern Xinjiang province, and most areas of Inner Mongolia, which might be related to the less
rainfall, high altitude, and long-time sunshine in these regions. Conversely, low leaf δ13C in northeastern
and southeastern China could be explained by the moist and cloudy weather as well as the low altitude in
those regions.

The leaf δ13C of life forms has different responses to each climate variable change (Figure 4 and supporting
information). For example, leaf δ13C of evergreen species has higher change rate (steeper slope under the
precondition of P < 0.05) than deciduous species under changing environment conditions in this study,
except for evergreen trees versus deciduous shrubs with changing MAP. Combining with the results of
previous studies, we explored some possible explanations for this tendency. On the one hand, the deciduous
species is more vulnerable to water stress-induced embolism than the evergreen species under arid and hot
environment. Hence, deciduous species tend to shed their leaves to reduce the risk of water stress-induced
embolism [Sobrado, 1993], while evergreen species are more inclined to enhance WUE (i.e., higher leaf δ13C)
to maintain physiological capacity [Chen et al., 2009;Wang et al., 2013]. So compared with deciduous species,
evergreen species have higher leaf δ13C changing rate for tackling the environment change. On the other
hand, different carbohydrate storage strategies of deciduous and evergreen species are maybe another
key point. Evergreen species prefer to use new carbon (i.e., recently assimilated carbohydrate) for
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sprouting in spring, while deciduous
spices rely more on remobilization old
carbon (assimilated during the previous
year and stored overwinter) [Epron
et al., 2012; Kagawa et al., 2006; von
Felten et al., 2007]. The new foliar carbon
is produced by recent photosynthesis,
theoretically, which can better record
the recent environment change than
the remobilization old foliar carbon. In
other words, leaf δ13C of evergreen spe-
cies could be more sensitive to recently
environmental changes than that of
deciduous species. In addition, some
factors, such as coordination between
stomatal conductance and photosyn-
thetic capacity, rate of leaf area to
water-conducting tissue, can also adjust

the response of leaf δ13C to environmental changes for different life forms [Cernusak et al., 2013].

Overall, although plant functional groups and environmental conditions are inherently variable, variation of
plant leaf δ13C along environmental gradients offers one way to evaluate potential plant responses to climate
change. And the different response of leaf δ13C of life forms to climate change might also provide a reference
for future studies simulating the response of vegetation distribution to climate change.

4.4. Model Uncertainty

We adopted “leave-one-out cross-validation” method [Arlot and Celisse, 2010] to evaluate performance of
the PLS model and also analyzed the relative error of predicated leaf δ13C compared with observed leaf
δ13C (Figure S6). The most of relative error is ranged from �10% to 10%. The underestimated leaf δ13C
sites were mainly located in the north and west of China, whereas the overestimated leaf δ13C sites were
found in most of China. And the PLS model build in our study overestimated leaf δ13C for most life forms,
especially for deciduous trees, evergreen shrubs, and subtrees (i.e., difference between the predicated and
observed averaged leaf δ13C is more than 1‰) (Figure 6), which means that there may be a certain risk in
applying the PLS model for deciduous trees, evergreen shrubs, and subtrees. On the other hand, due to
the limitation of data, the PLS model could only explain 33% variation in leaf δ13C, which would led to
a high-model uncertainties when we applied this model into continental scale. The further work would
be focused on collecting more data, including variety of physiological and biochemical features (e.g.,
SLA, specific leaf area; Narea, nitrogen per unit leaf area; and RuBPCase content) [Prentice et al., 2011;
Takashima et al., 2004], to improve this model.

Besides, this leaf δ13C database lacks abundant sampling data from the western Qinghai-Tibet Plateau as well
as northeastern and southeastern China. These data may even lead to slightly higher average values of leaf
δ13C in China. Therefore, we suggest that more research efforts are needed in these regions for a clearer
understanding of the spatial distribution of leaf δ13C.

5. Summary

The collected leaf δ13C data in this study cover almost all of China, with an averaged value of�27.15‰. High
leaf δ13C mostly appeared in central and western China, such as Loess Plateau and Qinghai-Tibet Plateau,
southern Xinjiang province, and most areas of Inner Mongolia. Further analysis showed that leaf δ13C was
not only closely correlated with plant life forms but also varied along with environmental change. We
concluded that environmental factors (such as precipitation, air temperature, sunshine hours, and altitude)
are the important factors influencing the spatial distribution of leaf δ13C in China. In other words, response
of leaf δ13C to climate change could be a powerful tool in reconstruction of paleoclimatic environments
and predication of vegetation succession under future climate change.

Figure 6. The comparison of observed and predicated averaged leaf
δ13C with PLS model across life forms, where SS, PH, DS, AH, ET, DT, ES,
and ST represent subshrubs, perennial herbs, deciduous shrubs, annual
herbs, evergreen trees, deciduous trees, evergreen shrubs, and subtrees,
respectively.
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