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A B S T R A C T

Many instrumental quantifications for heavy metals require the establishment of the calibration curve between 
calibrator’s signals and mass concentrations based on linear regression model. However, linear fitting based on 
the ordinary least squares regression model faces the challenges from the instruments, such as homoscedasticity 
of signals, which may result in the poor performance for the measurement of low mass concentration. In com
parison, the linear weighted regression model in many studies has been proven to better address the problem of 
heteroscedasticity in inductively coupled plasma emission spectrometer (ICP-OES). This study developed a 
computational software incorporating the linear weighted regression model for the bottom-up evaluation of the 
measurement uncertainty from a few replicate signals of calibrators and sample. It includes a model of signal 
precision variation in calibration interval based on the adjustment factor from the previously detailed and daily 
calibration. In addition, normal distribution for signal repeatability in ICP-OES was confirmed by using the 
Jarque-Bera test. The Monte Carlo method (MCM) employed here is designed for simplicity and intuitiveness, 
thus minimizing complex mathematical maneuvers, although it does presuppose a basic proficiency in computer 
programming. The method was successfully applied to assess the mass concentration of heavy metals (Cu, Zn, Fe, 
and Mn) in acid mine drainage by ICP-OES after necessary sample dilution. The robustness of developed mea
surement uncertainty method, which will not be limited by this assumption of the quality of calibrators prep
aration, was validated through the analysis of control standards with known mass concentration and sample with 
several spiking levels. The metrological compatibility of mass concentration and respective uncertainty was 
given to show the feasibility, practicality and reliability of the MCM simulations. A user-friendly software for the 
MCM is provided in the supplementary material. Overall, this study makes a contribution to the objectivity of the 
evaluation of environmental sample analysis.

1. Introduction

Acid mine drainage (AMD) has been recognized one of the most 
serious potential risks of environmental pollution in both operating and 
abandoned polymetallic sulfidic mines [1–3], and has attracted wide
spread attention from various international organizations, scientific 
communities, and civil groups. It is commonly considered as an 
extremely acidic wastewater with elevated concentration of heavy 
metals (e.g., Cu, Zn, Fe, and Mn). These heavy metals, mainly released 
from oxidation of sulfide-rich minerals in the surface weathering area, 
may contaminate surface and groundwater and soils, and finally damage 

the health of plants, wildlife, and humans through the food chain [4,5]. 
Most researchers published concentrations of heavy metals in acid mine 
drainage at contaminated area, and debated their source and migration 
in the water and sediments [6], in which most of quantitative data are 
obtained from inductively coupled plasma emission spectrometer 
(ICP-OES) [2,7,8]. Up to now, this instrument is an available tool for 
determining various heavy metals in trace level from complex water 
matrices, because of their accuracy and selectivity. However, it is still 
lack of uncertainty evaluation associated with quantification of the 
pollution, influencing objectivity in comparison of similar contamina
tion levels.
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Quality of test data can be characterized by the uncertainty of 
measurement, which is crucial for determining whether the results fulfill 
the purpose and provide a reliable interpretation. However, an accurate 
evaluation of the measurement uncertainty of heavy metals by ICP-OES 
throughout calibrator and sample’s preparation remains challenging. 
The complexity persists despite a few studies examining the impact of 
both random and systematic errors on the measurements obtained from 
various instruments [9–16]. The principles for bottom-up uncertainty 
evaluation require that all factors resulting in the discrepancy between 
the conventional ‘true’ value and measured value are taken into account 
based on the Guide to the Expression of Uncertainty in Measurement 
(GUM) [17,18]. Evaluation from the GUM quantify and combine un
certainty sources assuming a linearized propagation of the uncertainty 
components and components’ independence. Subsequently, acquisition 
of the expanded uncertainty requires the calculation of the effective 
degrees of freedom based on the Welch–Satterthwaite formula. But it 
cannot exactly coincide with the actual measurement, which is the re
sults of the complexity of measurement model and correlation among 
multiple contributory factors [19,20]. As a supplement, the Monte Carlo 
method (MCM) constructs a mathematical calculation which requires 
random and repeated sampling of probability density functions (PDF) of 
the input variables to generate a distribution for the output variables. 
The measurement uncertainty can be programmed for calculation by 
extracting optimal estimation from such output variables at a certain 
confidence level (e.g., 2.5th and 97.5th percentile vs. 0.5th and 99.5th 
percentile) after the establishment of the probability density distribution 
of the results. Various PDF distributions, such as rectangular, triangular, 
normal, and Student’s t, are commonly adopted in evaluation of un
certainty of the measured quantity for the input quantities [21]. 10,000 
to 100,000 calculations are considered to be satisfied with acquisition of 
stable estimates for many instrumental measurements.

Currently, the MCM has been used to evaluate measurement uncer
tainty of analytical instrument involving in calibration curves estab
lished on the ordinary least squares regression model (LSRM) [14,22,
23]. For example, Dadamos do et al. [9] developed a MS-excel file for the 
Monte Carlo uncertainty evaluation of instrumental quantifications 
where LSRM is used for the extrapolation of the calibration curve in the 
cumulative standard addition method. Producing reliable measurement 
quantifications in the evaluation must meet the assumptions of LSRM-1) 
The linear correlation between calibrations and instrumental responses; 
2) The homogeneity of variances from instrumental responses; 3) The 
irrelevance of the uncertainty of quantity values of any pair of calibra
tors given instrumental signal precision. However, the last two items 
have been proved to particularly inapplicable for many instruments of 
trace element analysis (e.g., Inductively coupled plasma mass spec
trometry, Inductively coupled plasma optical emission spectrometry, 
and Atomic absorption spectroscopy), which result in a poor regression 
fit, and, therefore, incorrect quantification [9,13,14,21]. Additionally, 
negligence of calibrators’ preparation and absence of selecting the 
probability distribution which best fits to repeatable instrument signals 
in some researches may generate the artificial bias for the uncertainty 
evaluation [9,13]. In comparison, linear weighted regression model 
(LWRM) has access to deal with approximate heteroscedastic data 
without the prerequisites of constant signals variance, and is in favour of 
improvement of the accuracy in quantitative measurement [22]. It is 
also programmed into commercial quantitative software of ICP-OES, 
which always weight the influence of each measurement by the in
verse of the variance of instrumental signals. Although it has not been 
discussed in literature to date, we expect to assess the measurement 
uncertainty by MCM even in the case of heteroscedastic data.

Overall, in ordering to obtain the comparable data at similar con
centration levels for global studies on acid mine drainage, it is necessary 
to perform the evaluation of quality of test data from ICP-OES. 
Furthermore, heteroscedastic instrument signals in calibrators at the 
several concentration levels should be taken into consideration for linear 
regression, although intense linear correlation exists. The LWRM has 

more significant advantages in operation of heteroscedastic data and 
quantification for low concentration sample than the LSRM. Therefore, 
this study develops a methodology applying to the determination of 
heavy metals in acid mine drainage by ICP-OES, and performs a MCM 
bottom-up evaluation of instrumental quantification based on the 
LWRM. Combined with the defined uncertainty model, we also compare 
the values obtained from references, standard curve method, standard 
addition method, and MCM in terms of metrology. The established 
signal precision model successfully reduces the demand for collecting 
many replicate signals during the calibration interval for the uncertainty 
evaluation, which conforms to the measurement reality. The achieve
ment of precision model requires a factor that adjusts the previously 
estimated signal standard deviation to daily precision conditions. In this 
study, a variety of factors for calibrators’ preparation uncertainty and 
the probability density function of the ICP-OES signals are considered to 
input the MCM simulation. Supplementary Material contains a user- 
friendly tool for evaluating instrumental quantifications based on cali
brations using the LWRM model.

2. Materials and methods

2.1. Reagents, reference materials, and sample preparation

All chemical preparations were carried out in the class-100 laminar 
flow hoods in a class-1000 ultraclean room at the State Key Laboratory 
of Nuclear Resources and Environment, East China University of Tech
nology, in Nanchang, China. Calibrators and control standards for Cu, 
Fe, Mn, and Zn were prepared using the respective commercially 
available reference materials (aqueous NACIS ICP standard solutions, 
China): Cu [1000 ± 5.0] mg L− 1, Fe [1000 ± 5.0] mg L− 1, Mn [1000 ±
5.0] mg L− 1, and Zn [1000 ± 5.0] mg L− 1. Their expanded uncertainties 
were obtained with a coverage factor of 2 and are within a 95 % con
fidence level. Ultrapure water (18.2 MΩ cm− 1) was obtained from lab
oratory tap water using an ELGA purification system (Maxima USF 
ELGA, High Wycombe, United Kingdom). Guaranteed nitric acid 69 % 
was purchased Sinopharm Chemical Reagent Co., Ltd., China, and was 
distilled with Savillex DST-1000 purification systems (America) prior to 
use. Ultra-pure water was used in preparation of solutions after acidi
fication with nitric acid. Acid mine drainage (H-3) was sampled from the 
Chengmenshan Cu–Au deposit (Jiangxi province, Southeast China), and 
acidized with nitric acid. Possible suspended particles in samples were 
excluded from the sample solution using 0.20-m disposable syringe fil
ters purchased from Tianjin Fuji Science&Technology Co., Ltd. (China).

The calibrators for the analysis of multi-elements through ICP-OES 
spectrometer were obtained from the preparation of mixed standard 
scales, including Cu [0–16] mg L− 1, Fe [0–16] mg L− 1, Mn [0–16] mg 
L− 1, and Zn [0–16] mg L− 1. In this study, five calibration intervals were 
employed for standard curve method. Quality control samples were 
prepared with the following mass concentrations: Cu [1.00 ± 0.01] mg 
L− 1; [2.50 ± 0.03] mg L− 1, Fe [1.00 ± 0.01] mg L− 1; [2.50 ± 0.03] mg 
L− 1, Mn [1.00 ± 0.01] mg L− 1; [2.50 ± 0.03] mg L− 1, and Zn [1.00 ±
0.01] mg L− 1; [2.50 ± 0.03] mg L− 1. Details of the dilution procedure 
are shown in Fig. 1. The dilution involves in calibrated micropipettes 
(100 μL–1000 mL, 1000 μL–5000 μL, and 1000 μL–50,000 μL) and class 
A volumetric flasks (50 mL). Operating temperatures for laboratory tests 
are between 18 ◦C and 22 ◦C. Also, mass concentration in the acid mine 
drainage is determined by addition of the estimated mass concentration 
γ (mg L− 1) at 3 interval level in the diluted solution with known coef
ficient of dilution.

2.2. Instrumentation and validation procedure

The instrumental quantifications were performed in an agilent 5110 
Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) at 
the State Key Laboratory of Nuclear Resources and Environment, East 
China University of Technology, in Nanchang, China. The ICP operating 
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conditions are listed in Table 1. Element emission lines were 324.754 nm 
for Cu, 234.350 nm for Fe, 260.568 nm for Mn, and 202.548 nm for Zn.

Before the measurement uncertainty evaluation and acid mine 
drainage analyses, the ICP-OES analytical routine was requested for 
checking signal linearity, limit of detection, limit of quantification, and 
signal repeatability. The validation procedure also involves in compar
ison between target (i.e. maximum admissible) uncertainty and the 
estimated measurement uncertainty which are combined by the Monte 
Carlo method. During the measurement of element mass concentration, 
the signal intensity of each calibrator and sample is obtained through the 
mean of triplicate readings of a stationary signal response. In order to 
ensure instrumental linearity and define a model of signal repeatability 
variation in detail, 20 replicate signals of each calibrator and sample 
were collected in the previous calibration day. Obtained signal values 
were reported at a 99 % confidence level after elimination of outliers by 
the Grubbs test [24,25]. The assumption of homoscedasticity can lead to 
a poor regression fit that is remarkable in the lower concentration level 
for the ordinary least squares regression model. Owing to its application 
of weighted least square method [13,26,27], homoscedasticity test of 
variance is abandoned in this study (Fig. 2). In turn, T test and deter
mination coefficient of the linear correlation (R2) are conductive to 
visually assess goodness of fit of the model and is adopted in this study.

3. Evaluation of measurement uncertainty by the Monte Carlo 
method

The MCM employs random number generations to solve the prob
lems of linear model and asymmetry of propagation probability distri
bution in uncertainty evaluation for quantitative analysis. It avoids 
complex analytical mathematical description, instead relying on com
puter programming. Prior to implementing the MCM evaluation, all the 
input quantities values and their corresponding probability density 
function (e.g., rectangular, triangular, normal or student’s t) are used to 
describe the uncertainty within a defined measurement model. Factors 
involving in systematic and random effects on the testing results should 
be taken into account wherever possible. Fig. 3 present an Ishikawa 
diagram represents the identified, quantified and combined uncertainty 
components, including mass concentration of the stock solution, sample 
and calibrators aliquot volume, diluted volume for sample and calibra
tors, volume variation from laboratorial temperature, signal precision, 
and the linear regression model. Table 2 lists the input quantities and the 
respective PDF used for the heavy metals’ determination of the mass 
concentration by ICP-OES. The uncertainty sources from volumetric 
operation include temperature assuming a triangular distribution, pi
pettes assuming a triangular distribution, volumetric flask assuming a 
triangular distribution, repeatability assuming a student’s t distribution 
(Table 2 and Supporting material). A normal distribution function is 
used in the evaluation of mass concentration in stock solution.

In this study, the Linear Weighted Regression Model (LWRM) is used 
to describe the instrumental response variation in the calibration in
tervals. Prior to quantitation, the linearity between signal values and 
mass concentrations is assessed by T test and determination coefficient 
(R2). The mathematical model for measurement of heavy metals in acid 
mine drainage is shown as follows: 

γ0 = γ1 ×
V0

V1
…… (1) 

γ1 =
I − B

A
…… (2) 

Fig. 1. Scheme of calibrators, control standards, and spiked samples preparation procedure.

Table 1 
ICP instrumental parameters for heavy metals measurement.

Operating specification Parameters

RF power (W) 1300
Ar gas flow rates (L min− 1) Plasma: 15

Nebulizer: 1.5
Auxiliary: 0.75

Solutions uptake rate (L min− 1) 1.5
Peristaltic pump rotation speed (rpm) 20
Spectral line (nm) Cu: 324.754

Fe: 234.350
Mn: 260.568
Zn: 202.548
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Where γ0 is mass concentration (mg L− 1) in sample, V0 is sample volume, 
V1 is final volume after dilution in equation (1), γ1 is mass concentration 
(mg L− 1) in test sample, _I is mean signal value from the instrument, A is 
slope of the calibration curve, B is intercept of the calibration curve in 
Equation (2), M is the total number of calibrators, Wi is the weighting 
factor of the i-th calibration interval level, Ii is mean signal value of the i- 
th calibration level, qi is mass concentration (mg L− 1) of the i-th cali
bration level. The weighting methods for the regression method elimi
nate the influence of each series of data by the inverse of the variance (1/ 
I2) for the estimated measure of effect.

In order to overcome the limitation of collection of a large number of 
replicate signals (a minimum of six readings) of calibrators for assessing 
measurement uncertainty, a signal precision model is developed based 
on the observed variation of signals on several daily calibrations. The 
model for instrumental signals of calibrators requires the assumption of 
uniformity of heavy metals in sample solutions. For many instruments 
with high sensitivity, it presents a positive relationship between the 

Fig. 2. (a) Binary plots showing signal value (I) as a function of mass concentration; (b) Binary plots showing repeatability standard deviation (SI(r)) as a function of 
signal value (I), a case of Cu measurement by ICP-OES.

Fig. 3. Identification of the uncertainty sources throughout an Ishikawa diagram.
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standard deviation of signal values and mass concentration, and sudden 
decrease of the relative standard deviation of signal values from Limit of 
Detection to about two times the Limit of Quantification after that it 
maintains approximately constant. Consequently, the maximum 
observed standard deviation is often selected for conservative estima
tion, potentially leading to a significant overestimation of uncertainty. 
In this study, signal variation regular from the measured values is 
maintained in the linear weighted regression model. Owing to the var
iations of instrumental sensitivity and precision along with the day, the 
previous precision model used to the daily precision model with single 
or few replicate signals must be under the condition of repeatable 
measurement environment through the adjustment factor. It assumes 
that overall tendency of precision variation keep constant in the pre
parative calibrator on instrument responses. So, the factor is the ratios of 
the residual standard deviation of unweighted regressions between the 
daily calibration curve-SI(D) and the previous calibration curve-SI(P) in 
this study. During the daily calibration, the weighting factor of the first 
calibrator is selected as its standard deviation of signal values multi
plying SI(D)/SI(P), and is used for the daily calibration curve. For 
example, if the precision at a certain daily calibration is one third of 
which at the previous calibration, then SI(D)/SI(P) will be 3.

Also, the input data of the repeatability standard deviation in the 
signal values (SI(r)) of calibrators’ interval level is estimated by 
extracting SI(r) by multiplying SI(D)/SI(P). It is noteworthy that the pre
cision model is not involved in the measurement of unknown sample 
(acid mine drainage) by standard addition method. Also, it is abandoned 
in the simulation of MCM for the spiked samples. Based on the above 
mathematic model, the whole flow scheme of Monte Carlo method of the 
uncertainty of quantification in this study is briefly described as follows: 
Firstly, the final mass concentration of calibrators and control standards 
(CS1 and CS2) is obtained by sampling from the variation of stock so
lutions, pipette, volumetric flask, and temperature (Table 2); Next, the 

instrument signals of them are sampled depended on original data, and 
the sampled signals are used for the establishment of equation from 
weighted least square linear regression. For example, we sample 20 
repeated signals for each calibrator, and regard the average value as the 
expectation after Grubbs tests. The average value of sampling signals of 
the control standards is introduced into the equation to calculate the 
concentration; Also, instrument signals of the acid mine drainage should 
be repeat the above process to obtain the mass concentration on a daily 
calibration; In addition, the dilution ratio is sampled by the variation of 
pipette, volumetric flask, and temperature. Finally, one sample value is 
saved by performing the above procedure in the computer system. In this 
study, simulating 10,000 series of each variable allows to produce stable 
estimation of measurement values. It is suggested that 2.5th and 97.5th 
percentiles or 0.5th and 99.5th percentiles are required to assess the 
measured results at the confidence level of 95 % or 99 %, respectively. 
All MCM simulations in this study are processed based on MATLAB 
platform. In the end, the authors developed the model proposed in this 
study into software called EUIM (Evaluation of Uncertainty in Instru
ment Measurement). This software is designed specifically for re
searchers, engineers, and laboratory technicians, providing tools for in- 
depth quantitative assessment of uncertainties arising in instrument 
measurements. EUIM employs stochastic simulation methods to itera
tively model experimental conditions and various uncertain influences 
within the measurement process, enabling users to determine the sta
tistical properties and expected range of measurement uncertainties.

4. Results and discussion

4.1. Sampling of ICP-OES signal repeatability

The probability distribution of numerous input variables, including 
volumes, temperature, and mass concentration of reference materials, 
are employed for simulation of the measurement uncertainty on the 
basis of prior knowledge from the verification regulation of associated 
equipment or the reference material certificate. Comparatively, the 
random variables for ICP-OES signal repeatability are gained with the 
examination and calculation of multiple values for calibrators at each 
calibration level. In theory, the analysis of replicate measurements will 
be guarantee to yield a stable and reliable estimate of true probability 
distribution, reflecting a comprehensive and unbiased perspective. On 
the daily calibration, only triplicate readings of instrumental response in 
calibrators and control standards are regarded as insufficiency for 
providing an available assessment (Supporting material). The estimate 
is, therefore, accomplished by a collection of 20 times readings during 
stationary signal response on the previous calibration, which serves as 
examples for the Jarque–Bera test for normality [28,29]. Prior to such 
test, Grubbs tests is used to check for the presence of the outliers for 
single and paired at a 99 % confidence level [24,25], allowing for the 
detection and removal of outliers where applicable. Fig. 4 presents result 
of applying the Jarque–Bera test for Cu signals at each calibration level, 
suggesting that most data conform well to the normal distribution hy
pothesis. Therefore, the mean and standard deviation of the measured 
signals in calibrations and sample solutions were used to participate in 
the subsequent MCM. It suggests that the probability distribution of 
instrument signals may have a significant impact on the outcome of the 
uncertainty measurement. In the subsequent uncertainty evaluation by 
the MCM, we suggest that more samples solutions and calibrators 
sourced from a stock solution can be taken into consideration to obtain a 
more representative probability distribution.

4.2. Compatibility between results of simulation and objective analysis

The mentioned measurement protocols are suitable for a wide range 
of mass concentrations of heavy metals in environment samples, thus 
validating their applicability for this series of analyses. However, a few 
studies focus on the quantification of measurement uncertainty in the 

Table 2 
Input probability distributions used to estimate the uncertainty of ICP-OES for 
determination of copper in acid mine drainage by the Monte Carlo method.

Input quantity Symbol PDF type Unit Value U or u υ

S0 γss N mg L− 1 1000 5 ​
C1-Pipette Bias TR mL 2.0 0.015 ​

Rep. St ​ ​ 0.006 9
C2-Pipette Bias TR mL 5.0 0.015 ​

Rep. St ​ ​ 0.011 9
C3-Pipette Bias TR mL 10.0 0.021 ​

Rep. St ​ ​ 0.016 9
C4-Pipette Bias TR mL 16.0 0.030 ​

Rep. St ​ ​ 0.022 9
CS1-Pipette Bias TR mL 1.0 0.005 ​

Rep. St ​ ​ 0.001 9
CS1-Pipette Bias TR mL 2.5 0.015 ​

Rep. St ​ ​ 0.0 9
Volumetric flask Bias TR mL 50 0.06 ​

Rep. St ​ ​ 0.092 9
Temperature ​ TR C 20 2 ​
Signals Blank N cps 41.73 ​ ​

​ ​ ​ 115.5 ​ ​
C1 N cps 4198.96 ​ ​
​ ​ ​ 4862.19 ​ ​
C2 N cps 10463.77 ​ ​
​ ​ ​ 12583.61 ​ ​
C3 N cps 21439.13 ​ ​
​ ​ ​ 23994.49 ​ ​
C4 N cps 34554.69 ​ ​
​ ​ ​ 39292.42 ​ ​
CS1 N cps 2200.54 ​ ​
​ ​ ​ 2526.8 ​ ​
CS2 N cps 5647.86 ​ ​
​ ​ ​ 6270.56 ​ ​

Note: U or u-Expanded or standard uncertainty; N-Normal distribution; TR- 
Triangular distribution; St-student’s t distribution; υ-degrees of freedom of the 
uncertainty.
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application of many instruments, indicating an area that warrants 
further investigation [8,28,30,31,32]. The established uncertainty 
evaluation model based on MCM, which focuses on instrumental signal 
precision, is validated through analysis of heavy metals (Cu, Zn, Fe, and 
Mn) in control standards and sample solution (acid mine drainage). All 
quantifications are carried out after instrument calibration with multi
ple readings. The procedure of evaluation begins with definition of 
quantity to be measured and the mathematic relation between the 
measured values and associated parameters (e.g., the input variables). 
The measurement model of heavy metals in acid mine drainage is 
defined by sample preparation, signal repeatability, signal precision, 
and selected linear regression model. During the measurement, all fac
tors, including random and system effects, contribute to the measured 
quantity, producing the deviation between the obtained and true value. 
The sources of the uncertainty have been identified in Fig. 3. In addition, 
the distribution model of instrumental reading for ICP-OES has been 
analyzed in the above Section 4.1. 20 signal values are recorded on the 
previous calibration day at each calibrator and control standard, while 3 
signal values on the daily calibration. Residual standard deviations from 

the previous calibrations (SI(P)) and daily calibrations (SI(D)) are 
important for the precision model. The preparation of all measurement 
solutions from a mixed stock solution ensures a more realistic simulation 
of the evaluated measurement uncertainties. The goodness of fit of sig
nals and the mass concentrations of calibrators is checked by determi
nation coefficient of the linear correlation (R2), which draws a 
conclusion of positive correlation property between signals and the 
concentrations.

The quality of the measurement uncertainty model was evaluated by 
the metrological compatibility of mass concentration and respective 
uncertainty obtained from different approaches. If the following equa
tion is valid, it can be concluded that the test results are metrologically 
compatible and equivalent. 

|d| = |γ1 − γ2| ≤ k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2(γ1) + μ2(γ2)

√
= kμ(d) (6) 

Where γ1 and γ2 are mass concentration (mg L− 1) of the estimated and 
reference/spiked mass concentrations from the analysis of samples, 
respectively; μ(γ1) and μ(γ2) are the correspondent standard 

Fig. 4. Normal probability of all calibrators on the previous calibration day.
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uncertainties, respectively; d and μ(d) are the value and standard un
certainty of the difference between the results from two approaches; The 
k is recommended to 2 or 3 for a compatibility test for the 95 % or 99 % 
confidence level, respectively.

If |d| ≤ kμ(d), it can be concluded that the result is metrologically 
equivalent for the 95 % and 99 % confidence level. Otherwise, it is 
metrologically different.

Table 3 presents the results of the analysis of the estimated and 
reference control standard for a confidence level of 95 % for the mea
surement of Cu by ICP-OES, in which μ(γ) from the reference solution 
was expanded by a coverage factor of 2. It also reports the results of the 
uncertainty modelling by using the GUM(LWRM) and the MCM, 
respectively. The uncertainty of compatibility test was also expanded by 
a coverage factor of 2. The adjusting factor of daily precision calibration 
are f = SI(D)/SI(P) used for MCM simulations. In addition, it is assumed 
that the standard deviation of simulations is regarded as respective 
measurement uncertainty in the case of a normal distribution, so that we 
allow to obtain the confidence interval through applying the law of 
propagation of uncertainty. The compatibility between results of the 
reference value and analysis of control standard based on the GUM 
(LWRM) suggests that the obtained mass concentration is valid. Also, the 
GUM(LWRM) and MCM evaluations are equivalent about the mass 
concentrations and expanded uncertainties of the studied 2 control 
standards for a 95 % confidence level, demonstrating equivalence of the 
measured uncertainty (Table 3). The slightly difference between the 
estimation from the GUM(LWRM) and MCM (e.g., 1.05 ± 0.27 vs. 1.05 
± 0.09 for CS1; 2.62 ± 0.26 vs. 2.61 ± 0.33 for CS2) can be the results of 
random number algorithm during the processing the Monte Carlo 
method. Fig. 5 shows the frequency distribution of simulated mass 
concentrations for the 2 control standards, which are overlapped the 
reference values.

Table 4 presents that the results of the analysis of the spiked sample 
for a confidence level of 95 % for the measurement of Cu by ICP-OES, in 
which μ(γ) from the different methods was expanded by a coverage 
factor of 2. The measurement uncertainty model is evaluated through 
the metrological compatibility in the standard curve method, standard 
addition, and MCM. It is observed to be metrologically compatible in 
both the measured values from different approaches, and suggest that 
the developed uncertainty models are available to predict the error of 
ICP-OES measurements in acid mine drainage. Fig. 6 presents the dis
tribution of simulated mass concentrations for the sample H-3.

In summary, researchers without a programming background can 
use the evaluation software (EUIM) developed in this study, based on 
Monte Carlo simulations, to perform efficient assessments, with the 
entire evaluation process taking only a few minutes (Supporting mate
rial). Such evaluation result is regard as a reference for the quality of 
quantification and/or the comparative object from other evaluation 
methods. In addition, quantitative feedback of mass concentrations is 
provided in the computational results. In fact, other heavy metals (Mn, 
Co, and Ni) and elements (Na, K, Mg, Fe, and Ca) in environmental 
samples could be also determined by ICP-OES using LWRM as mathe
matical relationship between signals and mass concentrations. Appli
cation of the provided tool is suitable for the quantity evaluation of these 
elements.

5. Conclusions

The quantification of heavy metals (e.g., Cu, Zn, Fe, and Mn) of acid 
mine drainage by ICP-OES with an uncertainty model allows the 
objective comparison of different concentration levels. The signal pre
cision model based on the combination between the previous and daily 
calibrations curve is established through the collection of a few replicate 
signals of calibrators and sample, and is introduced into the provided 
user-friendly tool for increasing efficiency in instrument quantification 
and evaluation of quality of reported data (Read the ‘User Manual for 
EUIM’ for more details). It adopts an adjustment factor of signal 
repeatability, which is calculated by the ratio between the residual 
standard deviations of the daily and previous calibration curves. 
Otherwise, the normal distribution hypothesis of signal repeatability is 
verified through the Jarque–Bera test, which is beneficial for sampling 
in the subsequent MCM. Linear weighted regression model with the 
inverse of the variance (1/I2) of signal repeatability as the weighting 

Table 3 
Estimated and reference values of the analysis of control standards for a 95 % confidence level on a daily calibration.

Sample Reference value Procedure Measurement result Compatibility test K = 2 C/nC

CS1 1.00 ± 0.01 GUM(LWRM) 1.05 ± 0.27 0.05 ± 0.27 95 % C
MCM 1.05 ± 0.09 0.05 ± 0.09 95 % C

CS2 2.500 ± 0.03 GUM(LWRM) 2.62 ± 0.26 0.12 ± 0.26 95 % C
MCM 2.61 ± 0.33 0.11 ± 0.33 95 % C

Note: C or nC is compatible or not compatible measurements, respectively.

Fig. 5. Frequency distribution of simulated mass concentration in the two 
control standards.

Table 4 
Measurement of the unknown sample (acid mine drainage) on a daily 
calibration.

Sample Procedure Measurement 
result

Compatibility 
test

K =
2

C/ 
nC

H-3 Standard addition 
(GUM(LWRM))

5.53 ± 0.41 ​ 95 
%

​

Standard addition 
(MCM)

5.53 ± 0.67 0.00 ± 0.78 95 
%

C

GUM(LWRM) 5.66 ± 0.50 0.13 ± 0.64 95 
%

C

MCM 5.63 ± 0.66 0.10 ± 0.77 95 
%

C

Note: C or nC is compatible or not compatible measurements, respectively; 
Reference value was obtained from standard addition (LWRM) method.
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factor is employed to deal with heteroscedastic signals reading from 
calibrators and samples. The metrological compatibility of mass con
centration from other approaches is achieved to ensure availability of 
the developed methodology. Based on a few experimental data and prior 
probability distribution, we employee the Monte Carlo Method (MCM) 
to efficiently deliver a large number of results from experimental sim
ulations until reaching a steady-state density squared distribution. EUIM 
statistics results in the mathematical expectation, variance, and range of 
values for the unknown sample at 95 % and 99 % confidence levels. In 
fact, the developed MCM allows a more widely application for the 
evaluation of instrumental quantification where the signal varies line
arly with the concentration of calibrations. The user-friendly software of 
MCM simulation is in the Supplementary Material.
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