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A B S T R A C T

To investigate the feasibility of using temperature for tracking rainfall-runoff processes in karst catchments, this
study developed a tracer-aided conceptual model using temperature as a tracer by coupling water and heat
transport processes at the catchment scale. The model was calibrated and validated using hourly hydrometeo-
rological and temperature data from a 1.25 km2 karst catchment in south-western China. The results showed that
the model was able to capture the water flux and temperature dynamics of different landscape units in the karst
catchment. Utilizing this framework, the model delineated the flux age distribution within different landscape
units, as well as the overall water transit times through the catchment. The average flux ages were determined to
be approximately 80 days for the hillslope unit, 452 days for the slow flow system, and 260 days for the fast flow
regime within the depression areas. These estimations align broadly with those acquired using stable isotopes as
tracers. Comparative analysis revealed that the flux age distributions derived from both temperature and isotopic
tracers exhibited analogous patterns at the catchment outlet and across the hillslope compartments. However,
the simulations based on temperature hinted at a heightened proportion of exceedingly young and decidedly old
water in the outflow, alluding to a potential overestimation of these extreme age classes by the temperature-
tracer model. From the temperature-simulated transit time distribution, about 31 % of the precipitation
entering during the study period have left the catchment within 3 years, and a notable proportion of rain water
was either stored in the aquifer or lost through evapotranspiration. The general characteristics of the transit time
distribution simulated using temperature was similar with that simulated using isotopes, though a higher pro-
portion of precipitation being drained by fast flows was inferred from the transit time distribution simulated
using temperature. Collectively, our study demonstrated that temperature can serve as a cost-effective tracer for
modelling of water age distributions and associated hydrological processes in karst catchments.

1. Introduction

As descriptors of hydrological function, e.g. flux age distributions
and transit time distributions (TTDs), can provide conceptual, integrated
understanding of the mixing processes and flow paths that transform
precipitation inputs to runoff at catchment outlets (Botter, 2012;
Kirchner et al., 2000; McDonnell and Beven, 2014; Soulsby et al., 2015;
van der Velde et al., 2015). The time-scale functions can analyse the
dynamics of storage-flux-age response time (RT) interactions and have

been used to investigate patterns of hillslope/catchment response and
stream water chemical dynamics (Botter et al., 2011; Hrachowitz et al.,
2013; Rinaldo et al., 2015). Particularly, incorporating the functions in
hydrological models can provide new insights into the hydrological
processes in karst catchments with high spatial heterogeneity (Rusjan
et al., 2019; Zhang et al., 2021a; Serène et al., 2022).

To better understanding the time-scale functions on hydrological
processes of catchments, tracer sampling is often necessary to capture
high variability of hydrograph and tracer concentration in response to
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rainfall (Kirchner et al., 2004; Birkel et al., 2012). In many catchments,
high spatio-temporal resolution tracer data are a prerequisite for accu-
rately characterising the complexity and heterogeneity of catchment
responses across a range of timescales. However, in many cases, such
detail data are unavailable. Although low temporal resolution sampling
(e.g. weekly or even monthly) is still often adopted in tracer-based
modelling (Borriero et al., 2023; Yang et al., 2023) to investigate hy-
drological function during dry seasons or over longer time scales, it is
unable to track changes in water flow at smaller time scales and cannot
identify rapid hydrological changes. This limitation is particularly pro-
nounced for karst environment with rapid rainfall-runoff responses
(Zhang et al., 2019).

The most commonly tracers used in tracer-aided hydrological models
include stable isotopes (e.g. 18O and 2H), electrical conductivity (Lazo
et al., 2023), chemical ions of chloride, and alkalinity (Capell et al.,
2012; Benettin et al., 2013), and fluorobenzoic tracers (Asadollahi et al.,
2020). However, conducting long-term high spatio-temporal resolution
sampling and analysis for such tracers is logistically challenging in terms
of high financial costs for sampling, and laboratory analysis of water
samples. Compared to these tracers, temperature is a much cheaper
alternative for long-term, high spatio-temporal resolution monitoring
due to the advantages of simple detection technology and low mainte-
nance costs, which can be monitored online at high temporal resolution
with inexpensive sensors (Webb et al., 2008; Jackson et al., 2016; Simon
et al., 2022). Additionally, temperature monitoring has the merit of
having low environmental impacts involving small, inobtrusive tech-
nology and infrastructure, which requires minimal-disturbance, non-
destructive installation and non-pollution. These features also make it
advantageous for distributed monitoring purposes at the catchment
scale.

Temperature as a non-conservative tracer may limit its application
for tracking rainfall-runoff processes. As reported by Luhmann et al.
(2012), the nonconservative nature of temperature could produce a
lagged and damped thermal signal, compared with that from the con-
servative tracers. However, this shortage can be overcome by incorpo-
rating an additional function that describes water exchanged heat with
the soil and rock along the flow path in the models. The increase of non-
conservative traces and correspondingly sophisticated representations
of hydrochemical processes are also executed in coupled water-solute
models using reactive substances of nitrogen and carbon (Birkel et al.,
2020; Zhang et al., 2020a; Wu et al., 2022). In such situations, one of key
necessary steps is to identify the functions of tracers on dominant
hydrochemical processes, which can acknowledge whether the added
information is useful in fitting nonconservative parameters (e.g., Gooseff
and McGlynn, 2005), constraining models and reducing parameter un-
certainty (Kelleher and Ward, 2019). For instance, Luhmann et al.
(2012) found that water temperature signals provide potential con-
straints on flow path characteristics of the heat advection–dispersion
equation because the karst conduit geometry is correlation with the rate
of heat exchange between water and rock. Furthermore, the combina-
tion of hydraulic response and conservative and nonconservative tracers
can illustrate unique hydrochemical processes and reduce parameter
uncertainty (Luhmann et al. 2012; Kelleher and Ward, 2019).

The main aim of this study is to develop a tracer-aided conceptual
hydrological model using available hydrometeorological and tempera-
ture observation data for tracking rainfall-runoff processes in a karst
catchment in south-western China. The model is used to simulate the
water age dynamics of the catchment. The simulated water age distri-
butions in different units of the catchment are compared with those of
previous tracer aid-modelling with isotope data. The comparison de-
lineates two specific research questions: (1) can temperature, as a non-
conservative tracer, be reliable in simulating water age distributions
in karst catchments? (2) can the simulated water age distributions well
elucidate hydrological and heat dynamics within various units of a karst
catchment?

2. Study catchment and data

2.1. Study catchment

The study catchment of Chenqi, with an area of 1.25 km2, is located
in the Puding Karst Ecohydrological Observation Station in Guizhou
Province of south-western China (Fig. 1). The area has a subtropical
monsoon climate characterized by high humidity and abundant rainfall
during the wet season from May to October. The Chenqi catchment is a
typical cockpit karst landscape, with cone-shaped mountains sur-
rounding a flat depression. The elevation ranges from 1340 to 1530 m,
with the depression area of 0.37 km2 and the mountainous area of 0.88
km2. Within the depression, there is an underground conduit which
serves as the main drainage for the catchment.

The lithology in the Chenqi catchment mainly consists of marl, thick
limestone, thin limestone, and dolomite (Fig. 1). The soil layer is shallow
in this area, and in most area on the hillslope is less than 30 cm thick. In
contrast, the depression has a relatively thicker soil, generally more than
2m deep. Soil cover is irregular, especially in steeper hillslope areas, and
the exposed rock ratio in the catchment ranges from 0.1 to 0.3. Forests,
shrubs, and sloping cultivated lands are mainly distributed on the slopes
of the catchment, while the depression is predominantly farmland. The
thickness of the epikarst layer in this catchment is estimated to be
approximately 10 m and the average porosity is about 5 % (Zhang et al.,
2013).

2.2. Hydrometric and temperature data

Water levels and temperatures are monitored at sites with v-notch
weirs at the catchment outlet (underground conduit outlet) and a spring
on the eastern hillslope (HS spring in Fig. 1), using HOBO U20 water
level loggers, Onset Corporation, USA (instrument precision ± 0.3 cm
for water level and ± 0.5℃ for temperature). The water levels are
converted into discharge using weir flow formulas. An automatic
weather station is installed on the southern hillslope of the catchment to
observe meteorological conditions such as rainfall, air temperature, ra-
diation, wind speed, and humidity. In the depression, there are four
wells (W1, W3, W4, and W5 in Fig. 1) for groundwater level and tem-
perature monitoring, which are also equipped with HOBO U20 water
level loggers. These wells are in a phreatic aquifer, with depth to ground
surface of 35, 23, 13, and 16 m, respectively. Local flows at various
depths can enter well through the well screening installed over the
whole depth for each of the wells. Soil temperature automatic moni-
toring probes (HOBO H21 with instrument precision ± 0.2℃) are
installed on the north-eastern hillslope of the catchment at depths of 20
cm and 40 cm. The logging time interval for all measurements is set to
15 min.

The data collection period ran from July 23, 2016 to October 31,
2019. Due to instrument malfunctions, some data were missing, such as
the soil temperature at the depth of 40 cm after December 2018. During
the winter drought period, there were a few times that flow discharges
completely ceased at the catchment outlet (Fig. 2). From the observed
time series, the response of discharge at the catchment outlet to rainfall
was rapid and intense, exhibiting sharp variability in the hydrograph.
Overall, the temperatures of the catchment outflow, HS spring flow,
depression groundwater, and soil were closely related to changes in air
temperature, all exhibiting significant seasonal variations but also short-
term perturbations in response to rainfall events (Fig. 2). Compared to
the catchment outflow temperature, the temperature of HS spring
discharge showed more significant seasonal fluctuations. Over the study
period, the pattern of soil temperature at 20 cm depth is consistent with
that at 40 cm depth, likely related to the lower soil density and rapid
vertical groundwater flow within the soil layer. The groundwater tem-
peratures at different wells exhibited significant different responses to
rainfall due to the spatial heterogeneity of the karst geological structure
and water flows in the aquifer (Fig. 2). In some heavy rainfall events,
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surface water with higher temperatures rapidly entering the under-
ground conduits and wells through sinkholes or large fractures, leading
to a significant increase in temperatures at the catchment outlet and
wells (Fig. 2). Additionally, we collected rainwater and measured rain-
water temperature of 9 rainfall events during March ~ July in 2023, and
observed the corresponding air temperature and rainwater temperature
at the respective times. The rainwater temperature was lower than the
air temperature for each event, with an average difference of 1.1℃, and
the maximum and minimum differences being 1.7 and 0.5 ℃, respec-
tively. Statistical characteristics of rainfall, discharge, and temperatures
were summarized in Table 1.

3. Methodology

3.1. Modelling approaches

A conceptual tracer-aided hydrological model using stable isotopes
as tracers has been established by Zhang et al., (2019). In the model, the
catchment was divided into HS unit and depression units, and hydro-
logical routings fast and slow flow reservoirs in the depression unit. To
take into account the partial mixing of incoming water fluxes with stored
water, a passive reservoir was added to the HS unit in the original model,
which determined storage, mixing, and tracer transport without
affecting the volume of water fluxes. Based on this framework, we
coupled water and energy balance calculations to track water and heat

fluxes through each landscape unit and associated storages in the karst
catchment. The heat module conceptualises a heat conduction-
advection equation, which takes into account the heat transfer by con-
duction and advection within the karst hydrogeological system. Ac-
cording to temperature damping due to heat fluxes, water age
distributions in various landscape units can be estimated according to
model parameters determined by temperature damping caused by heat
fluxes. The model structure and water-heat processes are conceptualised
as shown in Fig. 3.

3.1.1. Hydrological simulation
The water balance of each unit and reservoirs was calculated as

follows (Zhang et al., 2019):

dVh

dt
= Ph − ETh − Qh− s − Qh− f (1)

dVs

dt
= Ps − ETs +Qh− s − Qe (2)

dVf

dt
= Pf − ETf +Qh− f +Qe − Qf (3)

where V represents a water storage, P is rainfall amount, and ET is
evapotranspiration. The subscripts of h, s, f represent the HS unit, slow
and fast reservoirs, respectively. Rainfall amount is distributed to HS

Fig. 1. Map of location, geology, geomorphology, and hydrological and temperature monitoring locations in Chenqi catchment.
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and depression units according to their respective areas, then the rainfall
amounts infiltration into slow and fast flow (Ps and Pf) are estimated by
the recharge coefficient of a (in Table 2). Qf is flow discharge of fast
reservoir, which also represents the conduit flow at the catchment
outlet. Qh-s and Qh-f are water flows from HS unit to slow and fast res-
ervoirs in depression, respectively. Qe represents the flow exchanges
between fast and slow reservoirs. The detailed descriptions of compu-
tations for each variable and the flow routing refer to Zhang et al.,
(2019).

3.1.2. Heat simulation
An energy balance for waters in any units or reservoirs (Fig. 3) can be

expressed as: heat accumulation rate (Js− 1) = advective heat from flow
in − advective heat from flow out + conductive heat from soil or rock.
The heat transport along flow paths in the HS unit are calculated as:

dρWcw(ThVh)

dt
= Ucv h +Ucd h (4)

where Th is the temperature of the bulk water flowing in the hillslope
(℃); Ucv and Ucd are the net heat flux of advection and conduction,
respectively; ρ and c represent density (kg m− 3) and specific heat ca-
pacity (J⋅ kg− 1⋅℃-1), respectively and the subscript of w represents the
water. This equation neglects a dispersion term.Ucv_h andUcd_h in HS unit
are calculated by follows:

Ucv h = ρWcw(TpPh a + TpasPh pas − ThETh − ThQh− s − ThQh− f + TpasVpas in

− ThVpas in)

(5)

Ucd h = kw
Tr − Th

∊h
Sh × 3600 (6)

where T represents the temperature (℃) and the subscripts of p and r
represent rain water and rock, respectively; the subscripts of a and pas
represent the active and passive stores in HS unit, and Vpas_in is water
volume from the active store to the passive store (m3); Ph_a and Ph_pas
represent the rainfall infiltration into the active and passive stores (m3),
respectively, and which can be calculated by an exponential equation
with the constants of α and β in Table 2 (Zhang et al., 2019); Sh repre-
sents cross area of heat flux (m2), which can be estimated by Vh= Sh•2∊h
based on the assumed equivalent distance and cubic geometry in this
model (Fig. 4); ∊h represents the equivalent distance between two sub-
stances through which heat conduction occurs (m) (the two substances
here are water and rock); k represents thermal conductivity (W⋅m− 1⋅℃-

1). Multiplying 3600 on the right side of Eq. (6) is to estimate the hourly
heat fluxes. In many other heat models (e.g., Becker et al., 2004),
groundwater temperature is often assigned a specific constant value (e.
g. mean annual air temperature). In this model, the water temperature
Tpas in the passive store is assumed to equal rock temperature asTpas = Tr.

In depression, the heat transport along fast and slow flow paths can
be expressed similarly. The heat transport in the slow flow reservoir is
calculated as:

Fig. 2. Processes of rainfall, discharge, air temperature, soil temperature at 20 and 40 cm depth, and water temperature at HS spring, wells and outlet.

Table 1
Statistical characteristics of rainfall, discharge and temperatures during the
study period.

Obs Max Min Mean

Rainfall (mm)Discharge
(m3/s)

44.9
0.16

0.0
0

0.1
0.01

Temperature (℃) Air
Outlet flow
HS spring flow

35.6
24.5
22.4

− 3.3
10.8
6.9

16.1
17.1
16.2

Soil 20 cm
40 cm

24.0
23.6

5.0
6.6

16.3
16.9

Well #1
#3
#4
#5

26.1
22.3
19.6
19.7

15.9
11.8
14.7
11.2

17.4
17.9
17.2
17.1
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dρWcw(TsVs)
dt

= Ucv s+Ucd s (7)

Ucv s = ρWcw(TpPs − TsETs +ThQh− s − TsQe) (8)

Ucd s = kw
Tr − Ts

∊s
Ss × 3600 (9)

The heat transport in the fast flow reservoir is calculated as:

dρWcw(TfVf )

dt
= Ucv f +Ucd f (10)

Ucv f = ρWcw(TinfPf − TfETf +ThQh− f +TsQe − TfQf ) (11)

Ucd f = kw
Tr − Tf

∊f
Sf × 3600 (12)

where Tinf is the infiltration flow temperature of the fast flow reservoir.
Since infiltration water Tp of the fast flow reservoir passes rock fractures
and thus there is a conductive heat from rock. Tinf is estimated as:

Tinf = Tp +(kw
Tr − Tp

∊inf
Sinf × 3600)/(ρWcw) (13)

where the subscript of inf represents infiltration.
The above equations contain variations of rock temperatures (Tr)

affected by heat conduction from soil, which can be calculated by:

Fig. 3. Structure of the coupled water-heat model based on the conceptual model framework by Zhang et al. (2019). Schematic A represents the water flows, heat
flows leaded by advection (red), and conduction from rock to water (orange); Schematic B represents the heat flows from air to soil and soil to rock by conduction
(orange), respectively. The letter T in each reservoir in schematic A represents water temperature, which in schematic B represents medium (soil or rock) tem-
perature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Description of model parameters, ranges and means derived from the best 500 parameter sets after calibration.

Subroutine Parameters Initial range 1 Initial range 2 Calibrated range Mean Descriptions

Flow routing Ks (h) 20–500 25–350 41–199 90 The slow flow reservoir constant
Kf (h) 1–100 1–90 8–26 14 The fast flow reservoir constant
Ke (h) 300–7000 490–5500 490–5100 1945 Exchange constant between the two reservoirs
f (− ) 0.001–0.1 0.001–0.08 0.005–0.049 0.02 The ratio of porosity of the quick to slow flow reservoir
a (− ) 0.5–1 0.5–1 0.5–0.98 0.72 Precipitation recharge coefficient for slow flow reservoir
w (− ) 0.001–0.05 0.001–0.04 0.001–0.02 0.01 The hillslope unit constant
b (− ) 0–1 0.05–0.9 0.3–0.86 0.47 Recharge coefficient of hillslope to slow flow reservoir

Heat transfer α (− ) 5000–20000 5020–20000 5035–19983 12,277 Constant for calculation of rainfall recharge into the active store in hillslope
β (− ) 0–1 0.001–1 0.002–1 0.48
φ (− ) 0–1 0.001–0.99 0.004–0.99 0.49 Coefficient for exchange flow between active and passive stores in hillslope
εinf (m) 0.01–0.2 0.01–0.13 0.01–0.1 0.04 Equivalent distance between infiltration water and rock in fast flow reservoir
εh (m) 0.01–1.5 0.01–1.1 0.01–1 0.5 Equivalent distance between water and rock in hillslope
εf (m) 0.01–2 0.03–2 0.09–2 1.04 Equivalent distance between water and rock in fast flow reservoir
εs (m) 0.01–8 0.01–5 0.01–4.2 1.06 Equivalent distance between water and rock in slow flow reservoir

Fig. 4. Schematic illustration of heat conduction exchange for cubic geometry.
Note: ∊ represents the equivalent distance between two substances through
which heat conduction occurs (m), and S represents cross area of heat flux (m2).

Z. Zhang et al. Journal of Hydrology 643 (2024) 131947 

5 



dρrcr(TrVr)

dt
= Usoi r (14)

Usoi r = kr
Tsoi − Tr

∊r
Sr × 3600 (15)

Similar as rock, soil temperature Tsoi can be calculated by:

dρsoicsoi(TsoiVsoi)

dt
= Uair− soi (16)

Uair− soi = ksoi
Tair − Tsoi

∊soi
Ssoi × 3600 (17)

where the subscript of soi and air represent soil and air; Uair_soi and Usoi_r
represent the conductive heat fluxes from air to soil and from soil to
rock, respectively; Vsoi, and Vr represent the volumes of soil and rock
(m3) in the shape of cuboids (Fig. 4), respectively. The equivalent dis-
tances of soil layer (∊r) are equal to 0.3 m and 1 m for HS and depression
units, according to the soil thickness distribution. The equivalent dis-
tance of ∊r is equal to the mean thickness of the epikarst in this catch-
ment (10 m).

Typically, the karst fracture rate is relatively low (e.g., approxi-
mately 10 % according to field investigations of rock fractures in this
catchment). Therefore, the model solely includes the heat conduction
from rock to water and neglects the heat conduction from water to rock.

3.1.3. Water age estimation
Water ages are simulated in the HS unit (containing active and

passive reservoirs) using the partial mixing method:

dAh(Vh)

dt
= ApPh a +ApasPh pas − AhETh − AhQh− s − AhQh− f

+ApasVpas in − AhVpas in

(18)

dApas(Vpas)

dt
= ApPh pas − ApasPh pas + AhVpas in − ApasVpas in (19)

where A represents water age.
Water ages are estimated in the fast and slow flow reservoirs in

depression as:

dAs(Vs)

dt
= ApPs − AsETs +AhQh− s − AsQe (20)

dAf (Vf )

dt
= ApPf − AfETf +AhQh− f +AsQe − AfQf (21)

The model used in this study considers the “aging effect”, as each age
item at time t includes the age at the previous time step t-1 in the
calculation.

The model comprises 14 parameters that require calibration, 7 for
flow routing (Ks, Kf, Ke, f, a, w and b) and 7 for water temperature
calculation (α, β, φ, εinf, εh, εf and εs). The descriptions of model pa-
rameters for calibration are listed in Table 2.

3.2. Modelling procedure

The model inputs include meteorological variables of precipitation
and air temperature as well as the rainwater temperature. Here, the
rainwater temperature is equal to air temperature minus mean differ-
ence between air temperature and rainwater temperature in this area
(1.1℃). The calibration period was from November 1, 2016 to October
31, 2018, and the validation period was from November 1, 2018 to
October 31, 2019. To minimize the effects of initial conditions on water
age calculations, data from three months prior to calibration (from 23
July 2016 to 31 October 2016) were used as a spin-up period. The
modelling was implemented at hourly time steps.

The modified Kling-Gupta efficiency (KGE) criterion (Kling et al.,

2012) was utilized as the objective function for model calibration and
validation. Model parameters were jointly calibrated based on observed
series of discharge and water temperature at the catchment outlet, using
the combined criterion of KGE as: KGE= (KGEd+ KGET)/2, where KGEd
was for discharge and KGET was for water temperature. The measured
data of soil temperatures at depths of 20 cm and 40 cm, as well as the
water temperatures at the HS spring and wells in the depression, were
also used to evaluate the performance of the model. A Monte Carlo
method was employed to calibrate the model parameters and assess the
model’s effectiveness. The parameter calibration process consisted of
two iterations. Firstly, within the initial given ranges of parameters
(initial range 1 in Table 2), 100,000 sets of parameter combinations
were randomly generated according to a uniform distribution. The
ranges were then narrowed down using the criterion of KGE>0.3. Then,
another random sampling was carried out using the narrowed ranges of
parameters (initial range 2 in Table 2), generating another 100,000 sets
of parameters. The best (in terms of the efficiency statistics) parameter
populations of 500 sets of parameters corresponding to the highest KGE
values of the simulated results were selected for model evaluation and
result analysis.

According to previous field survey in this catchment (Zhang et al.,
2011) and literature values (Fan, 2003; Wang, 2008), some parameters
were fixed. Hence, the density (ρ) of water, soil and rock were 1000,
1200 and 2600 kg m− 3, respectively. The specific heat capacity (c) of
water, soil and rock were 4200, 2400 and 680 J⋅ kg− 1⋅℃-1, respectively
(Song et al., 2019; Wang et al., 2019). The thermal conductivity (k) of
water, soil and rock were 0.48, 1.9 and 2.5 W⋅m− 1⋅℃-1, respectively
(Duan, 2015; Song et al., 2019). All other parameters were calibrated.

4. Results

4.1. The simulated flow and temperature

The results showed that the measured discharge and water temper-
ature over the study period were mostly bracketed by the simulation
ranges for the 500 best parameter populations at the catchment outlet
(Fig. 5). The average KGE values were 0.72 (with a range from 0.63 to
0.77) and 0.73 (0.63 to 0.85) for calibrated and validated periods,
respectively. With this parameter sets, the average KGEq values were
0.76 (0.58 to 0.83) and 0.75 (0.64 to 0.83), and the average KGET values
were 0.69 (0.56 to 0.76) and 0.71 (0.51 to 0.89), respectively. The
simulated dynamics of flow and water temperature at the catchment
outlet (the underground conduit flow) can generally capture the
respective variable variations in response to seasonal temperature
variability and rainfall events. However, some flood peaks, especially in
2018, were underestimated (Fig. 5a), and the simulated temperature
exhibited more pronounced fluctuations compared to the observed
values (Fig. 5b).

The modelled soil temperature at 20 and 40 cm, calculated according
to Eq.16 and 17 (the equivalent distances of soil layer, ∊soi were set to 0.2
and 0.4 m, respectively), are shown in Fig. 6. The results demonstrated
that the model effectively captured the variations in soil temperature at
the depths of 20 cm and 40 cm, with KGEST for soil temperature of 0.72
and 0.63, respectively, during the study period.

The observed water temperatures at HS spring and depression wells
represented observations at specific points, instead of the whole HS unit
and slow flow reservoir in the depression. Hence, in this study, the
comparison between simulated and observed water temperature
changes at HS spring and the groundwater wells were regarded as “soft
verification”. The results showed that the seasonal variation of simu-
lated water temperature at the HS spring was consistent with that of
observation at the whole HS unit (Fig. 7(a)). Building on the findings of
previous Electrical Resistivity Tomography (ERT) surveys, the limestone
stratum overlying the aquitard, a thin marlstone layer, on the HS where
monitoring site S5 is situated, is subject to intense weathering, resulting
in the formation of well-developed karstic fractures (Cheng et al., 2019).
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Fig. 5. Simulated and observed flow and water temperature at the catchment outlet over the study period.
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Consequently, the retention capacity of this HS is limited, leading to a
rapid hydrological response at S5 following precipitation events (Zhang
et al., 2020c). This dynamic may contribute to relatively swift fluctua-
tions in spring temperatures at this location. In contrast, the model-
simulated temperatures are indicative of the average conditions within
the catchment’s HS unit. Thus, compared to S5, the modelled temper-
ature graph of the HS unit exhibits a more gradual response with smaller
amplitude fluctuations. Nevertheless, the correspondence in overall
trends provides indirect validation of the model’s performance.

In the depression unit, the model’s representation of the slow flow
reservoir accurately reflects the gentle variations of water temperatures
observed at the four depression wells (Fig. 7b). However, replicating
some exceptionally high temperature readings in wells 1# and 3#,
which are interconnected with extensive lateral fractures, presents a
challenge (Fig. 7b). Notably, the model is adept at capturing the atten-
uation of water temperature fluctuations at well W5, where the condi-
tions suggest a less permeable aquifer containing “older” groundwater

(Chen et al., 2018).
The mean values of calibrated model parameters were listed in

Table 2. The probability density of each parameter was estimated for the
500 best parameter populations after calibration, as shown in Fig. 8. The
results indicated that among the parameters related to flow routing, ks
and kf were the most sensitive and identifiable parameters, with values
concentrated in the range of 40–80 h and 10–20 h, respectively. Pa-
rameters a, f and bwere relatively sensitive, with values concentrated in
the range of 0.7–0.8, 0.01–0.03 and 0.3–0.6, respectively. The param-
eters Ke and w were insensitive. Among the parameters related to tem-
perature calculations, only εinf and εs were sensitive parameters, with
values concentrated in the range of 0.01–0.03 and 0.1–1, respectively,
while the remaining parameters (α, β, φ, εh, and εf) were poorly
identified.

4.2. Simulated water age distributions

The simulated flux ages in various reservoirs over the study period
are shown in Fig. 9. The average flux age at the catchment outlet (the
fast flow reservoir) during the study period was 260 days, exhibiting
significant seasonal and daily variations, especially during the wet
season. The flux ages could reduce from around 500 days before rainfall
to less than 10 days after a storm event (Fig. 9(a)). Compared to the
catchment outlet, the water ages in the HS unit were generally lower,
with an average value of 80 days (with maximum and minimum values
of 168 and 16 days, respectively) during the study period. The water
ages within the slow flow reservoir (i.e. matrix and fine fractures)
remained at a relatively high level, with an average value of 452 days
(with maximum andminimum values of 510 and 380 days, respectively)
during the study period. From the results, flux ages at the slow flow
reservoir approach those at the catchment outlet during the dry season
(Fig. 9a), which indicated that the catchment outflow was primarily fed
by the water in matrix and small fractures. Conversely, flux ages at the
HS unit approach those at the catchment outlet during the wet season,
which signifies a significant contribution of the hillslope to the catch-
ment outflow under wet conditions. Furthermore, during heavy rainfall
events, the water ages of the catchment outflow could be as short as a
few days, shorter than that in the HS unit. It infers an additional

Fig. 6. Simulated and observed soil temperatures at 20 and 40 cm depth over
the study period.

Fig. 7. Simulated and observed water temperature at HS (a) and depression units (b) over the study period. Note: at the HS unit, the observed and simulated water
temperature Th represents Th at a HS spring and the whole HS unit, respectively; at the depression unit, the observed and simulated water temperature Ts represents Ts
at wells and the whole depression unit, respectively.
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contribution of water recharge to the outlet, such as the concentrated
recharge through sinkholes and preferential flow pathways in the
depression. These inferences were consistent with previous findings on
the hydrological function of this karst catchment (Wang et al., 2020; Yue
et al., 2020; Zhang et al., 2021b).

To better understand the dynamics of water age distributions under
different wetness conditions, two time points in the wet and dry seasons
were selected, respectively, for the tracking analysis. The wet season
time point (t1) was chosen as June 12, 2017, with rainfall amount of 45
mm and a maximum discharge at the catchment outlet of 0.15 m3/s on
this day. The dry season time point (t2) was selected as March 14, 2018,
with rainfall amount of 5.4 mm and a maximum discharge at the
catchment outlet of 2.5 × 10-4 m3/s on this day. Fig. 9(b) showed the
average probability density function (PDF) of flux age at the catchment
outlet simulated using the tracer of temperature at t1 and t2. The results
indicated that, for the two time points, about 68 % and 37 % of the
catchment outflow came from the contribution of rainfall recharge on
the corresponding day (t1 and t2), respectively. Although the catchment
outlet continuously received water from previous rainfall in a long term,
these contributions were significantly lower (e.g. the contribution of
rainfall from previous individual events is less than 10 % for t1 and t2)
than the same-day rainfall inputs (Fig. 9b). The transit time PDFs with
other wetness conditions had similar variation patterns (Fig. S1 (a) in
the Supplement). This indicated that, on rainy day, the fresh water
(rainfall recharge) was the primary source contributing to the catchment
outflow rather than the old water stored in the aquifer.

The simulated transit time distributions (TTD) were shown in Fig. 10.
The average transit time PDF exhibited relatively high fractions of young
water with low transit times (e.g. less than 50 days) (Fig. 10(a)), which
highlighted the contribution of flow through fast pathways to the
outflow in the Chenqi karst catchment. The cumulative probability
density function (CDF) of transit times showed that young water with
low transit times accounted for less than 30 %, which indicated that a
notable portion of rain water was either stored in the aquifer or
consumed through evapotranspiration, rather than draining as runoff
from the catchment outlet. The simulated TTD for events with different
wetness conditions were represented in Fig. 10(b), which showed that
the transit time PDFs had similar variation patterns for rainfall at t1 and
t2. However, according to the simulated transit time CDF, compared to
the wet season, a higher portion of rain water remained in the aquifer,
with less draining as runoff from the catchment after precipitation in dry
season. This can be supported by the variation patterns of TTD under
different wetness conditions (Fig. S1 (b) in the Supplement).

5. Discussion

5.1. Simulating water temperature in karst catchments using a conceptual
model

The skill of a coupled flow-tracer model to accurately simulate the
dynamics of a tracer flux in a catchment is the basis for tracking water
age distributions, as well as the fundamental demonstration of

Fig. 8. Probability density estimate of the 500 best parameter populations.
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minimizing the impact of non-conservative behaviour at the catchment
scale. Although the simulation of the water flow-temperature process in
a catchment has been achieved in some studies through physically-based
models (Zhang et al., 2000; Qiu et al., 2019), it is still difficult to apply to
the simulation of water temperatures in karst catchments. Especially for
the dynamic simulation of water temperature in fissure or conduit flows,
numerical experiments or calculations of water temperature in single
fissure or conduit are still predominant (Covington et al., 2011, 2012;
Luo et al., 2023). Existing studies have demonstrated that conceptual
models were able to simulate the spatial and temporal dynamics of

tracers in different landscape units of karst catchments, such as stable
isotopes of hydrogen and oxygen (Zhang et al., 2019; Li et al., 2022). The
availability of long-term soil temperature, water temperature at HS
spring and depression wells in the Chenqi catchment provided the
foundation for testing the use of conceptual models to simulate spatio-
temporal variations in water temperature in karst catchments.

Adapting the tracer-aided conceptual model of Zhang et al (2019)
using temperature as a tracer allowed the variations in water tempera-
ture in different landscape units to be simulated to a first approximation.
At the catchment scale, such models enable the complex dynamics of

Fig. 9. Simulated (a) mean flux ages in various conceptual reservoirs (for the 500 best parameter populations), and (b) flux age distributions at the catchment outlet
at t1 and t2 (for the best parameter set).
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water flow and heat fluxes in karst regions to be simulated using con-
ceptual models with simple structures and fewer parameters. Despite the
use of a simple tank structure and simplified heat transfer calculations in
the model (such as the use of ‘equivalent distance’ to estimate conduc-
tion between water flow and the mediums of soil and rock (as shown in
Fig. 4), while calibrating parameters using outflow temperature at the
outlet, the model simultaneously improved the accuracy of simulating
water temperature dynamics by “soft validation” using water tempera-
ture in HS spring flow and groundwater wells, as well as soil

temperature at different depths. Such an approach has been adopted in
other studies, which found that checking against soft data can reveal
incompatibilities between data and calibration (Wu et al., 2023).

In many water-heat transport models, it is a common practice to
calculate stream inflow temperature based on empirical relationships
with air temperature or soil temperature (Haag and Luce, 2008; Ouellet
et al., 2014; Morales-Marín et al., 2019). However, a core function of
tracer-aided models is to estimate water age distributions at the catch-
ment scale, which also requires the model to simulate different water

Fig. 10. Transit time distributions simulated by the tracer-aided model using the best parameter set, (a) the mean TTD during the study period, (b) TTD for the
rainfall at t1 and t2.
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mixing processes in different landscape units. Hence, physically-based
models have the parameters to directly represent storage and mixing
in various landscape units inferred by temperature damping potentially
have such tracking function (Zhang et al., 2000; Kwon and Koo, 2017;
Sjöberg et al., 2021). Although the model in this study is conceptual,
rather than fully physically-based, the method used to calculate inflow
temperature considers the processes of heat advection and conduction.
This is consistent with the requirement of tracer-aided model for
tracking rainfall-flow processes at the catchment scale. Of course, the
model still has some obvious limitations. For example, due to the
shallow soil layer in karst areas, water flows in the fractures within the
epikarst are the main source of underground conduit runoff (Williams,
2008; Fu et al., 2016), and their temperatures play a controlling role in
the underground conduit inflow temperature. However, it is difficult to
observe the temperature of rock in such heterogeneous systems, which
leads to inadequate constraints on the parameter calibration for the
model’s calculation of heat conduction between fracture water and rock,
thereby affecting the accuracy of the temperature simulations. None-
theless, the model established in this study provided a reasonable rep-
resentation of water flow and seasonal heat transfer processes in the
karst hydrogeological system. It also adhered to the relatively parsi-
monious philosophical basis of catchment process simulation, repre-
senting an encouraging step forward in water temperature modeling in
karst catchments.

Compared to the observed sequences, the simulated hourly temper-
atures in the catchment outflow exhibited significant fluctuations,
particularly after rainfall in the wet season (see Fig. 5b). This phenom-
enon also frequently occurred in other studies (Yearsley et al., 2019).
The most likely reason for this was an overestimation of the contribution
of rainfall infiltration (young water) to the underground conduit flow. It
can be inferred that the calibrated parameters for the conceptualization
of the preference for releasing younger and older water from the karst
hydrogeological system, linked to the “inverse storage effect” and
“direct storage effect” (Harman, 2015; Wilusz et al., 2020), could be
inaccurate. In this model, the parameters for calculation of water flux
between different reservoirs are fixed (such as parameter b in Table 2),
without considering the enhanced connectivity resulting from increased
water storage which could significantly increase the catchment outflow
during heavy rainfall events (Zhang et al., 2021b), which is consistent
with the underestimates of discharge peak in Fig. 5(a). This further
causes the model parameters to take on values that tend to increase the
“inverse storage effect” of catchment, although it may be inaccurate
under drought conditions. However, on the other hand, this precisely
demonstrated the significant indicative role of temperature for different
water sources (as shown in the simulated results in Fig. 7), which has
been confirmed in many studies that use temperature information to
separate runoff components in karst catchments (Genthon et al., 2005;

Domínguez-Villar et al., 2018; Chi et al., 2020), laying the foundation
for its potential transfer value as an inexpensive and logistically simple
tracer to build tracer-aided models and simulate water age distributions
in other karst catchments.

5.2. Comparisons of water age distributions modelled using tracers of
stable isotopes and water temperature

In previous studies, the use of stable isotopes in a tracer-aided runoff
model has proven effective in tracking the water age distributions in the
Chenqi catchment (Zhang et al., 2019, 2020b). The simulated flux ages
in the underground conduit and HS units using temperature in this study
were very similar to those simulated using isotopes during the study
period (Fig. 11a and c). In contrast, there were notable differences be-
tween the flux ages in the slow flow reservoir simulated using temper-
ature and isotopes (Fig. 11b). Many studies based on isotope-based
tracer-aided models have shown that the mixing volume for slow flow
reservoir is usually poorly identifiable, which leads an uncertainty of the
slow flow ages (Soulsby et al., 2015; Zhang et al., 2019; Gou et al.,
2023). Furthermore, apart from this reason, the uncertainty in the flux
ages in the slow flow reservoir using temperature as a tracer might also
be related to inaccuracies in the temperature simulation. The large
contact area between water and the slow flow media combined with the
long water residence times (Husic et al., 2019; Zhang et al., 2021b)
result in heat conduction having a significant impact on water temper-
ature in the slow flow reservoir. In this study, we simplified the calcu-
lation of heat conduction between medium-water, medium-medium,
and within the medium, which may affect the accuracy of simulating the
flux ages in slow flow reservoir. Hence, regardless of whether isotopes or
temperature was used as a tracer for model constraints, there was
notable uncertainty in the simulation results of flux ages in slow flow
reservoir.

For the best 500 runs, the probability density functions (PDFs) of
simulated flux ages at the catchment outlet exhibited two distinct peaks
(Fig. 12c), one for younger water and the other for older water,
reflecting the contributions of flows from the HS unit and slow flow
reservoir to the outlet under different wetness conditions. This pattern
was consistent with that modeled using the tracer of isotope by Zhang
et al., (2019). However, higher proportions of waters with youngest ages
(such as younger than 50 days) and oldest ages (such as older than 450
days) were evident in the PDFs of simulated flux ages at the catchment
outlet derived using temperature (Fig. 12c). The flux age PDFs in HS unit
simulated using temperature and isotopes were similar (Fig. 12a).
Hence, it could be deduced that, for the first peak in water age PDFs of
catchment outflow (in Fig. 12c), the difference in the proportion of
extremely young water in the outflow simulated using temperature and
isotopes may be primarily caused by capturing the direct infiltration of

Fig. 11. Simulated water ages of fluxes in different conceptual stores using temperature and isotope, respectively, (a) HS unit, (b) slow flow reservoir, and (c) fast
reservoir (the catchment outflow).
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new water through sinkholes or exposed large fractures during heavy
rainfall events. The isotopes in directly infiltrated water experience less
fractionation during the percolation process (Sprenger et al., 2017),
leading to a notable difference in its isotopic composition compared to
the older water stored in underground conduits (Chen et al., 2018). In
contrast, directly infiltrated water was influenced by heat conduction
with contact media, resulting in rapid changes in its temperature, which
may reduce differences in the temperature with the older water in un-
derground conduits (Luo et al., 2023). Therefore, using temperature as a
tracer may tend to overestimate the proportion of new water in the
outflows in karst catchments.

On the other hand, for the second peak in water age PDFs of catch-
ment outflow (in Fig. 12c), the higher proportion of older water in the
outflow simulated using temperature than that simulated using isotopes
was mainly caused by variations in the flux age distribution in the slow
flow reservoir (Fig. 12b). For isotopes, the evaporative fractionation in
mobile waters is weak (Sprenger et al., 2018), which leads significant
differences in isotope composition in waters with different ages, namely,
isotopes have a strong “fingerprint” effect in the conceptual store. In
contrast, the temperature of water in the slow flow reservoir is influ-
enced by heat conduction, which causes the temperature of waters with
different ages to tend to be similar (Brookfield et al., 2017; Chen et al.,
2018), leading to a weakening of the “fingerprint” effect. Therefore,
compared to isotopes, the proportion of old water in the outflows
simulated using the tracer of temperature could have a higher level of
uncertainty.

The water transit time distributions simulated using temperature as a
tracer constraint in Chenqi was overall quite comparable to those
simulated using isotopes as a constraint (Fig. 13), indicating the appli-
cability of temperature in water age distribution simulation in karstic
catchments. The PDFs simulated using temperature decreased rapidly at
the very short-tail of the distribution, i.e. < 10 d in Fig. 13, which
suggests that the tracer-aided model using temperature can capture the
dominant control of fast flow paths (e.g. the effects of sinkhole or large
fractures) on the underground conduit flow generation early in rainfall

events as well as models using isotope tracers. The transit time distri-
bution simulated using temperature also captures the long tail of the
distribution, albeit with a lower proportion of the flux, which inferring
the influence of different older flow generating processes and associated
mixing (Harman et al., 2009; Hrachowitz et al., 2013). It is worth noting
that on average about 31 % of the precipitation entering during the
study period was estimated using temperature to have left the catchment
as stream flow within 3 years (the estimated CDF in Fig. 13), which
revealed that there was a higher proportion of precipitation projected as
being drained by fast flows from the results simulated using tempera-
ture. This was similar with the results simulated using isotopes, that
about 27 % of the precipitation have left the catchment as stream flow
within 3 years.

It can be seen that there were still be potentially influences of various

Fig. 12. Probability density functions of the simulated water ages in fluxes from (a) HS unit, (b) slow flow reservoir, and (c) fast reservoir for the best 500 runs, using
temperature and isotope, respectively.

Fig. 13. Mean transit time distribution by the tracer-aided model with tem-
perature and isotope, respectively.
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sources of uncertainty when using temperature as a tracer to simulate
water age distributions in karst catchments. However, the overall
conclusion of this study that a tracer-aided conceptual model con-
structed using temperature as a tracer can capture the dynamics of water
ages in different landscape units remain largely unaffected.

5.3. Equifinality of model parameters and uncertainty of the modelled
results

The application of a tracer-aided model that employs temperature as
a proxy yields reasonable outcomes, yet it is hampered by substantial
parameter equifinality and uncertainties in modelled outputs within
intricate karst terrains. Parameter sensitivity analysis (see the in the
Supplement), conducted separately for calibrations against outlet
discharge and/or water temperature (quantified by indices such as
KGEd, KGEt), underscores the issue of equifinality. Specifically, when
calibration targets discharge alone, four parameters (Ks, Kf, α, and β)
within the seven-parameter flow routing module emerge as sensitive,
whereas temperature module parameters demonstrate insensitivity
(seen in Fig.S2 (a) in the Supplement). Conversely, when calibration
exclusively accounts for temperature, the flow routing module reveals
Kf, Ke, f and α as sensitive, alongside εinf and εf within the temperature
module as sensitive (Fig.S2 (b)). However, when calibrating against
both discharge and temperature signatures, the flow routing module
retains Ks, Kf, α, and β as sensitive, with εinf and εs in the temperature
module showing sensitivity (Fig.S2 (c)). Notably, when optimizing for
both discharge and temperature composition, parameters such as Ks, Kf,
β, and εinf exhibit heightened sensitivity, surpassing those calibrated
using temperature alone (as depicted by the broader cumulative distri-
bution ranges in Fig.S2 (c)). By adopting a combined objective function,
the two additional sensitive parameters (εinf and εs) in the temperature
module complement the already sensitive quartet in the flow module
(Ks, Kf, α, and β). Within this module, the three parameters of Ks, α, and β
accentuate the ’old’water’s contribution to outflow. In contrast, the fast
flow reservoir constant (Kf) signifies the ’young’ water’s contribution to
outflow. Augmenting Ks, α, and β or diminishing Kf engenders an
increased release of older water from the slow reservoir to the catchment
outlet. Inversely, parameter alterations in the opposite direction lead to
younger outflows. The temperature module’s parameters εinf and εs
denote thermal diffusion from rocks to water permeating into the fast
reservoir and the thermal characteristics of slow reservoir storage,
thereby influencing water temperature at the outlet and the relative
outflow contributions from both reservoir types. Although the dual-
constrained calibration in this study utilizing discharge and tempera-
ture, parameter equifinality remains obvious, which might only be
overcome when additional field data were used to better constrain pa-
rameters. Nonetheless, the utilization of temperature as a tracer proffers
insights into storage dynamics, hydrologic connectivity, and mixing
processes.

Although certain parameters (e.g., α, β, φ, εh, and εf, which govern
fast flow reservoir and HS unit) are insensitive, the uncertainty bounds
in modeled temperatures and ages are arrow (as seen in Figs. 7 and 9).
This could be related to the calibration harnessing outlet data and the
strong connectivity between HS unit and the catchment outlet. Whilst
the broader uncertainty bands tend to arise in the slow flow reservoir,
where mixing volumes often elude precise determination, as noted by
other water age research at the catchment scale (Benettin et al., 2017; Li
et al., 2022; Soulsby et al., 2015). According to flux age simulations
(Fig. 9), uncertainty magnifies alongside flux ages within both HS unit
and fast flow reservoirs. During the rainy season, with prominent HS
contributions, outlet uncertainty diminishes; however, the slow flow
system’s dominance in the dry season inflates outlet uncertainty. Thus,
the insensitive parameter Ke, which governs inter-reservoir exchange,
could heighten uncertainties at both the slow flow reservoir and the
catchment outlet.

Some flow peak underestimations in 2018 at the outlet possibly stem

from calibration constraints driven by the prior year’s significant events;
extended calibration datasets might redress this. The model’s mis-
representations of thermal fluctuations at the outlet signal a need for
enhanced parameterization of heat transfer processes and flow mixing,
which demand further examination.

For precise water age distribution predictions through this tracer-
aided model, high spatiotemporal resolution data at the catchment
scale prove crucial. Observation data across diverse wetness con-
ditions—like intense rainfall events and extended dry spells which
encapsulate hydrological connectivity and mixing propensities—are
vital for simulation fidelity. Granular temperature measurements,
encompassing those of soil, rock, rain, spring, groundwater, and outlet
flows, afford a reduction in uncertainties related to heat diffusion and
mixing process simulations. Fortunately, temperature’s accessibility and
affordability for tracer deployment facilitate comprehensive measure-
ments in karst region, notable for their marked spatial variability.

6. Conclusions

In this study, we developed a tracer-aided conceptual runoff model
that employs temperature as a tracer within a karst catchment frame-
work, integrating water and heat transport dynamics across various
landscape compartments. Utilizing this model within the characteristic
karst terrain of the Chenqi catchment in Southwest China, our investi-
gation focused on the utility of temperature as an efficient, cost-effective
tracer for delineating water fluxes and elucidating water age distribu-
tions in karst systems. The model demonstrated a capacity for accurately
representing the essential behavior of water flux and temperature across
different landscape units within the catchment. Using temperature as a
tracer, we simulated the flux age distributions within each conceptual
storage, as well as the distributions of water transit times. The modeled
water age dynamics captured crucial aspects, including variations in
flow pathways, the extent of mixing, and the degree of hydrological
connectivity intrinsic to the karst catchment under varying moisture
regimes.

Our simulations indicated that the outflow’s flux age distributions,
based on temperature and isotopic tracers, shared congruent patterns at
both the catchment outlet and the HS unit. Notwithstanding, the
temperature-based model suggested a pronounced abundance of
exceptionally young and old waters within the outflow, insinuating a
potential overestimation of the extremities in age distribution by uti-
lizing temperature within tracer-aided modeling. The transit time dis-
tribution patterns, informed by temperature, closely align with those
indicated by isotopic analyses. However, temperature-based simulations
inferred a more considerable segment of precipitation being rapidly
mobilized through fast flow conduits. According to our simulations,
approximately 31 % of inflowing precipitation exited the catchment as
streamflow within a span of three years, pointing to a substantial
quantity of rainfall being sequestered in the aquifer or lost to
evapotranspiration.

Although the application of temperature as a tracer in conceptual
models necessitates further refinement in modeling heat transfer pro-
cesses and warrants extensive validation against a more robust tem-
perature dataset, including aquifer rock temperatures, our research
corroborates that readily accessible temperature data can serve as an
effective tracer. This approach provides insights into the mechanisms of
streamflow generation and water age distributions within karst catch-
ments and potentially extends to non-karstic terrains.
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