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Abstract In this study, the thermal expansion and heat

capacity of San Carlos olivine under high temperature and

high pressure are reported. Combining accurate sound

velocity data under different P–T conditions with density

and heat capacity data at ambient pressure, the density,

adiabatic bulk modulus, shear modulus, and most impor-

tantly, thermal expansion and heat capacity, of San Carlos

are extracted to 14 GPa by a numerical procedure using

classic thermodynamic relationships. These data are in

agreement with published findings. To estimate the tem-

perature gradient in the upper mantle, we also report the

fitting equations of thermal expansion and heat capacity of

San Carlos olivine as a function of both temperature and

pressure to the P–T condition of the 410 km discontinuity,

which provide the thermodynamic properties with

increasing depth in the Earth’s interior.

Keywords San Carlos olivine � Thermodynamic property �
Thermal expansion � Heat capacity � Temperature gradient

1 Introduction

To get a better understanding of the composition and

dynamics of the mantle, it is important to determine the

thermodynamic properties as a function of the depth of the

common minerals in the Earth’s interior (Akaogi et al.

2007; Chen et al. 1996; Li et al. 2017). Thermodynamic

parameters such as heat capacity and thermal expansion of

mantle minerals are related to both geodynamics and

mineral physics, and their values at high pressure are major

factors that controlling the Earth’s internal evolution

(Yoneda et al. 2009).

Thermal expansion of mantle minerals largely depends

on temperature and pressure, which can be deduced from

experimental measurements on volume (Anderson 1967).

Additionally, heat capacity at ambient pressure can be

obtained using calorimetric experiments (Ashida et al.

1987; Barin et al. 1973; Watanabe 1982) or theoretical

calculations (Akaogi et al. 1984; Jacobs et al. 2017; Price

et al. 1987). By using transient hot-wire method, the

specific heat can be directly measured, but only in a low-

pressure range (Andersson and Ross 1994; Nesbitt et al.

2017). Osako et al. (2004) presented a new method to

obtain the high pressure heat capacity in terms of simul-

taneous thermal conductivity and thermal diffusivity

measurement (Osako et al. 2004). Heat capacity of the

solids is considered to be virtually independent of pressure
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(Navrotsky 1995), and its pressure derivation is sometimes

ignored. However, considering its importance in calori-

metric study, it is still worth determining the heat capacity

for common mantle minerals at high pressure and its

pressure dependence.

Davis and Gordon introduced a numerical procedure

which can be used to derive the equation of state (EoS)

(Davis and Gordon 1967). This equation set is based on a

series of classical thermodynamic relationships, allowing

accurate determination of the volume of a liquid as a

function of pressure and temperature from experimental

adiabatic sound velocity. This method has been applied on

other melts or solutions (Ayrinhac et al. 2015; Chorazewski

et al. 2013; de Koker 2012; Su et al. 2017), thus proving its

reliability. The accurate results show that this method is

independent of any knowledge about compression in solid

phases, and the sound velocity as a function of density

follows a scaling law valid across the entire metallic state

regime. But as far as we know, this numerical procedure is

rarely used in single cell or polycrystalline minerals.

In order to test the feasibility of this method on minerals,

we chose San Carlos olivine as our research material. San

Carlos olivine is the ultramafic inclusion that is located in

San Carlos, Arizona with a Mg:Fe ratio of 9:1 [(Mg0.9-

Fe0.1)2SiO4] (Frey and Prinz 1978), which is the approxi-

mate composition of the peridotites in the mantle (Kojitani

et al. 2016). Olivine is a major component of the upper

mantle (Liu et al. 2005), and the determination of its

thermodynamic properties is one of the most important

themes in mineral science (Jianping et al. 1995). The phase

transition of olivine into its high pressure polymorph

wadsleyite at * 13–14 GPa is considered to be the most

likely cause of the discontinuity at 410 km depth, from

which the temperature of the 410 km discontinuity can be

deduced from the thermodynamic changes. Because of this,

numerous amount of studies have been carried out that

provide the elastic properties of San Carlos olivine in a

wide pressure and temperature range (Abramson et al.

1997; Darling et al. 2004; Isaak 1992; Liu et al. 2005; Mao

et al. 2015; Zhang and Bass 2016).

In this study, using our original research and data from

previous studies, we report the molar volume, thermal

expansion, adiabatic bulk modulus and shear modulus of

San Carlos olivine at high temperature and high pressure

extracted with the numerical calculation. Then, we com-

pare our findings with previous scholarship. Specifically,

we present the thermal expansion and heat capacity of San

Carlos olivine to 14 GPa and provide an equation that

relates to both temperature and pressure. Finally, using the

thermal expansion and heat capacity data of San Carlos

olivine, we propose the temperature gradient of the upper

mantle.

2 Calculation procedure

2.1 Thermodynamic calculation

We used data provided in Davis and Gordon (1967) to

determine the calculation procedure and obtain the EoS of

San Carlos olivine and its thermodynamic parameters as a

function of temperature and pressure. This method uses

classical thermodynamic relations to extract the density

variation as a function of pressure and temperature from

the adiabatic sound velocities. The fundamental equations

are described below.

First, the thermal expansion (a) is defined as:

a ¼ � 1

q
oq
oT

� �
P

ð1Þ

Then, according to the definition of heat capacity ðCPÞ,
its variation with pressure can be evaluated as Eq. (2),

which is based on the Maxwell relation:

oCP

oP

� �
T

¼ � T

q
a2 þ oa

oT

� �
P

� �
ð2Þ

Furthermore, the partial differential equation about the

density at high pressure can be derived from the relation-

ship between the isothermal and adiabatic bulk modulus:

oq
oP

� �
T

¼ 1

v2
þ Ta2

CP

ð3Þ

where v stands for the sound velocity, and in the past only

P-wave velocity was used in the previous works on liquids

(Ayrinhac et al. 2014, 2015; Su et al. 2017). To test whe-

ther this method could be applied to solids or not, we made

a change on Eq. (3) to use the bulk velocity ðvBÞ instead:

vB ¼ v2
p �

4

3
v2
s

� �1
2

ð4Þ

To start the calculation, first we calculated q as a

function of temperature at zero pressure q P0;Tð Þ and a at

ambient pressure with Eq. (1). It is also necessary to

determine the values of the heat capacity with increasing

temperature CP P0;Tð Þ in order to derive the approximate q
at an arbitrary reference pressure using Eq. (2). The

resulting q is used to update the value of aP and CP at the

same pressure with Eqs. (1) and (2). Iteration of this loop

leads to converged values of q, aP and CP at high pressure

conditions. Furthermore, with the deduced results, the

adiabatic bulk modulus ðKSÞ and shear modulus ðG) can

also be obtained:

KS ¼ q v2
p �

4

3
v2
s

� �
ð5Þ

G ¼ qv2
s ð6Þ
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2.2 Thermodynamic data

2.2.1 Sound velocity at high temperature and high

pressure

The sound velocities of San Carlos olivine have been

investigated using different experimental methods

(Abramson et al. 1997; Darling et al. 2004; Isaak 1992; Liu

et al. 2005; Mao et al. 2015; Zhang and Bass 2016). Isaak

first reported the high temperature elastic moduli for Fe-

bearing olivine, which provided various parameters as a

function of temperature at ambient pressure (Isaak 1992).

Then Abramson et al. (1997) measured the sound velocities

up to 17 GPa at room temperature in a diamond anvil cell,

and the results were consistent with those given by Darling

et al., which were obtained with a Kawaii type multi-anvil

apparatus (Darling et al. 2004). The highest temperature

and pressure range data available to date was determined

by Zhang and Bass, who used the Brillouin spectroscopy

with CO2 laser-heating and calculated the sound velocities

of San Carlos olivine to 16.5 GPa at room temperature and

12.8 GPa at 1300 K (Zhang and Bass 2016).

Though this research provides useful data on the elastic

properties of the olivine in a wide range of P–T conditions,

what is needed is more detailed sound velocity data on a

smaller interval of temperature and pressure. The data

published by Liu et al. (2005) and Mao et al. (2015) pro-

vide sound velocities at both high temperature and high

pressure conditions. With a DIA type large volume appa-

ratus, Liu et al. (2005) measured the P-wave and S-wave

sound velocities of the polycrystalline San Carlos olivine to

8 GPa and 1073 K, while Mao et al. (2015) analyzed

natural single crystals using the high P–T Brillouin mea-

surements, which provided a smaller difference between

the experimental data and the isothermal fitting results.

Therefore, in this paper, we used Mao’s sound velocities of

San Carlos olivine.

Using the vp and vs data from Isaak (1992), we deter-

mined vp and vs to analyze the high P–T data to ambient

pressure, thus permitting us to obtain the P–T–v relation-

ship as Eq. (7), whose form is based on the work by

Ayrinhac et al. (2015):

v P; Tð Þ ¼
X
i;j

aijT
iP j ð7Þ

The fitting coefficients are shown in Table 1, with a

reduced v2 as 2.35 for vp and 3.85 for vs, respectively.

2.2.2 Density at ambient pressure

The densities of San Carlos olivine at room temperature

and ambient pressure are given as 3353 kg m-3 in Isaak

(1992), which were measured using the Archimedes

immersion technique. Then Abramson et al. (1997) repor-

ted the density as 3355 kg m-3 using the buoyancy

method, and this result is close to the value of

3360 kg m-3 based on the lattice constants. Zha et al.

(1998) measured the density with X-ray diffraction and

found a value of 3343 kg m-3, which is in agreement with

the latest data 3341 kg m-3 using the same method (Zhang

and Bass 2016). For the a, here we chose a ¼ 3:304 �
10�5 þ 0:742 � 10�8T � 0:538T�2 K�1 by Fei (1995)

based on the experimental data of Suzuki (1975). There-

fore, a reliable extrapolation of q to high temperature can

be constrained by previous studies:

q0 Tð Þ ¼ 3371:20 � 8:63 � T þ 2:88 � T2 ð8Þ

with q0 in kg m-3 and T in K.

2.2.3 Heat capacity at ambient pressure

The heat capacity of San Carlos olivine at ambient pressure

was also provided by Isaak (1992), which was determined

from the end-member heat capacity data from Barin

et al.(1973). Richet presented a way to obtain the heat

capacity of the silicate glass with increasing temperature

(Richet 1987), and he found that the value depended on the

composition of the silicate glass. In Richet’s (1987) fitting

equation, the temperature limit was lower than 800 K. In

our calculation, we determined the values of heat capacity

to be greater than 800 K, so in this work, we used Isaak’s

ambient pressure heat capacity data. Berman and Brown

gave a revised formula that represented and extrapolated

the heat capacity with increasing temperature (1985),

which was based on the lattice vibration theory, hence the

fitting equation is:

CP ¼ 995:1 þ 1343T�0:5 � 2:887 � 107T�2 � 6:166

� 10�2T�3 ð9Þ

with CP in J kg�1 K�1 and T in K.

With the data listed above, we derived the density,

thermal expansion, heat capacity, adiabatic bulk modulus

and shear modulus of San Carlos olivine under different

temperature and pressure conditions.

3 Results and discussion

3.1 EoS and elastic properties comparisons

For the EoS of San Carlos olivine, the room temperature

volume was measured using impulsively stimulated laser

scattering to 17 GPa by Abramson et al. (1997) and later,

using Brillouin spectroscopy to * 30 GPa by Zha et al.
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(1998). The high temperature volume data was determined

to 1073 K and 8 GPa using in situ synchrotron X-ray

diffraction measurements (Liu and Li 2006). Figure 1

illustrates the molar volume of San Carlos olivine with

increasing temperature and pressure, as well as the former

results as comparisons.

From Fig. 1, we can see that the calculated results

generally agree with the previous experimental data

(Abramson et al. 1997; Liu and Li 2006; Zha et al. 1998).

At room temperature, our results show a similar trend with

Abramson’s results, with a difference of * 0.4%. The

largest separation between our result and the other two

works is 0.3% at 2.8 GPa. At high temperatures, our the-

oretical data is consistent with the experimental data, with

a reduced v2 ¼ 7:63. As we mentioned above, the ambient

pressure density data we used were obtained from theo-

retical calculations, so its difference from the experimental

data was predicted to be large. However, with the

increasing pressure, we can see that the separations became

smaller, especially over * 4 GPa. Hence, though different

measurements would likely give data with different

uncertainties, because of the self-consistency of the

thermodynamic parameters, the calculated results could be

fixed when using this theoretical method, which would

finally provide reliable results.

The other quantities derived from our calculation are

adiabatic bulk modulus and shear modulus. Based on

Hashin–Shtrikman bounds, the aggregate KS and G of San

Carlos olivine have been determined to 3 GPa (Webb

1989), 17 GPa (Abramson et al. 1997) and 32.5 GPa (Zha

et al. 1998) at room temperature using various techniques.

For high temperature data, Liu et al. (2005) provide the

values not only of KS0, G0 and their pressure derivation,

but also their temperature derivation to 8 GPa and 1073 K

(Liu et al. 2005). Mao et al. (2015), whose sound velocities

we utilized in our calculation, calculated the elastic moduli

of San Carlos olivine to * 18 GPa and 900 K. With the

density data of San Carlos olivine as a function of both

temperature and pressure, the values of KS and G can be

obtained with Eqs. (5)-(6), thus our calculated results are

shown in Fig. 2 along with the previous works.

Figure 2a, b illustrate the KS and G with increasing

pressure at room temperature and high temperature,

respectively. Generally, for KS, its values follow a nearly

linear increase with pressure under same temperature,

whereas G exhibits a downward trend towards higher

pressure. In Fig. 2a, our results agree with the former ones

and are close to Mao’s results, which gives a largest sep-

aration as 0.4% at * 14 GPa for both KS and G. This

likely occurs due to our use of Mao’s sound velocity data

during our calculation. For KS, all of the works consistently

agree with each other except for Liu et al. (2005)’s data,

whose slope is steeper than the others. For G, the separa-

tions get larger above * 5 GPa, and our slope gets

smoother comparing to the others. In Fig. 2b, the differ-

ences seem to be quite large from different methods,

especially under * 6 GPa, but then the consistency

between our results and Mao et al.’s (2015) results

improves with increasing pressure.

Table 1 aij coefficients for

Eq. (7) with v in m s-1, T in K

and P in GPa

i/j 0 1 2

vp

0 8364.17 ± 1.28 109.24 ± 0.12 - 2.47 ± 0.01

1 - 0.44 ± 0.01 (- 3.35 ± 0.12) 9 10-3 –

2 – – –

vs

0 4862.27 ± 0.77 42.83 ± 0.07 - 1.68 ± 0.01

1 (- 2.81 ± 0.02) 9 10-1 (8.37 ± 0.01) 9 10-3 –

2 (- 2.26 ± 0.19) 9 10-5 – –

Fig. 1 Molar volume of San Carlos olivine as a function of pressure

at different temperatures [curves: theoretical results from this work;

solid circles: experimental results from Liu et al. (2005); insert: room

temperature data with previous work]
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3.2 Thermal expansion and heat capacity at high

temperature and high pressure

For the thermodynamic parameters deduced from Eqs. (1)–

(4), here we present the thermal expansion and heat

capacity of San Carlos olivine under different temperatures

with increasing pressure in Figs. 3 and 4, respectively.

The thermal expansions of minerals at high pressure are

usually related to their volumes by the Anderson-Grüneisen

parameter ðdTÞ, which describes the degree of decrease in a
by compression (Anderson 1966). The expression is:

a
a0

¼ VP

V0

� �dT

ð10Þ

where a0 is the thermal expansion at ambient pressure and

V0, VP are volumes at ambient pressure and high pressure,

respectively. In this work, the value of dT is calculated as

7.15 ± 0.6, which is similar as forsterite (7.2 ± 0.3, Kat-

sura et al., 2010). Furthermore, the product of thermal

expansion and isothermal bulk modulus ðaKTÞ, which can

be considered volume-independent within the investigated

pressure and temperature range, is 4.02 ± 0.35 9 10-3,

and this result is close to the value given by Liu and Li

(4.08 ± 0.10 9 10-3, 2006).

Most of the data about the heat capacity of olivine or

other minerals are obtained at ambient pressure using

calorimeters (Akaogi et al. 2007; Robie et al. 1982;

Fig. 2 Comparison of adiabatic bulk modulus and shear modulus. a Room temperature condition. b High temperature condition. Blue: 500 K;

red: 750 K; green: 900 K; filled areas: Liu et al. (2005); dash lines: Mao et al. (2015); solid lines: this work

Fig. 3 Thermal expansion of San Carlos olivine as a function of

pressure at different temperatures
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Watanabe 1982), and the sources at high pressure are still

rare. Though the heat capacities have been measured in the

piston cylinder (Andersson and Ross 1994; Hashimoto

et al. 2006), the pressure range was limited to 2 GPa.

Actually, the experimental method to measure the heat

capacity directly continues to be a problem because of the

difficulty of obtaining calorimetric measurements in high

temperature and high pressure (Yoneda et al. 2009). In

mineralogy, heat capacity is usually related to thermal

conductivity (k) and thermal diffusivity (j), hence in 2004,

a method to obtain the heat capacity was developed by

Osako et al. (2004), which simultaneously measured k and

j at high temperature and high pressure, thus permitting for

the heat capacity to be calculated. Osako et al. (2004)

measured the k and j of San Carlos olivine, which pro-

vided the pressure derivation of its heat capacity ðdC=dPÞ
and the values of the CP=dP changed for different crystal

axis. Also, the value of dCP=dP deduced from the ambient

pressure data was also presented (Suzuki 1975; Watanabe

1982).

In Fig. 5, we illustrate the heat capacities with increas-

ing pressure at room temperature, which are calculated

using Eq. (12) and the values from Watanabe (1982) and

Osako et al. (2004). At ambient pressure, our CPjP¼0 is

814 J kg-1K-1, which is close to the values from Watan-

abe’s result. Also in combining data of Watanabe (1982)

and Suzuki (1975), in Fig. 5, we can see that the variations

among the slopes from different axis are large, except for

the [1 0 0] one, whose slope is - 1.5, thus making it quite

similar to Watanabe’s (1982) results. Meanwhile, our result

is consistent with that of Watanabe, and the slope is

dCP=dP ¼ 3:67 � 10�2P � 1:43, where P is in GPa. Since

the error of the heat capacities from Osako et al. (2004) is

6%, our results still coincide with theirs (Osako et al. 2004,

Watanabe, 1982).

3.3 Temperature gradient to 410 km

One of the most important applications of thermal expan-

sion and heat capacity at high pressure is used to estimate

the temperature gradient in the Earth’s interior. Since

conductive and radiative heat transfer can be ignored

because of the small thermal conductivity of mantle min-

erals, the temperature gradient is considered to be nearly

adiabatic. Therefore, the adiabatic temperature gradient can

be expressed as:

oT

oz

� �
S

¼ agT
CP

ð11Þ

where z is the depth, g is the gravitational acceleration

(Katsura et al. 2010).

To calculate the temperature gradient in the upper

mantle, we extrapolate the thermal expansion and heat

capacity to the pressure and temperature range at the

410 km discontinuity in the mantle. Considering the tem-

perature range in this study, it should be an adequate

approximation to treat thermal expansion as linear in

temperature at ambient pressure (Katsura et al. 2010). For

heat capacity, its variation with increasing temperature at

ambient pressure can be fitted using the model from Ber-

man and Brown (1985). As seen in Figs. 3 and 4, both

thermal expansion and heat capacity at high pressure can

clearly be presented by a polynomial fitting equation, thus

with the data derived from Eqs. (1)–(4), the thermal

expansion and heat capacity of San Carlos olivine as a

function of both temperature and pressure can be expressed

as Eqs. (12) and (13).

a P; Tð Þ ¼ a0 þ a1T þ a2Pþ a3PT þ a4P
2 ð12Þ

CP ¼ c0 þ c1T
�0:5 þ c2T

�2 þ c3Pþ c4P
2 ð13Þ

Fig. 4 Heat capacity of San Carlos olivine as a function of pressure

at different temperatures
Fig. 5 Heat capacity vs pressure at room temperature with previous

work
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The fitting coefficients for Eqs. (12) and (13) are listed

in Tables 2 and 3, respectively. The misfit for Eq. (12) is

less than 2 and 1.6% for Eq. (13).

We adopted the pressure gradient as 0.034 GPa km-1

from previous work (Matsui et al. 2000) and the gravita-

tional acceleration from PREM model; therefore, the

temperature gradient can be calculated from Eq. (11).

The estimated temperature gradient is shown in Fig. 6

along with the former results (Katsura et al. 2010; Stacey

and Davis 2008). Figure 7 illustrates the thermal expansion

variation in the mantle. The gradient is * 0.64 K km-1 at

the top of the asthenosphere, then decreases

to * 0.37 K km-1 at the 410 km discontinuity. In Fig. 7,

the trend in our results generally agrees with that of Kat-

sura et al. (2010) in concluding that the values decrease

with increasing depth. The thermal expansion given by

Stacey and Davis (2008) and Katsura et al. (2010),

respectively, was for forsterite, which is Fe-free olivine,

and the thermal expansion for San Carlos olivine is

approximately 10% higher than that of forsterite, which

might be caused by the content of Fe.

4 Conclusion

In this work, we used a numerical method, which was

applied to liquids only, to calculate various parameters of

San Carlos olivine. Matching the previous data of heat

capacity and density at ambient pressure with sound

velocities at high pressure, we derived the molar volume,

adiabatic bulk modulus, and shear modulus as a function of

temperature and pressure, and then we extrapolated the

pressure range to about 14 GPa, which is the approximate

pressure of the 410 km discontinuity. The calculated

results agreed with the former experimental data and

proved the feasibility of our theoretical method. Most

importantly, our theoretical method can be used to deter-

mine the thermal expansion and heat capacity of minerals

at high pressure, which are hard to measure through

experimentation. We not only deduced a fitting equation of

thermal expansion and heat capacity of San Carlos olivine

as a function for both temperature and pressure, but also

proposed the variations of heat capacity with increasing

pressure oCP=oP ¼ 3:67 � 10�2P � 1:43, which are useful

for making decisions in a thermodynamic analysis. Finally,

we presented the temperature gradient to the 410 km dis-

continuity using the thermodynamic parameters that we

derived, which provided the variations of the thermody-

namic properties in the mantle.

Table 2 Fitting coefficients for Eq. (12), P in GPa, T in K and a in

K-1

Coefficients a0

910-5
a1

910-8
a2

910-5
a3

910-10
a4

910-8

Values 2.627 1.695 - 0.103 - 7.907 2.286

± 0.023 0.036 - 0.004 0.435 0.212

Table 3 Fitting coefficients for Eq. (13), P in GPa, T in K and CP is

in J kg-1 K-1

Coefficients c0 c1

910-4
c2

910-6
c3 c4

9102

Values 1585 - 1.238 - 3.139 - 3.184 8.414

± 2 0.004 0.055 0.015 0.377

Fig. 6 Temperature gradient with increasing depth

Fig. 7 Thermal expansion variation of San Carlos olivine with

increasing depth
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