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Abstract – Sedimentary rocks from the Ediacaran–Cambrian boundary record important biological,
climatic and geotectonic changes during this time. To date, only few geochemical investigations on
the upper Ediacaran – upper Cambrian rocks in the Tarim Basin have been carried out. Here, we report
high-resolution δ13Ccarb records from the Penglaiba, the Wushi phosphorite and the Dongergou sec-
tions from Ediacaran–Cambrian Series 3 in the Keping area of the Tarim Basin. The sections display
several obvious δ13Ccarb shifts; δ13Ccarb values increased from 3‰ to 6.7‰ across the Qigebulage
Formation. Moreover, a negative δ13Ccarb shift across the Ediacaran–Cambrian boundary is appar-
ent; δ13Ccarb values decreased to a minimum of −9.8‰ in the Wushi phosphorite section (−7.7‰
in Dongergou section and −5.4‰ in Penglaiba section), followed by a positive carbonate carbon iso-
topic excursion across the Yuertusi Formation into the middle of the overlying Xiaoerbulak Formation.
Furthermore, more or less invariable positive δ13Ccarb values characterize the middle and upper Xiao-
erbulak Formation. The most negative δ13Ccarb value (−14.3‰) occurred near the base of the Shayilik
Formation, which is the absolute minimum value among the studied sections of the Cambrian Series
2 to Cambrian Series 3 transition in the world. The δ13C data from Keping, Tarim Basin are in good
agreement with carbon isotope profiles recorded in South China, and these events may reflect the per-
turbation of the carbon cycle in the Tarim Basin during the Ediacaran–Cambrian and the Cambrian
Series 2 – Cambrian Series 3 transitions.

Keywords: Ediacaran–Cambrian transition, Cambrian Series 2–3, carbon isotope, Tarim Basin, NW
China

1. Introduction

Terminal Ediacaran and Cambrian successions world-
wide record the consequences of profound geo-
biological changes in continental configuration, global
climate, biological evolution, sea level and oxygen
concentrations of the atmosphere at that time (e.g.
Knoll, 1991; Zhu et al. 2003; Fike et al. 2006; Zhu,
Strauss & Shields, 2007; Guo et al. 2010a , b, 2013;
Maloof et al. 2010; Shields-Zhou & Och, 2011; Ji-
ang et al. 2012; Schrag et al. 2013; Feng et al. 2014;
Wang et al. 2015; Och et al. 2016). Numerous stud-
ies revealed the great chemostratigraphic potential
of high-resolution carbon isotope records during the
Precambrian–Cambrian transition (Brasier et al. 1994;
Kaufman & Knoll, 1995; Brasier & Sukhov, 1998;
Saltzman et al. 1998, 2000, 2004; Montañez et al.
2000), including many studies from the Yangtze Plat-
form (Li et al. 1999, 2010, 2013; Shen & Schidlowski,
2000; Zhu et al. 2003, 2004; Guo et al. 2007, 2010a, b,
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2013, 2014; G. Jiang et al. 2007, 2012; Zhou & Xiao,
2007; Zhu, Strauss & Shields, 2007; Sawaki et al.
2008; Zhao & Zheng, 2010). A relevant archive of sed-
imentary rocks from this time interval is well exposed
in the Tarim Basin, China, including the preservation
of different palaeoenvironmental settings. Similar sed-
imentary sequences between the Yangtze Platform and
the Keping area of the Tarim Basin have been observed
(Chen et al. 2004, 2010; Sun et al. 2004; Feng et al.
2006; He, Xu & Yuan, 2007; Yu et al. 2009).

The entire sedimentary succession comprises (in
ascending stratigraphic order): limestone, dolostone,
chert, black shale and phosphorite of the Ediacaran Qi-
gebulage Formation and the lower Cambrian Yuertusi,
Xiaoerbulak and Wusonger formations and the middle
Cambrian Shayilik and Awatage formations. This sed-
imentary succession in the Tarim Basin is therefore
well suited to uncover the interactions between atmo-
sphere, hydrosphere, biosphere and lithosphere during
this critical interval of Earth history. However, only a
few geochemical studies (Chen et al. 2004, 2010; Sun
et al. 2004; Feng et al. 2006; He, Xu & Yuan, 2007;
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Figure 1. (Colour online) Geological map of the Tarim Basin (modified from Feng et al. 2006).

Yu et al. 2009) have been focused on the stratigraphy
and the geological events in the Tarim Basin during the
Ediacaran–Cambrian and Cambrian Series 2 – Cam-
brian Series 3 transitions. These are insufficient for
comparison with the Yangtze Platform and other geo-
logical successions of the world, especially the division
and the correlations of the stratigraphy between the
Ediacaran–Cambrian and Cambrian Stage 4 – Stage 5
boundaries.

This study focuses on sedimentary rocks across
the Ediacaran – Cambrian Series 3 transition in the
Tarim Basin, NW China, considering the Penglaiba,
the Dongergou and the Wushi phosphorite sections
in western Xinjiang in particular (Fig. 1). One of the
major aims was to investigate the link between high-
resolution carbon isotope variations and the correlation
with sections in other regions and referred to trans-
gression. Moreover, the data can be used for support-
ing/refining the chemostratigraphic subdivision of the
Ediacaran – Cambrian Series 3 boundary in China and
elsewhere.

2. Geological setting and samples

The Tarim Basin is located in NW China, and con-
tains sediments of the Ediacaran–Cambrian transition
(Fig. 1). The Keping area in the northwestern part of
the Tarim Basin provides good outcrop exposures from
this time interval. During the Ediacaran–Cambrian
transition, the Tarim Basin and the Yangtze platform
were situated in a low-latitude position (Fig. 2) with
similar depositional facies. This implies that the Tarim
Basin is good for a regional stratigraphic division
and correlation between both areas (Zhou 2001; Peng,
2009; Peng, Babcock & Cooper, 2012).

2.a. Penglaiba section

The Penglaiba section is located in Keping county,
NW Xinjiang Uygur Autonomous Region. This sec-
tion provides the most complete record including

Figure 2. (Colour online) Palaeogeographic map during Edi-
acaran and Cambrian transition. (1) Lijiangtuo; (2) Wuliu-
Zengjiayan; (3) Xiaotan; and (4) Penglaiba sections, China
(modified from Scotese & McKerrow, 1990; McKerrow,
Scotese & Brasier, 1992; Saltzman et al. 2000).

the Qigebulage, Yuertusi, Xiaoerbulak, Wusonger and
Shayilik formations with no obvious depositional hi-
atus (Fig. 3). The Qigebulage Formation consists of
carbonate and captures the transgressive Ediacaran–
Cambrian boundary. The 20 m thick sequence of the
Yuertusi Formation consists of black phosphatic sili-
ceous rocks, phosphorite, black shale and dolostone
and contains benthic small shelly fossils (Chen et al.
2004, 2010; Sun et al. 2004; Feng et al. 2006; He,
Xu & Yuan, 2007; Yu et al. 2009). The overly-
ing 114 m thick sequence of the Xiaoerbulak Forma-
tion consists of dolostone and intercalated limestone
(Feng et al. 2006). Remains of trilobites, brachio-
pods, ostracods and small shelly fossils are com-
mon. The overlying Wusonger Formation, an 87 m
thick sequence of dolostone and muddy dolostone
(Feng et al. 2006), is time-equivalent to the upper-
most Stage 3 and Stage 4, Cambrian Series 2 (Fig. 3a;
Zhou, 2001; Peng, 2009). Trilobite species such as
Paokannia sp. and Redlichia sp. from the Paokan-
nia zone (Zhou, 2001) can be observed in the lower
and middle part of the Wusonger Formation, which
correlate to trilobite zones on the Yangtze Platform
such as the Ovatoryctocara granulate–Bathynotus
holopygus zone, the Arthricocephalus jiangkouensis,
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Figure 3. (Colour online) Comparison of temporal variations in δ13Ccarb, δ18Ocarb and TC for the (a) Penglaiba, (b) Wushi phosphrite
and (c) Dongergou sections.

Arthricocephalus chauveaui and Arthricocephalites
taijiangensis zones (Zhou, 2001; Peng, 2009).

The 105 m thick sequence of the Shayilik Formation
captures the transgressive Stage 4 – Stage 5 boundary
(Cambrian Series 2 – Series 3; Fig. 3a; Zhou, 2001;
Peng, 2009) and consists of dolostone, intercalated
muddy dolostone and mudstone. The Kunmingaspis–
Chittidilla trilobite zone (containing Chittidilla nanji-
angensis Lu et Zhang, Kunmingaspis kalpingensis
Zhang) of the Shayilik Formation in the Tarim Basin
correlates with the Oryctocephalus indicus zone as
well as the Peronopsis taijiangensis and Peychagnostus
gibbus trilobite zones on the Yangtze Platform (Zhou
2001; Peng, 2009).

Seventy-two (72) samples were collected from the
Penglaiba section for geochemical work in this study.

2.b. Wushi phosphorite section

The Wushi phosphorite section is located in Wushi
county, Xinjiang Uygur Autonomous Region, and
comprises sedimentary rocks of (in ascending strati-
graphic order) the Qigebulage, Yuertusi and Xiaoerbu-
lak formations (Fig. 3b). The 165 m thick Qigebulage
Formation consists of dolostone and sandy dolostone,

intercalated siltstone and sandstone, and there are
abundant stromatolites, oncolites and micropalaeoflora
in the formation. The overlying 24 m thick sequence
of the Yuertusi Formation consists of phosphatic sili-
ceous rocks, phosphorite, black shale and limestone.
The boundary of the Ediacaran and the Cambrian is
located between the Qigebulage and Yuertusi form-
ations. The 11 m thick sequence of the Xiaoerbulak
Formation consists of dolostone and siliceous dolo-
stone. Fifty-nine (59) samples were collected from the
Wushi phosphorite section for geochemical work in
this study.

2.c. Dongergou section

The Dongergou section is located 60 km SW of Akesu
city, Xinjiang Uygur Autonomous Region, and com-
prises sedimentary rocks of the Yuertusi Formation
(Fig. 3c). This 16.5 m thick sequence consists of black
phosphatic siliceous rocks, phosphorite, black shale
and limestone with small shelly fossils (Anabarites–
Protohertzina; Chen et al. 2004, 2010; Sun et al. 2004;
Feng et al. 2006; He, Xu & Yuan, 2007; Yu et al.
2009). Fourteen (14) samples were collected from the
Dongergou section for geochemical work in this study.
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3. Analytical methods

Samples were chipped and pulverized (200 mesh).
Total carbon (TC) abundances were measured at
1400 °C using a high-frequency infrared carbon and
sulphur analyser at the Institute of Geographic Sci-
ences and Natural Resources Research, Chinese
Academy of Sciences. CO2 for carbon and oxygen
isotope analyses was liberated from whole-rock car-
bonates with phosphoric acid (McCrea, 1950; Wachter
& Hayes, 1985) at 50 °C for 48 hours (dolostone)
and 24 hours (limestone), respectively, and sub-
sequent cryogenic distillation. All carbonate carbon
and oxygen isotope analyses were carried out at the
Institute of Geographic Sciences and Natural Re-
sources Research, Chinese Academy of Sciences, us-
ing a ThermoFinnigan Delta Plus mass spectrometer.
The analytical procedure was controlled by measur-
ing the Beijing laboratory standard GBW 04406 for
its δ18Ocarb (δ18Ocarb-standard: −12.40‰; standard devi-
ation: 0.20‰) and δ13Ccarb (δ13Ccarb-standard: −10.85‰;
standard deviation: 0.10‰) values. Results are repor-
ted in the standard delta notation as δ13C and δ18O
v. VPDB. Standard deviations, as determined from
replicate analyses, are generally better than 0.10 and
0.20‰ for carbon and oxygen isotopes, respectively.

In order to constrain carbonate diagenesis, samples
were further studied for their elemental abundances
of Mn, Sr, Fe, Ca and Mg (Veizer, 1983; Popp et al.
1986; Kaufman et al. 1993; Veizer et al. 1997, 1999).
Samples were weighted and digested in 2N HCl and
elemental concentrations were measured with atomic
absorption spectroscopy at the Institute of Geographic
Sciences and Natural Resources Research, Chinese
Academy of Sciences. The precision is generally bet-
ter than 5 %. Results were corrected for the amount of
insoluble residue (soluble (%) = (total weight – weight
insoluble residue)/total weight).

4. Results

4.a. Penglaiba section

A total of 72 samples from the following lithologies
were analysed on TC abundance and carbon isotopic
composition (Fig. 3a; Table 1): carbonates from Qige-
bulage Formation, phosphorite and carbonates at the
Yuertusi Formation, dolostones of the Xiaoerbulak and
Wusonger formations and carbonates of the Shayilik
Formation. TC abundances vary over the range 8.5–
13 wt % in the Qigebulage Formation, 0.4–13.2 wt %
in the Yuertusi Formation, 9.4–13.3 wt % in the Xiao-
erbulak Formation, 8.2–13.2 wt % in the Wusonger
Formation and 8.7–15.1 wt % in the Shayilik Forma-
tion (Fig. 3a; Table 1).

δ13Ccarb values for sediments range from –2.9‰ to
6.7‰ in the Qigebulage Formation, from –5.4‰ to
3.5‰ in the Yuertusi Formation, from –0.7‰ to 3.7‰
in the Xiaoerbulak Formation, from –3.2‰ to 5.4‰ in
the Wusonger Formation and from 0‰ to –14.3‰ in
the Shayilik Formation (Fig. 3a; Table 1).

Elemental abundances of Mn and Sr are highly vari-
able (Mn 0.003–0.078 %; Sr 0.003–0.039 %). Analyt-
ical results are given in Table 1.

4.b. Wushi phosphorite section

The carbonate carbon isotope result is based on
59 samples (Fig. 3b; Table 2), including carbonates
from the Qigebulage Formation (165 m); across the
Ediacaran–Cambrian transition; siliceous rocks, phos-
phorite and black shale at the base of Yuertusi Forma-
tion; and dolostones through the whole Yuertusi Form-
ation.

Similar to the Penglaiba section, the base of the
Yuertusi Formation in the Wushi phosphorite section
consists of black phosphatic siliceous rocks, phosphor-
ite and black shale (TC 0.3–1.8 wt %), whereas the li-
thology of the rest of the section is carbonate (TC 7.6–
13.2 wt %).

δ13Ccarb values range between –2.9‰ and 6.7‰ in
the Qigebulage Formation, and –9.8‰ and 1.1‰ in
the Yuertusi Formation.

Elemental abundances of Mn and Sr are highly vari-
able (Mn 0.003–0.141 wt %; Sr 0.002–0.041 wt %).
Analytical results are given in Table 2.

4.c. Dongergou section

The Dongergou section comprises the Yuertusi Form-
ation, which consists of black phosphatic siliceous
rocks, phosphorite and black shale (TC 0.2–0.7 wt %),
whereas the lithology of the rest of the formation is
carbonate (TC 5.3–13.2 wt %).

Moreover, δ13Ccarb values vary from –7.7‰ to –
0.1‰. Elemental abundances of Mn and Sr are highly
variable (Mn 0.010–0.105 %; Sr 0.002–0.319 %). Ana-
lytical results are given in Table 3.

5. Carbonate diagenesis

Primary depositional trends from carbonate reflect sea-
water chemistry; however, carbonate diagenesis can
change the elemental abundances and isotopic com-
positions of carbon and oxygen significantly (e.g.
Veizer, 1983; Marshall, 1992). Most frequently, an in-
crease in the abundance of Mn, a decrease in the Sr
concentration and a decrease in δ13Ccarb and δ18O (e.g.
Veizer, 1983; Marshall, 1992) reflect progressing dia-
genesis.

Usually, a Mn/Sr ratio <5 (even better is Mn/Sr ratio
<2) and δ18O values more positive than –10‰ (even
better is positive than –5‰) (Kaufman & Knoll, 1995)
suggest that a carbonate has been retained near primary
carbon isotope values and has archived past seawater
chemistry.

No correlation can be observed between the
carbonate carbon and oxygen isotopic composi-
tions of the sedimentary rocks from the Yuertusi,
Wusonger and Shayilik formations of the Penglaiba
section, whereas a correlation is apparent between the
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Table 1. Analytical results for sediments from the Penglaiba section, Tarim Basin, NW China.

δ13Ccarb δ18Ocarb

Depth TC (‰, (‰, Ca Fe Mg Mn Sr Mn/ Mg/
Samples Unit Lithology (m) (%) VPDB) VPDB) (wt%) (wt%) (wt%) (%) (%) Sr Ca

Plb 1 Qigebulage Fm. Dolostone 1.2 13.03 1.3 –5.6 18.10 0.28 12.01 0.031 0.005 6.52 0.66
Plb 5 Dolostone 1.6 11.16 1.5 –5.7 19.97 0.25 10.97 0.027 0.009 2.87 0.55
Plb 6 Yuertushi Fm. Siliceous rocks 1.8 0.41 –3.6 –8.9 2.25 1.15 0.11 0.074 0.007 10.39 0.05
Plb 8 Siliceous rocks 2.15 0.15 3.5 –10.9
Plb 10 Mudstone 2.6 0.20 –5.4 –8.7 1.45 0.27 0.11
Plb 12 Siliceous rocks 2.9 0.17
Plb 13 Siliceous mudstone 4 0.61 –3.4 –10.2 1.99 1.60 0.05 0.077 0.009 8.57 0.03
Plb 15 Siliceous dolostone 5.4 12.65 1.7 –6.8
Plb 16 Muddy dolostone 5.75 13.04 0.4 –9.7 14.45 0.17 12.20 0.025 0.004 6.27 0.84
Plb 17 Muddy dolostone 6.15 13.21 2.0 –7.2 20.86 0.22 11.54 0.014 0.021 0.68 0.55
Plb 18 Muddy dolostone 12.15 12.09 –0.6 –9.7 22.19 0.37 11.84 0.055 0.007 7.71 0.53
Plb 22 Muddy dolostone 13.5 8.23 0.7 –6.6 12.26 0.60 6.55 0.036 0.008 4.66 0.53
Plb 25 Dolostone 15.5 12.65 0.0 –7.2 22.14 0.44 13.17 0.077 0.004 17.18 0.59
Plb 27 Dolostone 17 12.68 0.6 –6.5 21.61 0.49 13.15 0.078 0.004 19.21 0.61
Plb 29 Dolostone 19 12.03 0.0 –6.9 16.10 0.48 9.59 0.063 0.004 14.96 0.60
Plb 31 Dolostone 20.7 11.42 0.6 –7.3 20.63 0.12 12.45 0.018 0.007 2.56 0.60
Plb 33 Yuertushi Fm. Dolostone 21.6 12.98 0.4 –7.6 17.95 0.14 11.53 0.042 0.004 9.78 0.64
Plb 34 Xiaoerbulak Fm. Dolostone 21.7 12.13 –0.7 –10.6 21.16 0.28 13.00 0.018 0.006 2.94 0.61
Plb 36 Dolostone 23 13.16 1.3 –7.3
Plb 37 Dolostone 24 13.15 2.1 –7.0 14.86 0.07 12.40 0.017 0.003 5.82 0.83
Plb 38 Dolostone 27.5 13.29 1.9 –7.3 17.78 0.04 9.34 0.016 0.005 3.23 0.53
Plb 41 Dolostone 31.6 12.34 2.2 –7.6 19.19 0.07 12.81 0.015 0.005 3.03 0.67
Plb 43 Dolostone 36 12.43 2.6 –7.3 20.11 0.07 12.74 0.013 0.005 2.58 0.63
Plb 45 Dolostone 40.5 13.26 2.8 –6.5 21.13 0.06 12.88 0.011 0.007 1.53 0.61
Plb 47 Dolostone 46.3 11.44 2.7 –6.8 21.50 0.08 12.97 0.012 0.007 1.80 0.60
Plb 48 Dolostone 52.7 12.92 2.5 –6.2 21.47 0.04 13.41 0.012 0.006 1.90 0.62
Plb 49 Dolostone 55.6 13.00 2.1 –8.1
Plb 50 Dolostone 63.3 13.08 3.0 –6.6 21.11 0.04 13.13 0.010 0.006 1.83 0.62
Plb 52 Dolostone 68.7 12.94 2.3 –7.8 20.68 0.04 12.80 0.010 0.005 2.02 0.62
Plb 53 Dolostone 74.5 12.96 2.9 –6.8
Plb 54 Dolostone 80 13.02 3.7 –5.9 20.87 0.05 12.80 0.010 0.009 1.12 0.61
Plb 56 Dolostone 91.2 12.93 3.6 –6.8 20.33 0.04 12.59 0.011 0.006 1.86 0.62
Plb 57 Dolostone 96.4 13.24 2.1 –9.2
Plb 58 Dolostone 104 13.11 3.5 –5.9 21.16 0.04 13.34 0.011 0.004 2.57 0.63
Plb 60 Dolostone 118.6 11.96 2.9 –7.6 20.12 0.04 12.73 0.008 0.003 2.41 0.63
Plb 115 Dolostone 124.7 10.48 1.9 –6.9
Plb 116 Dolostone 127.7 9.36 1.4 –8.5 18.62 0.04 11.82 0.008 0.003 2.86 0.63
Plb 62 Dolostone 133.8 13.29 1.6 –7.9
Plb 64 Dolostone 138.1 10.68 2.5 –6.2 19.01 0.04 11.92 0.007 0.003 2.41 0.63
Plb 68 Dolostone 144.9 12.77 2.6 –6.5
Plb 118 Dolostone 148.8 11.98 2.2 –7.6 20.41 0.04 12.90 0.008 0.003 2.52 0.63
Plb 70 Dolostone 154.1 12.15 2.7 –6.0
Plb 71 Xiaoerbulak Fm. Dolostone 162.4 12.84 2.7 –5.7 21.03 0.06 13.17 0.009 0.005 1.78 0.63
Plb 75 Wusonger Fm. Dolostone 167.4 8.19 2.2 –6.5
Plb 74 Dolostone 172.2 11.13 1.2 –3.9 18.31 0.18 10.84 0.012 0.007 1.73 0.59
Plb 76 Dolostone 176.3 12.14 0.7 –5.0
Plb 78 Dolostone 182.2 11.69 0.4 –5.2 18.58 0.20 11.27 0.011 0.006 1.67 0.61
Plb 80 Dolostone 192.2 13.17 0.8 –5.6 20.86 0.18 12.47 0.014 0.007 2.11 0.60
Plb 82 Dolostone 199.7 13.07 5.4 –7.3
Plb 83 Dolostone 205.6 12.02 –0.5 –5.8 21.36 0.46 12.44 0.019 0.006 3.22 0.58
Plb 85 Dolostone 212 11.66 –3.2 –8.2 20.46 0.70 11.90 0.028 0.009 3.00 0.58
Plb 86 Dolostone 222.3 11.25 –1.8 –6.1 13.74 0.81 8.71 0.017 0.006 2.72 0.63
Plb 87 Dolostone 227.4 11.45 –1.8 –6.0
Plb 88 Dolostone 244.4 11.35 –1.6 –6.1 18.84 0.90 11.32 0.017 0.008 2.19 0.60
Plb 89 Wusonger Fm. Dolostone 254.3 11.26 –0.7 –5.3
Plb 92 Shayilik Fm. Dolostone 257.4 12.35 0.0 –4.5 21.84 0.34 13.00 0.010 0.009 1.14 0.60
Plb 93 Dolostone 264.7 12.62 –1.4 –5.7
Plb 94 Dolostone 269 12.19 –3.4 –4.1 18.38 1.27 10.73 0.010 0.008 1.32 0.58
Plb96 Dolostone 271.2 11.35 –7.6 –4.5
Plb 97 Dolostone 272.8 11.92 –14.3 –5.0 19.35 0.75 11.28 0.009 0.009 1.00 0.58
Plb 95 Dolostone 276.6 15.12 –13.4 –6.4 22.63 0.23 14.32 0.013 0.012 1.08 0.63
Plb 98 Dolostone 279.4 12.92 –9.0 –5.5 19.29 0.28 10.97 0.017 0.010 1.62 0.57
Plb 99 Dolostone 285.4 11.56 –2.7 –4.8
Plb 100 Dolostone 291.8 12.90 –2.8 –5.0 24.69 0.34 13.31 0.010 0.009 1.17 0.54
Plb 101 Dolostone 309.6 8.74 –0.8 –6.4 16.24 0.79 9.03 0.030 0.011 2.83 0.56
Plb 102 Dolostone 316.6 10.49 –0.4 –6.2
Plb 104 Dolostone 324 11.48 –1.2 –9.7 36.26 0.08 0.99 0.004 0.020 0.18 0.03
Plb 106 Dolostone 329.1 10.85 –0.8 –7.3
Plb 107 Dolostone 340.7 11.56 –0.4 –8.2 30.35 0.05 1.30 0.003 0.019 0.17 0.04
Plb 109 Dolostone 351.9 10.73 0.0 –7.4 30.81 0.07 4.86 0.005 0.014 0.33 0.16
Plb 110 Shayilik Fm. Dolostone 359.5 11.23 –0.1 –8.7 26.86 0.03 0.22 0.004 0.038 0.10 0.01
Plb 112 Awatage Fm. Dolostone 360.7 11.32
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Table 2. Analytical results for sediments from the Wushi phosphorite section, Tarim Basin, NW China.

δ13Ccarb δ18Ocarb

Depth TC (‰, (‰, Ca Fe Mg Mn Sr Mn/ Mg/
Samples Unit Lithology (m) (%) VPDB) VPDB) (wt%) (wt%) (wt%) (%) (%) Sr Ca

WS 59 Qigebulage Fm. Dolostone 0 10.1 3.0 –6.7 18.84 1.38 10.58 0.048 0.006 7.437 0.562
WS 62 Dolostone 3.3 12.33 5.5 –1.3
WS 63 Muddy dolostone 6.3 12.03 5.5 –3.5
WS 65 Mudstone 11.5 11.28 6.7 –1.7 20.21 0.41 11.38 0.018 0.008 2.263 0.563
WS 67 Dolostone 17 12.72 5.9 –2.3
WS 69 Dolostone 22.2 12.64 5.7 –1.6 10.70 0.24 8.09 0.003 0.003 1.024 0.756
WS 71 Dolostone 26.9 12.49 0.0 –6.5
WS 73 Dolostone 31.6 12.73 3.1 –2.6 21.76 0.25 12.89 0.008 0.007 1.065 0.592
WS 76 Dolostone 37.8 12.13 0.2 –5.3
WS 78 Dolostone 41.8 12.41 0.3 –3.7 20.69 0.21 11.82 0.005 0.006 0.859 0.571
WS 80 Dolostone 46.4 8.451 1.8 –4.0
WS 82 Dolostone 51.5 12.53 2.7 –3.1 21.72 0.19 13.04 0.010 0.003 3.096 0.600
WS 84 Dolostone 58 12.77 1.5 –2.3
WS 86 Dolostone 62 13.01 2.6 –0.5 21.87 0.15 12.44 0.004 0.009 0.410 0.569
WS 88 Dolostone 66 12.33 1.6 –5.6
WS 3 Dolostone 71.9 12.83 3.0 –0.1 21.99 0.14 12.97 0.003 0.003 1.022 0.590
WS 4 Dolostone 76.9 12.32 1.4 –5.2
WS 5–1 Dolostone 83.3 12.72 2.1 –4.0 22.69 0.08 13.37 0.006 0.004 1.638 0.589
WS 7 Dolostone 88.4 12.14 2.2 –3.6
WS 8 Dolostone 92.7 12.96 1.2 –3.7 23.25 0.13 14.02 0.006 0.005 1.291 0.603
WS 11 Dolostone 98.5 12.24 2.8 –1.6
WS 12 Dolostone 105.8 11.74 3.3 –2.3 21.31 0.17 12.31 0.007 0.003 2.600 0.578
WS 13–1 Dolostone 111.1 12.8 2.2 –4.8
WS 15 Dolostone 117.7 12.01 2.9 –1.2 23.09 0.10 13.97 0.006 0.002 2.866 0.605
WS 16 Dolostone 122.7 12.35 2.5 –1.3
WS 18 Dolostone 129.9 12.45 2.6 –5.9 22.78 0.15 13.54 0.012 0.002 4.953 0.595
WS 20 Dolostone 135.8 12.09 1.8 –4.6
WS 21 Dolostone 140.7 11.13 2.6 –2.9 21.94 0.25 12.84 0.010 0.020 0.505 0.585
WS 22–1 Limestone 148.7 11.59 –2.9 –6.8 36.63 0.20 0.30 0.022 0.030 0.729 0.008
WS 24 Dolostone 156.6 12.17 1.5 –4.8 18.98 0.16 10.99 0.022 0.004 5.994 0.579
WS 24–1 Breccia 159.4 1.85 0.4 –7.9
WS 25 Dolostone 164 10.45 1.1 –5.7
WS 25–1 Qigebulage Fm. Dolostone 165 12.23 –0.2 –6.0 18.23 0.36 10.77 0.037 0.005 7.545 0.591
WS 27 Yuertusi Fm. Muddy dolostone 170.6 11.4 –1.3 –10.0 21.83 0.31 11.05 0.053 0.019 2.718 0.506
WS 28 Sandy dolostone 171.6 10.53 –0.8 –9.0
WS 29 Muddy dolostone 171.7 7.615 –9.8 –8.1
WS 30 Muddy dolostone 172.05 10.39 –3.7 –8.1
WS 31 Muddy dolostone 172.35 9.847 –4.3 –8.9 13.08 0.10 7.90 0.016 0.002 6.693 0.604
WS 32 Muddy limestone 172.65 10.02 –4.3 –9.5 35.19 1.04 0.41 0.033 0.023 1.414 0.012
WS 33 Muddy dolostone 172.85 10.43 –3.7 –7.8
WS 34–1 Muddy dolostone 172.86 10.45 –3.3 –7.3
WS 34–4 Muddy dolostone 173.41 12.91 1.1 –7.2 22.41 0.19 13.35 0.013 0.004 2.999 0.596
WS 35 Muddy dolostone 174.15 10.25
WS 36 Muddy limestone 175.15 10.5 –4.3 –10.5 37.89 0.77 0.53 0.141 0.026 5.397 0.014
WS 38 Muddy dolostone 178.25 10.64 –3.8 –9.1
WS 39 Muddy limestone 179.25 10.51 –2.3 –7.2
WS 40 Muddy limestone 180.25 10.78 –2.5 –9.2 24.79 0.70 0.43 0.045 0.021 2.117 0.017
WS 41 Muddy dolostone 181.75 10.46 –0.2 –8.0
WS 42 Muddy limestone 182.65 9.609 –0.1 –7.6 37.01 0.56 0.49 0.052 0.028 1.864 0.013
WS 44 Muddy limestone 184.15 10.61 1.1 –7.6 36.38 0.38 0.61 0.018 0.041 0.437 0.017
WS 45 Muddy dolostone 184.75 10.98 0.1 –8.1
WS 47 Muddy dolostone 186.45 11.07 –0.8 –9.4 17.70 1.55 7.99 0.093 0.011 8.765 0.452
WS 50 Yuertusi Fm. Muddy dolostone 189.05 12.41 –0.7 –8.4 24.35 0.34 12.52 0.060 0.006 10.295 0.514
WS 51 Xiaoerbulak Fm. Dolostone 189.3 12.44 –0.7 –9.6
WS 54 Dolostone 191.7 9.333 0.9 –7.5 16.53 0.06 9.12 0.011 0.004 2.485 0.552
WS 55 Dolostone 193.2 10.8 –1.3 –10.7
WS 56 Dolostone 195.1 12.7 –0.3 –7.9 11.79 0.13 6.94 0.036 0.002 17.400 0.589
WS 57 Dolostone 197.7 10.96 1.6 –7.4
WS 58 Xiaoerbulak Fm. Dolostone 200 12.66 1.9 –7.2 21.80 0.11 13.06 0.013 0.005 2.611 0.599

carbonate carbon and oxygen isotopic compositions in
the Xiaoerbulak Formation of the Penglaiba section
(Fig. 4a). Moreover, a correlation is visible between
the carbonate carbon and oxygen isotopic composi-
tions of the sedimentary rocks from the Xiaoerbulak
and Qigebulage formations of the Wushi phosphor-
ite section (Fig. 4b), but no correlation could be ob-
served between the carbonate carbon and oxygen iso-

topic compositions of the sedimentary rocks from the
Yuertusi Formation of the Wushi phosphorite section.

In contrast, an obvious correlation between the car-
bonate carbon and oxygen isotopic compositions of
the carbonate from the Yuertusi Formation of the
Dongergou section could be detected (Fig. 4c). Posit-
ive correlations between oxygen and carbon isotopes
are probably a result of diagenesis or late alteration.
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Table 3. Analytical results for sediments from the Dongergou section, Tarim Basin, NW China.

δ13Ccarb δ18Ocarb

Depth TC (‰, (‰, Ca Fe Mg Mn Sr Mn/ Mg/
Samples Unit Lithology (m) (%) VPDB) VPDB) (wt%) (wt%) (wt%) (%) (%) Sr Ca

DRG 0 Qigebulage Fm. Sandy dolostone 0 11.72 0.6 –6.0 17.89 0.42 10.00 0.027 0.004 6.1 0.56
DRG 1 Yuertusi Fm. Phosphorite 1 0.24 –5.1 –11.2 18.76 1.17 0.21 0.010 0.319 0.0 0.01
DRG 3 Phosphorite 1.7 0.30 –7.7 –12.7 9.36 0.68 0.12 0.013 0.045 0.3 0.01
DRG 9 Mudstone 4.76 0.64 –3.1 –19.7 0.56 1.22 0.17 0.105 0.021 5.0 0.31
DRG 12 Dolostone 6.16 10.25 –1.0 –6.6 11.50 1.09 5.07 0.036 0.053 0.7 0.44
DRG 14 Dolostone 8.16 5.37 –1.1 –7.3 9.67 1.59 5.22 0.039 0.010 3.9 0.54
DRG 18 Limestone 9.36 7.85 –3.0 –7.7 12.26 0.31 0.40 0.011 0.009 1.3 0.03
DRG 19 Limestone 10.2 9.78 –3.3 –8.6 26.04 0.36 0.71 0.035 0.022 1.6 0.03
DRG 22 Limestone 12.6 10.65 –2.6 –8.2 25.56 0.26 0.42 0.020 0.022 0.9 0.02
DRG 24 Dolostone 15.2 9.37 –0.5 –7.3 15.09 1.28 9.10 0.045 0.009 4.8 0.60
DRG 27 Dolostone 16.4 9.80 –0.5 –7.1 19.94 1.07 12.48 0.062 0.009 6.9 0.63
DRG 29 Dolostone 17.1 11.06 –0.1 –8.9 6.56 0.47 5.85 0.027 0.002 15.5 0.89
DRG 31 Yuertusi Fm. Dolostone 17.5 13.15 –0.3 –9.2 15.65 0.23 11.48 0.033 0.004 8.9 0.73
DRG 32 Xiaoerbulak Fm. Dolostone 17.7 12.65 –0.2 –9.3 20.61 0.30 12.73 0.036 0.006 5.8 0.62

Figure 4. (Colour online) Cross-plot of δ18Ocarb and δ13Ccarb for the (a) Penglaiba, (b) Wushi phosphrite and (c) Dongergou sections
and (d) δ18Ocarb and Mn/Sr (weight ratio).

The Xiaoerbulak Formation of the Penglaiba sec-
tion and the Wushi phosphorite section consist of dolo-
stone. Dolomitization is believed to affect the carbon-
ate δ18O value (Vasconcelos et al. 2005). Lower δ18O
values, reflecting a greater degree of alteration, be-
comes less useful in the case of dolomitization which
can lead to higher δ18O due to equilibrium isotopic

fractionation (Li et al. 2011, 2013). Fluid–rock in-
teraction shows the reset of δ18O values without any
significant effect on the δ13C values (cf. Jacobsen &
Kaufman, 1999), indicating that the δ13Ccarb values in
dolostone reflect its near-primary composition al-
though the δ18O values have been affected by fluid–
rock interactions.
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Figure 5. (Colour online) Stratigraphic variations of δ13Ccarb for the Penglaiba, Wushi phosphrite and Dongergou sections plotted
against lithologic columns ( 1©ED1; 2©CAM1; 3©CAM2; 4©CAM3).

Mn/Sr and Mg/Ca ratios, as well as Mg, Fe, Mn,
Sr and Ca abundances, are variable (Tables 1–3). No
obvious correlation exists between Mn/Sr and the re-
spective δ18O values (Fig. 4d).

A few samples indicate that carbonates have been
altered during diagenesis (e.g. DRG 9 shows a relat-
ively low δ18O value of –19.7‰, reflecting diagenetic
alteration).

In summary, the absence of sufficient indication of
post-depositional alteration in all three sections sug-
gests that the carbonate carbon isotope records reflect
near-primary values. This is discussed in the following
section.

6. Discussion

6.a. Sections in the study

6.a.1. The Penglaiba section: variation in δ13Ccarb

At Penglaiba, a sedimentary succession comprising the
terminal Ediacaran and most of the Cambrian is ex-
posed (Yu et al. 2004, 2009). The section represents a
carbonate platform setting and provides the most com-
plete carbonate carbon isotopic record of this study
(Figs 3a, 5).

A shift in δ13Ccarb from 1.5‰ to a more negat-
ive value of –5.4‰ ( 2©CAM1, Fig. 5) across the
boundary between the Qigebulage Formation and the
Yuertusi Formation is followed by rather invariable
δ13Ccarb values between –0.6‰ and 2‰ in the middle
and upper Yuertusi Formation. These in turn are fol-
lowed by somewhat more variable and generally pos-
itive δ13Ccarb values between 1.3‰ and 3.7‰ in
the Xiaoerbulak Formation, as well as more fluctu-
ating δ13Ccarb values including a maximum value of
about 5.4‰ in dolostones of the Wusonger Formation
( 3©CAM2, Fig. 5).

The strongly negative δ13Ccarb excursion to values at
–14.3‰ were observed near the base to the middle
Shayilik Formation across the Cambrian Series 2 –
Series 3 boundary ( 4©CAM3, Fig. 5), followed by
δ13Ccarb values around 0‰.

6.a.2. The Wushi phosphorite section

A positive δ13Ccarb excursion from 0‰ to 6.7‰ from
the base to the upper Qigebulage Formation were ob-
served ( 1©ED1, Fig. 5), followed by a δ13Ccarb shift
from 2.6‰ to –2.9‰ at the top of the Qigebulage
Formation. The most negative δ13Ccarb value (–9.8‰)
in the section occurs at the base of the Yuertusi Forma-
tion ( 2©CAM1, Fig. 5). Moreover, a δ13Ccarb shift from
–9.8‰ to 1.9‰ from the middle Yuertusi Formation
to the base of the Xiaoerbulak Formation ( 3©CAM2,
Fig. 5) is apparent.

6.a.3. The Dongergou section

The carbonate carbon isotope record is based on 14
samples (Fig. 3c; Table 3). Similar to the results for
the Penglaiba and the Wushi phosphorite sections, the
most negative δ13Ccarb value of the Dongergou section
with –7.7‰ is recorded at the base of the Yuertusi
Formation ( 2©CAM1, Fig. 5) followed by a δ13Ccarb

shift towards –0.2‰ between the middle Yuertusi
Formation and the base of the Xiaoerbulak Formation.

6.b. Comparison of the stratigraphy in the Tarim Basin

An overall increase in δ13Ccarb from 3‰ to 6.7‰
at the base of Qigebulage Formation is followed
by a slight negative shift to nearly invariable val-
ues at the middle to the upper Qigebulage Formation
( 1©ED1, Fig. 5) and a negative shift at the upper part
of Qigebulage Formation. Further upsection, δ13Ccarb
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records a shift to minimum values of –9.8‰ in the
Wushi phosphorite section to –7.7‰ in the Dongergou
section and to –5.4‰ in the Penglaiba section. A
shift to positive carbonate carbon isotope values oc-
curs across the Yuertusi Formation in the middle of
Xiaoerbulak Formation, followed by nearly invari-
able positive carbonate carbon isotope values between
1.4‰ and 3.7‰ for dolostones in the middle and up-
per Xiaoerbulak Formation ( 3©CAM2, Fig. 5). Vari-
able carbonate carbon isotope values are recorded for
the Wusonger Formation. The most negative δ13Ccarb

value occurs at the base of the Shayilik Formation
(–14.3‰, Penglaiba section) ( 4©CAM3, Fig. 5). The
observation is probably as a result of the upwelling
of water, with dissolved inorganic carbon carrying a
13C depleted signature due to recycling of organic mat-
ter or enhanced weathering of organic-carbon-bearing
rocks on the continents, and subsequent delivery of
13C depleted dissolved inorganic carbon into the ocean;
alternatively, it may be related to the enrichment
of organic matter, which could be responsible for the
observed change in δ13C ( Guo et al. 2010a , b). A
positive carbonate carbon isotope excursion occurs in
the middle–upper Shayilik Formation, indicating the
recovery of the environment, increasing organic car-
bon burial and increasing carbon fixation.

6.c. Comparison between different continents

The Tarim Basin in NW China contains a sedimentary
succession of Ediacaran and Cambrian rocks, includ-
ing the deposition in different palaeoenvironmental
settings (inner shelf, outer shelf, slope and basin).
Three sections in the Keping area represent the car-
bonate platform environments. In the Tarim Basin,
the Keping area exhibits a sedimentary succession
and fossils comparable to the carbonate platform of
the Yangtze Platform during the Ediacaran–Cambrian
period (Chen et al. 2004, 2010; Sun et al. 2004; Feng
et al. 2006; He, Xu & Yuan, 2007; Yu et al. 2009). The
stratigraphic variation of the total carbon abundances
shows a parallel evolution between the lower part of
the Yuertusi Formation and the Niutitang Formation.
All results from the study match previously published
carbonate carbon isotope data from other sections on
the Yangtze Platform (e.g. Zhang et al. 1997; Zhu
et al. 2004; Zhu, Babcock & Peng, 2006; Guo et al.
2007, 2010a, b, 2013; G. Jiang et al. 2007, 2012; Yang
et al. 2007; Zhu, Strauss & Shields, 2007; Li et al.
2013). The change in the carbon isotopic composition
in the sequence of early Cambrian black rocks from
the Yangtze Platform and the Tarim Basin is based
on a large-scale transgressive event and interpreted
as a change from anoxic to possibly dysoxic bottom-
water conditions (S. Jiang et al. 2007; Guo et al.
2013).

Although defining the Ediacaran–Cambrian succes-
sion by δ13Ccarb data in these deeper water sections
is problematic, respective δ13Corg and δ13Ccarb data al-
low stratigraphic comparison of some sections of the

Yangtze Platform (Zhang et al. 1997; Guo et al. 2007,
2013; S. Jiang et al. 2007; Yang et al. 2007; G. Jiang
et al. 2012; Peng, Babcock & Cooper, 2012; Li et al.
2013) and also the Tarim Basin (Fig. 6).

A negative shift in δ13Ccarb (negative excursion
at the base of the Cambrian System (BASE);
Zhu, Babcock & Peng, 2006) from the base to
the top of Qigebulage Formation and across the
Ediacaran–Cambrian transition into the Yuertusi
Formation can be observed. Moreover, more negat-
ive δ13Ccarb values can be observed at the base of
the Yuertusi Formation in the Keping area, which
can be compared with carbon isotope values from
the transition of the Dengying Formation (Liuchapo
Formation) and Niutitang Formation on the Yangtze
Platform (Zhang et al. 1997; Zhu et al. 2004; Zhu,
Babcock & Peng, 2006; Zhu, Strauss & Shields, 2007;
Guo et al. 2007, 2013; G. Jiang et al. 2007, 2012;
Yang et al. 2007; Li et al. 2013; Fig. 6). The δ13C
minimum reflects a global decrease in organic car-
bon burial and/or a decrease in carbon fixation, prob-
ably caused by a transgressive event (e.g. S. Jiang
et al. 2007; Guo et al. 2013), flooding the shelf
area with 13C depleted basinal anoxic bottom water.
The Ediacaran–Cambrian boundary in India (Kaufman
et al. 2006), Iran (Brasier et al. 1990), Siberia (e.g.
Magaritz et al. 1991; Brasier, Khomentovsky & Cor-
field, 1993; Brasier et al. 1994, 1998; Knoll et al.
1995a , b; Kouchinsky et al. 2007), Mongolia (Brasier
et al. 1996; Khomentovsky & Gibsher, 1996; Maloof
et al. 2010), Morocco (Maloof et al. 2005, 2010),
Oman (Fike et al. 2006; Schröder & Grotzinger, 2007),
the Yangtze Platform (e.g. Shen & Schidlowski, 2000;
Zhu, Strauss & Shields, 2007; Guo et al. 2007, 2013; S.
Jiang et al. 2007; G. Jiang et al. 2012; Peng, Babcock
& Cooper, 2012; Li et al. 2013) and the Tarim Basin
(this study) can be correlated with each other using the
negative carbon isotope anomaly followed by a trans-
ition to less negative δ13C values in lower Cambrian
stratigraphy. A widespread transgressive event can be
detected for lower Cambrian rocks on different contin-
ents (e.g. S. Jiang et al. 2007; Guo et al. 2013).

A distinct positive δ13Ccarb excursion from the
Yuertusi Formation to the Xiaoerbulak Formation of
the Penglaiba section reflects the enhanced fractional
burial of organic matter and the release of oxygen. This
excursion can be compared with the positive δ13Ccarb

shift in the lower part of Cambrian Stage 2 (posit-
ive excursion in the lower part of Stage 2 (ZHUCE);
Zhu, Babcock & Peng, 2006), which is the equival-
ent to the Dahai Member of the Xiaotan section in the
shelf area of NE Yunnan, at 62 m of the Longbizui sec-
tion and at 33 m at the Yuanjia section of the slope to
basin area in the Yangtze Platform (Fig. 6; Zhu, Bab-
cock & Peng, 2006; Li et al. 2013; Guo et al. 2013).
Such a stratigraphic correlation is strongly suppor-
ted by similar phosphorus-rich sediments between the
ZHUCE-equivalent interval of the Penglaiba section,
the Longbizui/Yuanjia sections and the Xiaotan section
(Figs 2, 6).
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Figure 6. (Colour online) Comparison of temporal variations in δ13Ccarb from the different sections during the transition from the
Ediacaran and Cambrian of (1) the Yangtze Platform, China: Shatan (Guo et al. 2007), Songtao (Guo et al. 2007), Yanwutan-Lijiatuo
(Guo et al. 2007), Longbizui (Guo et al. 2013), Yuanjia (Guo et al. 2013), Xiaotan (Li et al. 2013), Wuliu–Zengjiayan (Guo et al.
2010), Jianshan ( Guo et al. 2010a , b) and Wangcun sections (Zhu et al. 2004); (2) the Tarim Basin, China: Penglaiba (this study),
Wushi phosphrite (this study) and Dongergou sections (this study); (3) USA: Rocky Mountain section (Montañez et al. 2000); (4)
Russia: Molodo section (Shabanov et al. 2008); and (5) Canada: Sekwi Formation (Dilliard et al. 2007).

A linear evolution towards more 13C-depleted car-
bonate carbon isotope values can be observed across
the boundary of the Wusonger Formation and the
Shayilik Formation at the Penglaiba section, with the
most negative δ13Ccarb value of –14.3‰. This can be
compared with the evolution of the carbonate car-
bon isotopes on the Yangtze Platform. The Cam-
brian Series 2 – Series 3 transition is characterized
worldwide by a negative carbon isotope excursion
caused by a transgressive event and biological radi-
ation (Redlichiid–Olenellid extinction carbon isotope
excursion or ROECE; Zhu, Babcock & Peng, 2006).
The samples from the Penglaiba section show the most
13C-depleted signature among Cambrian Series 2 and
Cambrian Series 3, which could reflect a closer prox-
imity to the source of 13C-depleted water during up-
welling ( Guo et al. 2010a , b). Above the deposits
of the transgressive event, the δ13Ccarb values increase
again to values of c. 0‰, indicating the recovery in the
marine environment, which is in accordance with val-
ues recorded for the Wuliu–Zengjiayan section and the
Wangcun section on the Yangtze Platform (Zhu et al.

2004; Guo et al. 2010a , b). More evidence ( Guo et al.
2010a , b) for this development is provided by the fact
that the position of the observed negative shift in δ13C
can be correlated with a similar chemostratigraphic
evolution in the sections of the Tarim Basin (this study)
by a composite profile across the boundary from the
Yangtze Platform (Zhu et al. 2004; Guo et al. 2010a ,
b), Canada (Dilliard et al. 2007), the USA (Montañez
et al. 2000) and in respective successions in Siberia
(Shabanov et al. 2008) (Fig. 6). The development of
inhospitable bottom-water conditions due to the intro-
duction of anoxic waters would undoubtedly result in
faunal extinction ( Guo et al. 2010a , b). The negative
carbon isotope excursion and the trilobite mass extinc-
tion (e.g. Montañez et al. 2000) at the ROECE event in
the uppermost part of Cambrian Series 2 and the lower-
most part of Cambrian Series 3 were caused by major
palaeogeographical changes coupled to the transgress-
ive event ( Guo et al. 2010a , b), which resulted in
the deposition of transgressive successions visible in
the Gondwana and Laurentia sections (e.g. Landing &
Bartowski, 1996; Brasier & Sukhov, 1998; Montañez
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et al. 2000; Zhu et al. 2004; Wotte et al. 2007; Guo
et al. 2010a , b; Figs 2, 6).

The carbon isotopic evolution recorded for the sec-
tions in the Tarim Basin is in good agreement with
existing δ13C records obtained from other sections on
the Yangtze Platform that define the ZHUCE and the
ROECE events (Zhu et al. 2004; Zhu, Babcock &
Peng, 2006; Zhu, Strauss & Shields, 2007).

7. Conclusion

Complete high-resolution carbonate carbon isotope
profiles across the Ediacaran–Cambrian and Cambrian
Series 2 – Series 3 transitions in the Keping area of the
Tarim Basin in NW China display clear stratigraphic
variations. These can be correlated with the carbon-
ate carbon isotope records for sedimentary successions
on the Yangtze Platform. Isotope excursions reflect
changes in the fractional burial of organic carbon, bio-
logical evolution and geological events. δ13Ccarb vari-
ations in the successions of the Tarim Basin and the
Yangtze Platform correlate with each other and define
the BASE, ZHUCE and the ROECE events. However,
the global signature has been enhanced by a regional
signal, likely as a consequence of differences in the pa-
laeogeographical setting. These results reflect the per-
turbation of the carbon cycle in the Tarim Basin during
the Ediacaran–Cambrian and the Cambrian Series 2 –
Series 3 transitions.
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