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Abstract 
PM2.5 pollution variations in different microenvironments would result in PM2.5 exposure inequity 

between rural and urban residents. In this study, the real-time PM2.5 exposure of urban and rural 
residents in China was examined based on portable PM2.5 sensors together with activity patterns 
derived from questionnaire surveys, with a focus on students and senior citizens who are sensitive 

to air pollution. The results showed that PM2.5 exposure varied significantly among different resident 
groups, with higher PM2.5 exposure of rural residents than those of urban residents. PM2.5 exposure 
peaks mostly occurred during (Accompanied) cooking activities owing to strong emissions. Sleeping 

and resting were the main activities that affected PM2.5 exposures of different resident groups, 
accounting for 60.7%–94.5% of total daily exposures. Furthermore, the long duration of sleeping 
makes it the predominant activity contributing to PM2.5 exposure inequity. It is necessary to obtain 

point-to-point respiratory volume (respiratory rate) data when measuring real-time PM2.5 exposure 
data and incorporate respiratory volume (respiratory rate) into the analysis of PM2.5 exposure. For the 
first time, this study quantified the PM2.5 exposure inequality based on a novel method and can 

provide useful information for further studies on the exposure inequity. 
 
 

Keywords 
PM2.5 exposure 

environmental inequity 

activity pattern 

urban and rural difference 
 
Article History 
Received: 16 April 2024 

Revised: 03 July 2024 

Accepted: 16 July 2024 
 
© Tsinghua University Press 2024 

 
 

1 Introduction 

Environmental inequity commonly occurs across numerous 
countries and demographic groups. Usually, people living 
in developing countries with low income have less access 
to clean water, food, and air, resulting in more series 
health outcomes. Air pollution is still a main concern for 
human health around the world, especially in developing 
countries with poor air quality. It’s estimated that more 

than 6.7 million premature deaths were caused by air 
pollution globally, of which about 89% occurred in low  
and middle-income countries (WHO 2022). The inequity 
of air pollution exposure has been of great concern in the 
last few years since people exposed to poorer air may have a 
higher risk of various respiratory diseases, cardiovascular 
diseases, and mortality (Deng et al. 2021; Zhou et al. 2023). 
However, most previous studies discussed environmental 
inequity of air pollution exposure based on ambient air 
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List of symbols 

Ax    activity pattern 
2.5-PMjC     PM2.5 concentration at data monitoring point j 

    (μg/m3) 
DIE    PM2.5 exposure difference between urban and  
    rural resident groups 
DIE(Breath)    PM2.5 exposure difference after considering  
    respiratory volume between urban and rural  
    resident groups 

IE(Breath)- xAD   exposure difference after considering  
    respiratory volume between urban and rural  
    resident groups under the activity pattern Ax 

IE- xAD     PM2.5 exposure difference between urban and 
    rural resident groups under the activity pattern (Ax)

iMD     daily exposure concentrations of individual i  
    in each resident group (μg/m3) 

iME     cumulative daily exposure to pollutants (μg·s/m3)

i    number of individuals 
j    data monitoring point of portable sensors 
m, n    total number of data monitoring points of 
    portable sensors 
M    rural or urban 
N    sample number of each resident group 

xAp     proportion of respiratory volume (respiratory
    rate) from other activity patterns compared 
    to sleeping 

xAR     contribution of a certain activity pattern 
    (Ax) to the PM2.5 exposure inequity 
t    data monitoring interval of the portable 
    sensor (20 s) 

iMT     time proportion of an activity pattern (Ax)

xAV     respiratory volume (respiratory rate) of the 
    activity pattern Ax 

  
 
pollution level, ignoring the contribution of air pollution 
exposure in indoor microenvironments such as offices, 
schools, and kitchens (Colmer et al. 2020; Jbaily et al.  
2022). However, people usually stay in a variety of 
microenvironments, and the air quality in different indoor 
sites usually varied significantly due to the differences in 
emission sources and indoor/outdoor air exchange rates 
(Wang et al. 2023a). For instance, the daily PM2.5 concentration 
in the kitchen could be as high as 338 μg/m3, much higher 
than that in the living room (246 μg/m3), bedroom   
(275 μg/m3), and outdoor air (152 μg/m3) (Du et al. 2018; 
Yang et al. 2021). Some recent studies also confirmed such 
large space variation in various microenvironments using 
real-time monitors (Shen et al. 2021; Wang et al. 2023a). 
Thus, it is crucial to use the exposure concentration based 
on different microenvironments and/or activity patterns 
to accurately characterize the inequity of air pollution 
exposure. 

In particular, there are significant differences in PM2.5 
exposure between rural and urban residents caused by 
income level, geographical location, population size, and 
other factors. PM2.5 exposure in low-income countries is 
significantly higher in rural areas than that in urban areas 
(Lim et al. 2022). For example, low-income households in 
India suffered from a higher risk of premature death due to 
indoor air pollution, which was mainly caused by solid fuel 
use (Rao et al. 2021). Also, Lim et al (2016) found that the 
individual PM2.5 exposure of senior citizens in rural Asan 
was higher than that in urban Seoul and higher indoor air 
pollution in rural homes was confirmed as the dominant 
reason. However, previous studies usually use household 
income and education level to explain environmental 

inequity (Milojevic et al. 2017), seldom focus on exposure 
differences between rural and urban residents and explore 
the initial driving factors of environmental inequity (Luo  
et al. 2022). Individuals generally engage in a variety of daily 
activities that take place in distinct microenvironments, 
such as sleeping in the bedroom, cooking in the kitchen, 
and studying in school. Each environment has its unique air 
quality, which can significantly impact the overall exposure 
to pollutants for the residents. However, to date, no available 
study has investigated the influences of the activity patterns 
in different microenvironments on the inequity of air 
pollution exposure. 

In this study, portable sensors were used to monitor 
real-time PM2.5 exposure of rural and urban residents with 
special foci on senior citizens and school children, who are 
more sensitive to air pollution (Peled 2011; He et al. 2016; 
Dong 2017; Gouveia et al. 2018). A detailed survey on the 
activity patterns was recorded, thus the contribution of 
different activity patterns to PM2.5 exposure of urban and 
rural residents can be discussed accordingly. The main 
objectives of this study are: (1) to describe the real-time 
PM2.5 exposure of urban and rural residents with special 
foci on senior citizens and school children; (2) to explore 
the contribution of activity patterns to the daily PM2.5 
exposure; (3) to investigate the contribution of activity 
patterns to the inequity of air pollution exposure between 
senior citizens and school children based on a novel method. 
For the first time, this study considers the contribution of 
different activity patterns to the inequity of air pollution 
exposure between urban and rural residents, and the results 
can provide helpful information for policymakers and 
academics. 
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2 Materials and methods 

2.1 PM2.5 exposure measurement and information 
collection 

The field study was conducted in the summertime (June), in 
Mianyang City, Sichuan Province. In this study, we focused 
on air pollutant exposure of school children and senior 
citizens who are more sensitive to PM2.5 pollution and the 
difference between rural and urban residents (Figure S1 in 
the Electronic Supplementary Material (ESM) of the online 
version of this paper). Therefore, senior citizens and school 
children in rural and urban areas were randomly recruited 
depending on their willingness. Portable PM2.5 sensors 
were distributed to volunteers, and the operation method 
was trained by researchers. Volunteers were asked to carry 
PM2.5 sensors for at least 24 hours, and PM2.5 sensors could 
be placed nearby within 1.0 m only when sleeping or using 
the restroom. The samples which did not last one day were 
discarded (N = 12). For samples that last more than one 
day, we retained the data from the start time to the same 
time point in the next day (exactly 24 h). The PM2.5 sensor 
used in this study is designed for real-time exposure 
monitoring with the advantage of portability, and each 
sensor is equipped with a laser scattering sensor (Plantower 
PMS7003, Beijing, China) and powered by a button battery. 
This sensor fits well with the foci of this study due to its 
advantages including low cost, portability, no need for 
electricity plug-in, and more flexibility in choosing where 
to place compared with the monitors used in previous 
studies (Chen et al. 2020; Du et al. 2021, Shen et al. 2021, 
Wang et al. 2023b). 

Along with the PM2.5 exposure monitoring, a questionnaire 
was filled out by researchers. Information on the activity 
pattern was derived from a face-to-face interview that 
recorded the activity patterns of the residents, including the 
type of microenvironments in which residents stayed and the 
corresponding duration. In addition to the activity pattern, 
information on the cooking fuel, gender, and age was also 
recorded (Table S1 in the ESM). Finally, 50 elementary 
students (7–12 years old) including 27 in rural areas and 23 
in urban areas, and 36 senior citizens (over 55 years old) 
including 18 in rural areas and 18 in urban areas were 
recruited in the field measurement. 

2.2 Quality control and data analysis 

Before the field campaign, PM2.5 monitors were calibrated 
for at least 15 days against a particulate matter monitor 
(model 5030 synchronized hybrid ambient real-time 
particulate monitor, Thermo Scientific) with R2 > 0.92 
(Figure S2 in the ESM), and the calibration methods can be 

found elsewhere (Huang et al. 2022; Li et al. 2022; Wang  
et al. 2023b). Previous studies have shown that exposure 
measurements are influenced by various factors, including 
indoor and outdoor pollutant concentrations, ventilation 
conditions, behavioral activities, and so on (Hodas et al. 
2016; Huang et al. 2017; Du et al. 2018). Adjustments  
were made for potential confounders in the exposure 
measurements, such as completing the campaign in only 
several days to mitigate the impact of meteorological 
conditions. Based on the real-time PM2.5 exposure and the 
activity patterns recorded by the questionnaire, we identify 
the accurate duration that each volunteer stayed in each 
microenvironment. The activity patterns in different 
microenvironments were recorded as kitchen for cooking 
(senior citizens) and accompanied cooking (school children), 
living room for resting, bedroom for sleeping, outdoor for 
walking, school for studying, and car for commuting. 

Equation (1) was used to calculate the cumulative daily 
exposure of individuals as: 

( )
2.5-PM

1
i

n

M j
j

E C t
=

= ´å                             (1) 

The daily exposure concentration of individuals under 
the activity pattern Ax was calculated by Equation (2): 

( )
2.5-PM

1
i x

m

M A j
j

E C t-
=

= ´å                          (2) 

where 
iME  is the cumulative daily exposure of pollutant 

(μg·s/m3); Mi is Ri (Rural) or Ui (Urban) depends on the 
resident groups calculated; i means the number of individuals; 

2.5-PMjC  means the PM2.5 concentration at data monitoring 
point j (μg/m3); n and m are the number of data monitoring 
points of portable sensors; t is the data monitoring interval 
of portable sensor (20 s). 

Thus, the daily exposure concentrations of individuals 
could be calculated by Equation (3) and the daily average 
exposure concentration of residents could be calculated by 
Equation (4). 

( )
i iM MD E t n= ´                                (3) 

1
i

N

M M
i

D D N
=

=å                                (4) 

where 
iMD  is the daily exposure concentrations of individual 

i in each resident group (μg/m3); DM is the daily average 
exposure concentration of each resident group (μg/m3), N is 
the sample number of each resident group. 

The daily average exposure concentrations of 
individuals under activity pattern Ax could be calculated by 
Equation (5), and the daily average exposure concentrations 
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of residents under activity pattern Ax could be calculated 
by Equation (6). 

i x

i x i

M A
M A M

E
D T

t m
-

- = ´
´

                           (5) 

1
x i x

N

M A M A
i

D D N- -
=

=å                            (6) 

where 
i xM AD -  is the daily exposure concentrations of 

individual i under activity pattern Ax (μg/m3); 
iMT  is the time 

proportion of the activity Ax; xM AD -  is the daily average 
exposure concentration of each resident group under activity 
pattern Ax (μg/m3). 

The time proportion of activity Ax was calculated by 
Equation (7): 

86400
i xM AT t=                                  (7) 

where tx is the total time of activity Ax (s); 86,400 is the total 
time in a day (s). 

The PM2.5 exposure inequity between rural and urban 
resident groups was defined by Equation (8) and Equation (9): 

IE R UD D D= -                                   (8) 

IE- R- U-x x xA A AD D D= -                             (9) 

where DIE is the PM2.5 exposure difference between urban and 
rural resident groups, and IE- xAD  is the exposure difference 
between urban and rural resident groups under the activity 
pattern Ax. 

When considering differences in respiratory volume 
(Table S2 in the ESM) for different activities, the PM2.5 
exposure inequity between rural and urban resident groups 
was defined by Equation (10) to Equation (12): 

sleeping

x

x

A
A

V
p

V
=                                   (10) 

IE(Breath)- R- R- U- U-x x x x xA A A A AD D p D p= ⋅ - ⋅               (11) 

IE(Breath) IE(Breath)- xAD D=å                          (12) 

where DIE(Breath) is the PM2.5 exposure difference after 
considering respiratory volume between urban and rural 
resident groups, and IE(Breath)- xAD  is the exposure difference 
after considering respiratory volume between urban and 
rural resident groups under the activity pattern Ax. xAV  is 
the respiratory volume of the activity pattern Ax. xAp  is the 
proportion of respiratory volume from other activity patterns 
compared to sleeping. 

To estimate the contribution of different activity patterns 
to the PM2.5 exposure inequity for a certain resident group, 
an index R is defined by Equation (13): 

IE-x xA A IER D D=                                (13) 

where 
xAR  is the contribution of a certain activity Ax to the 

PM2.5 exposure inequity. 
The estimation of DM and IE- xAD  is conducted by Monte 

Carlo simulation (the detailed description of the method 
can be seen in Supplementary Materials in the ESM). 
Numerical operations were randomly selected based on the 
data distribution and 10,000 runs were performed to obtain 
the final simulation results (Hu and Zhao 2022). 

Exposure data was logarithmically processed. 
Kolmogorov-Smirnov test was used to assess the normality 
of data. The frequency distribution of the data was tested by 
skewness and kurtosis. Based on the distribution data, PM2.5 
exposure was found to follow a lognormal distributions. 
One-way ANOVA test was employed to compare the PM2.5 
exposure concentration among six resident groups. The least 
significant difference (LSD) method was used to perform the 
pairwise comparisons of group mean. Statistical analysis 
was conducted using SPSS 21.0 software (IBM Corporation, 
Armonk, NY, USA), and p < 0.05 was used as the statistical 
significance level. 

3 Results and discussion 

3.1 The description of activity patterns of rural and 
urban residents 

Table 1 provides the detailed activity patterns of different 
resident groups. According to the different types of urban 
and rural volunteers, residents are divided into six categories: 
rural student on holiday (RSH), urban student on holiday 
(USH), rural student in school (RSS), urban student in 
school (USS), rural senior citizen (RSC) and urban senior 
citizen (USC). A total of six patterns of activity are 
identified: resting, sleeping, (Accompanied) cooking, walking, 
studying, and commuting. Among them, resting, sleeping, 
(Accompanied) cooking, commuting, and studying are 
indoor activities, while walking is an outdoor activity. Resting, 
sleeping, and walking are the common activity patterns of 
all resident groups. Studying is a unique activity for students 
in schools in urban and rural areas. Commuting is an 
activity that only exists in urban residents. There is no 
(Accompanied) cooking activity for urban students in school 
due to urban students usually live on campus, where their 
lunch and dinner are served. In contrast, rural students 
generally go home to eat and help the adults prepare food 
in the kitchen on school days, thus (Accompanied) cooking 
activity is observed for rural students. The result here shows 
the distinct patterns of the microenvironment-activity of 
different resident groups. 

Exposure to environmental air pollutants is largely 
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dependent on time-microenvironment-activity patterns of 
different resident groups (Schweizer et al. 2007; Dons et al. 
2011). Human tracks can represent the movement of 
people among places with different air exposure levels (Ma 
et al. 2021). Therefore, the variation in activity patterns 
may cause the differences in PM2.5 exposure of urban 
and rural residents to a certain extent. Table 1 summarizes 
the duration of different resident groups in various 
microenvironments. It can be observed that the exposure 
time of resting and sleeping accounts for more than 70% of 
all resident groups and even more than 90% of the students 
on holiday. Although the duration of (Accompanied) 
cooking is relatively short, the contribution of this activity 
pattern cannot be ignored since the PM2.5 concentration in 
the kitchen is much higher due to cooking. The duration of 
different activities also varied for each paired group (e.g., 
RSH vs USH, RSS vs USS, and RSC vs USC). For example, 
the duration of resting for RSC is 30.9%, significantly lower 
than that for USC (35.2%). Similarly, the duration of 
walking for RSH is much lower than that for USH (2.7% vs 
8.3%). Figure 1 provides the PM2.5 exposure concentrations 

of all residents under different activity patterns. The fact 
that SD of PM2.5 exposure concentrations under some 
activities is larger than the mean value could be found in 
Figure 1. The reason is that in this group, some samples 
are not involved in certain activities. For example, 61%   
of members in RSH group did not take part in the 
(Accompanied) cooking activity. It’s observed that in most 
cases, the exposure concentrations of rural residents are 
significantly higher than that of the paired urban residents, 
which will cause the inequity of PM2.5 exposure between 
rural and urban residents. 

3.2 The real-time PM2.5 exposure of rural and urban 
residents 

The daily average PM2.5 exposure is calculated based on 
real-time data, and the results can be seen in Figure 2. For 
each paired group, the daily average PM2.5 exposure of rural 
residents was significantly higher than that of urban residents 
(p < 0.05). PM2.5 exposure concentrations were slightly 
higher for students on holiday than for those in school  

Table 1 Classification of activity patterns of urban and rural residents and average exposure time ratio under different activity patterns
 Resting Sleeping (Accompanied) Cooking Walking Studying Commuting 

RSH 50.1% 46.1% 1.0% 2.7% —a — 
USH 44.8% 45.3% 0.7% 8.3% — 0.8% 
RSS 17.2% 43.0% 0.6% 12.7% 26.4% — 
USS 12.0% 45.4% — 17.7% 24.7% 0.3% 
RSC 30.9% 49.7% 5.1% 14.3% — — 
USC 35.2% 44.2% 5.8% 14.4% — 0.3% 

Note: RSH: rural student on holiday, USH: urban student on holiday, RSS: rural student in school, USS: urban student in school, RSC: rural senior citizen, USC: 
urban senior citizen. 

a The activity duration for the group is 0. 

 
Fig. 1 PM2.5 exposure concentration of urban and rural residents under different activity patterns. The upper edge of the box, median 
bar, and lower edge of the box represent the 75th, 50th, and 25th percentiles, respectively. Upper and lower error bars indicate that values 
are in the nonoutlier range. “•” represents mean concentration 
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Fig. 2 Daily average PM2.5 exposure concentrations of urban and 
rural residents. The upper edge of the box, median bar, and lower 
edge of the box represent the 75th, 50th, and 25th percentiles, 
respectively. Upper and lower error bars indicate that values are 
in the nonoutlier range. “☐” represents mean concentration. 
“◆” represents outliers 

(61.96 ± 55.02 vs 59.92 ± 21.74 μg/m3 in rural, and 30.93 ± 
11.08 vs 25.85 ± 6.77 μg/m3 in urban), but there was no 
significant difference (p > 0.05). This is because students in 
school spent about 40% of their time in classrooms with 
lower PM2.5 concentrations, whereas students on holiday 
are more likely to stay in living rooms and bedrooms, which 
have higher PM2.5 concentrations. In rural China, residents 
usually use solid fuels (fuelwood, coal, etc.) for cooking, 
which will increase indoor PM2.5 concentration due to the 
strong internal emissions to a certain extent (Wang et al. 

2023b). For urban residents, the use of clean fuels (natural 
gas and electricity) can effectively reduce indoor PM2.5 
concentrations (Li et al. 2022). All the investigated residents 
in this study spend most of their time indoors, thus the 
high PM2.5 concentrations in the indoor environments can 
contribute significantly to their daily exposures (Wyss et al. 
2016; Vardoulakis et al. 2020). Therefore, indoor PM2.5 
pollution should be paid more attention from the perspective 
of human health protection. 

As seen in Figure 2, several outliers are observed in 
RSH, USH, and RSC. According to the recording of 
questionnaires, the two outliers in RSH (317.66 μg/m3 and 
97.61 μg/m3) are caused by the high exposure concentrations 
during sleeping when incense burning (Huang et al. 2022). 
The outlier of RSC (132.55 μg/m3) is derived from the high 
exposure concentrations during cooking. 

To better illustrate the contributions of different activity 
patterns to PM2.5 exposure, real-time data combined with 
activity pattern information is used. Figure 3 shows the 
typical samples of 24-hour real-time PM2.5 exposure of six 
resident groups. Significant differences in real-time PM2.5 

exposure are observed among six resident groups under 
different activity patterns. For each paired group, 24-hour 
real-time PM2.5 exposure (except for peaks) of rural residents 
is higher than that of urban residents. This contrast is most 
pronounced when sleeping, PM2.5 exposure concentration 
during sleeping for rural residents ranges from 20 to    
80 μg/m3, higher than that of urban residents (from 5 to  
23 μg/m3). The PM2.5 exposure peaks (value where PM2.5 

 
Fig. 3 24-h real-time PM2.5 exposure of typical urban and rural residents under different activity patterns 
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concentration significantly increases) of the residents mostly 
occur when (Accompanied) cooking, except for USS. This 
is attributable to that cooking activity can emit considerable 
PM2.5, and can rapidly increase PM2.5 concentration in the 
kitchen (Zhao and Zhao 2018; Zheng et al. 2022). 

Apart from significant exposure peaks during cooking 
time, PM2.5 exposure peaks are also observed in all resident 
groups when resting in the living room, which may be 
caused by the occasional smoking activity. The real-time 
PM2.5 exposure data can provide new insight into risk 
assessment. Some exposure assessment studies use daily 
average exposure concentration to assess the short-term 
health effects of PM2.5, which can lead to the extremely 
high exposure time being ignored, thus resulting in an 
unreliable estimate of exposure (Manigrasso et al. 2013; 
Buonanno et al. 2014). Some studies have found a significant 
association between health assessment outcomes and PM2.5 
exposure even when individuals are at a lower daily average 
exposure level (<10 μg/m3) (Shi et al. 2016; Lin et al. 2018). 
Furthermore, even people who live in the same family may 
have different short-term outcomes due to varied activity 
patterns. Therefore, the combination of real-time exposure 
and activity patterns may generate more accurate results 
when assessing the health effects of PM2.5. 

3.3 The contribution of different activities to PM2.5 
exposure 

People generally stay in various microenvironments for 
different activity patterns and are exposed to air pollutants 
in the corresponding microenvironments. Figure 4 shows 
the contribution of different activity patterns to daily PM2.5 
exposure for the investigated resident groups. Compared 

with all other activities, sleeping and resting contribute 
primarily to PM2.5 exposure (ranging from 32.8% to 49.3% 
and from 14.2% to 47.2%, respectively). This result confirms 
that resting and sleeping play a decisive role in PM2.5 
exposure due to the relatively longer duration that residents 
spend in their bedrooms and living rooms. The contribution 
of resting for school children is significantly lower than 
that of other groups, because most of their time is spent 
studying in the classroom, and the time spent in the living 
room is correspondingly reduced. The contributions of 
studying PM2.5 exposure are 20.5% and 22.7% for RSS 
and USS groups, respectively, indicating the significant 
concern about indoor air quality in school. When factoring 
in respiratory volume, a notable shift in the contribution 
of each activity pattern to PM2.5 exposure was observed 
(Figure S3 in the ESM). The contribution of sleeping, 
resting, and studying to PM2.5 exposure decreased, while 
activity patterns with higher respiratory volumes (such as 
(Accompanied) cooking, walking, and commuting) showed 
a significant increase in the contribution to PM2.5 exposure. 
The primary sources of PM2.5 exposure also varied among 
different resident groups (cooking for senior citizens and 
walking for students in school). Therefore, future studies 
should include respiratory volume (respiratory rate) in 
accessing PM2.5 exposure by synchronizing the measurement 
of respiratory volume (respiratory rate) with real-time PM2.5 
exposure data. 

The contribution of (Accompanied) cooking to PM2.5 
exposure shows a significant difference between students 
and senior citizens (Figure 4, p < 0.05). In most investigated 
homes, senior citizens are responsible for cooking, while 
students only stay in the kitchen intermittently and do not 
participate in cooking activities. Moreover, cooking-generated 

 
Fig. 4 The contribution of different activities to PM2.5 exposure of urban and rural residents 
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particles in indoor environments are likely to remain long 
after cooking activities. The proportion of time spent 
cooking was 1.0% for students and 6.0% for senior citizens, 
while the contribution of cooking to PM2.5 exposure was 
3.2% for students and 14.5% for senior citizens. Therefore, 
the contribution of (Accompanied) cooking to PM2.5 exposure 
should be paid attention to, especially for senior citizens 
due to higher exposure risk. Both long periods of low PM2.5 
concentration and short periods of high PM2.5 concentration 
significantly affect PM2.5 exposure (Buonanno et al. 2014). 
The PM2.5 exposure from walking shows a tendency that 
senior citizens have a higher contribution from walking 
than students (14.25% in senior citizens vs 13.5% in students 
in school vs 5.0% in students on holiday). Commuting is  
a unique activity pattern of urban residents, and its 
contribution to the daily PM2.5 exposure is less than 1.0% 
due to its relatively shorter duration. 

3.4 The contribution of different activities to PM2.5 
exposure inequity 

Based on the measured PM2.5 concentration and recorded 
activity patterns, the contributions of different activities to 
PM2.5 exposure inequity are calculated based on the novel 
method described in the method section. As seen in Figure 5, 
apart from commuting and walking, the contributions of 
other activities to PM2.5 exposure inequity between USH 
and RSH groups are higher than 0, indicating that rural 
students have higher exposure risk under most activities 
than urban students. 

Walking had a positive contribution to PM2.5 exposure 
inequality in Student-School and Senior-Citizen groups 
because outdoor PM2.5 exposure concentrations were higher 
in rural than in urban areas, and both groups spent similar 
amounts of time outdoors in rural and urban areas (12.7% vs 
17.7% and 14.3% vs 14.4%, respectively). On the contrary, 
the negative contribution in Student-Holiday can be 
attributed to the fact that rural students seldom spend time 

outdoors during holiday (2.7% in rural vs 8.3% in urban). 
Sleeping contributes most to PM2.5 exposure inequity with 
50%, 54%, and 43%, respectively, due to the long duration 
of sleeping among all investigated activities (43.0%–49.7%) 
and the fact that rural bedrooms have higher indoor PM2.5 
levels. 

For other paired groups, the contributions of most 
activities are higher than 0, mainly because rural residents 
rely on traditional solid fuels for daily cooking, resulting in 
significantly higher PM2.5 concentration in rural households 
than in urban households (Yang et al. 2021; Luo et al. 2022). 
After considering the respiratory volume (Figure 5(b)), PM2.5 
exposure inequity for Student-Holiday changes greatly 
(49% vs 94% for resting, 50% vs 77% for sleeping, and 
−23% vs −70% for walking). For the other groups, the 
contribution of sleeping is reduced, and cooking is elevated. 
Therefore, it is necessary to consider the respiratory 
volume as a factor, and future studies need to consider the 
corresponding activities of the population based on the 
exposure concentration. It should be noted that various 
toxic components of PM2.5 generated from solid fuel burning 
such as organic carbon, polycyclic aromatic hydrocarbons, 
and heavy metals (Alves et al. 2017; Chen et al. 2017; Lai  
et al. 2019) can pose a threat to human health, especially for 
children and senior citizens. Fullerton et al. (2008) revealed 
that low birthweight, cataracts, cardiovascular events, and 
all-cause mortality both in adults and children are also 
associated with pollutants emitted from solid fuel combustion. 
Therefore, the PM2.5 exposure inequity needs to be paid 
attention to between rural and urban residents. 

3.5 Implication and limitation 

Environmental inequity caused by different environmental 
exposure levels and activity patterns can result in different 
health outcomes among people with different racial/ethnic 
or socioeconomic statuses (such as income, occupation, 
and education) (Bell and Ebisu 2012; Luo et al. 2022). For  

 
Fig. 5 The inequity contributions of PM2.5 exposure between urban and rural residents under different activity patterns: (a) without 
respiratory volume; (b) with respiratory volume 
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example, Miranda et al. (2011) reported that non-Hispanic 
blacks and people over 64 years of age have higher exposure 
to PM2.5 than other Americans. Residents with low income 
tend to be exposed to higher concentrations of air pollution 
(Milojevic et al. 2017). However, most previous studies 
usually focused on comparing exposure concentrations and 
analyzing the effects of different socioeconomic factors on 
inequity (Brainard et al. 2002; Chuai et al. 2021; Harvard  
et al. 2009; Jerrett et al. 2001; Kirby-McGregor et al. 2023), 
which can not quantify the contribution of activity pattern 
(Table S3 in the ESM). This study quantified the contribution 
of different activities to exposure inequity using a novel 
method with the input of high temporal resolution data 
and activity pattern, which can provide a scientific basis for 
targeted reductions in air pollution control in the future. 

Nowadays, the air quality gap between urban and rural 
areas in China is still significant, and common in other 
developing countries. It’s crucial to quantitatively describe 
the environmental inequity caused by air pollution exposure, 
especially considering the multiple microenvironments the 
residents stayed and the corresponding activity patterns,  
to provide more information for policymakers and the 
academic community. This study provides a novel method 
for estimating the contribution of different activity patterns 
to the PM2.5 exposure inequity, highlighting the important 
contribution of cooking activity and higher indoor air 
pollution in rural homes. This method is believed to have 
great potential in future studies for the estimation of other 
paired resident groups. However, there are still some 
limitations that should be noted. First, given the high cost 
of field measurement, the sample size is relatively small. 
Second, only school children and senior citizens in rural 
and urban homes are selected for study, some residents with 
more exposure patterns are not included (e.g., residents 
with high occupational exposure). Third, it is necessary to 
obtain point-to-point respiratory volume (respiratory rate) 
data when measuring real-time PM2.5 exposure data and 
incorporate respiratory volume (respiratory rate) into the 
analysis of PM2.5 exposure. Finally, although the questionnaires 
were finished by trained graduate students, it’s challenging 
to recall the time spent in each microenvironment without 
any uncertainty. In the future, AI technologies may   
be adopted in exposure science with the synchronized 
information of exposure concentration and time-activity. 
It’s welcomed that more studies pay attention to 
environmental inequity in the near future using the novel 
method adopted in this study. 

4 Conclusion 

In this study, field measurement was conducted to explore 
the real-time PM2.5 exposure of urban and rural residents  

in Mianyang City, Sichuan Province. The contributions of 
different activities to PM2.5 exposures and PM2.5 exposure 
inequity between rural and urban residents were further 
discussed. Results showed that the PM2.5 exposure levels 
varied largely among different resident groups, with higher 
PM2.5 exposure of rural residents than those of urban 
residents. Real-time PM2.5 exposure showed that PM2.5 
exposure peaks mostly occurred in (Aaccompanied) cooking 
owing to strong internal emissions. Sleeping and resting 
contribute 60.7%–94.5% to PM2.5 exposures. (Accompanied) 
cooking had the highest exposure concentration among 
different activities. Exposure inequity between urban and 
rural areas is dominated by pollution variation in different 
microenvironments, which is associated with the socio- 
economic, behavioral, or environmental factors. For instance, 
households with higher incomes tend to use cleaner fuels 
compared to those with low incomes, resulting in lower 
indoor air pollution, and lower exposure levels (Lim et al. 
2022). Moreover, urban areas suffer from higher ambient 
air pollution due to industrial emissions, people in rural 
areas benefit from better ambient air quality because of 
limited anthropogenic source emissions (Wang et al. 2022). 
Rural residents face a higher risk from PM2.5 exposure, 
with a significant contribution from indoor air pollution. 
Therefore, accelerating the transition to clean energy in 
rural areas can help reduce the exposure of rural residents. 
Improved ventilation in rural homes is necessary, and 
measures such as adopting range hoods and air purifiers 
are encouraged (Huang et al. 2022; Oh et al. 2024). For 
urban residents, they can benefit from better ambient  
air quality by promoting the reduction of industrial and 
transportation emissions. Moreover, the government 
should raise public awareness of indoor air pollution, 
which will help the public take measures to reduce indoor 
emissions. 

The contributions of different activity patterns to PM2.5 
exposure inequity also varied largely among different resident 
groups. Among these factors, pollutant concentrations in 
certain microenvironments and the duration of activities 
were the main reasons for exposure inequity. The combustion 
of solid fuel leads to higher air pollution in bedrooms of 
rural homes, and the long duration of sleeping makes it  
the predominant activity contributing to PM2.5 exposure 
inequity. In addition, the contribution of different activity 
patterns to PM2.5 exposure inequity varied significantly 
when respiratory volume was considered. This study aimed 
to build a new method to quantify the contribution of 
activity patterns to PM2.5 exposure inequity between urban 
and rural residents, utilizing real-time PM2.5 data and 
time-activity information. However, the study was conducted 
only during a summer campaign. Due to variations in 
meteorological conditions, residential fuel choices, and 
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emissions from other sources, the results may differ in 
other seasons. In the future, more studies are welcomed to 
focus on this topic to better address the exposure inequity 
and its underlying drivers. 

 
Electronic Supplementary Material (ESM): The 
supplementary material is available in the online version of 
this article at https://doi.org/10.1007/s12273-024-1166-x. 
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