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or envelop them; Li is mainly hosted by Mg-smectite rather 
than the volcanic minerals. Within the tuffaceous sediment 
samples, the volcanic glass has undergone a transformation, 
resulting in its complete disappearance and alteration into 
clay minerals. Owing to the octahedral sites of Mg-smectite 
bounded in Li, it is referred to be hectorite. We interpret that 
the hectorite’s precipitation occurs in a high saline-alkaline 
water environment, a result of McDermitt tuff dissolution. 
This conclusion can be supported by the coexistence of 
spherulitic calcite and hectorite. Overall, this study confirms 
hectorite as the main Li-bearing mineral and increases the 
understanding of the genetic model of hectorite formation 
in intracontinental caldera basins.

Keywords McDermitt caldera · Lithium occurrence · 
Tuffaceous sediments · Mineralogy · Hectorite 
neoformation

1 Introduction

Lithium (Li), a rare metallic element, is distinguished as a 
crucial energy metal characterized by its high electrochemi-
cal potential and low density. Lithium-ion batteries, employ-
ing this element, function as high-density energy storage 
systems for electric vehicles and as secondary storage media 
for renewable energy sources like solar and wind, thus con-
tributing to curb carbon emissions (Junne et al. 2020; Tabe-
lin et al. 2021). With the current rate of consumption, the 
demand for Li is projected to surge tenfold by 2050 (Sova-
cool et al. 2020), necessitating the processing of all viable Li 
resources to meet this escalating demand. Lithium resources 
are predominantly found in hard rock, brines, and clays, with 
clay-type Li deposits receiving increased focus and devel-
opment due to their substantial reserves and cost-effective 
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mining and extracting methods (Benson et al. 2017a, 2023; 
Castor and Henry 2020).

The clay-type lithium deposit located in McDermitt Cal-
dera, Nevada reserves more than 5.1 Mt Li within its min-
eralized zone, and represents the largest Li deposit in the 
United States (Gruber et al. 2011; Kesler et al. 2012; Ben-
son et al. 2023). The discovery of Li mineralization and the 
establishment of mineralogical zoning in McDermitt caldera 
can be traced back to studies conducted as early as the 1970s 
(Glanzman et al. 1978; Rytuba and Glanzman 1978). Addi-
tional research into the Li content across various alteration 
zones and tectonic settings has shown that the enrichment of 
Li in clays is a result of the diagenetic and low-temperature 
hydrothermal alteration of tuffaceous sediments, occurring 
under an undrained system (Glanzman et al. 1978; Langella 
et al. 2001; Benson et al. 2017a; Castor and Henry 2020). 
The Li-rich layers can be divided into smectite intervals and 
illite intervals respectively, based on the main clay phases in 
sediments (Castor and Henry 2020; Ingraffia 2020; Benson 
et al. 2023). The Li-bearing illite clays are spatially limited 
and found exclusively in proximity to several faults related to 
caldera resurgence (Benson et al. 2023). Conversely, smec-
tite clays, dispersed throughout the caldera, serve as the 
primary hosts for Li and act as the precursors to illite clays 
(Castor and Henry 2020; Benson et al. 2023). Due to the 
elevated concentration of Li, in-situ sensitive high-resolution 
ion microprobe analysis and genetic studies have been per-
formed on intervals dominated by Li-bearing illite (Benson 
et al. 2023). Despite the significance of the smectite lay-
ers in this deposit, it should be noted that only preliminary 
research has been conducted on them thus far (Glanzman 
et al. 1978; Odom 1992; Morissette 2012; Castor and Henry 
2020). The occurrence of Li and the genesis of Li-bearing 
minerals within these intervals remain to be determined. 
To deepen our understanding of this deposit’s genesis and 
improve the metallogenic model, a comprehensive study into 
the smectite intervals is imperative.

Employing focused ion beam (FIB), time-of-flight sec-
ondary ion mass spectrometry (TOF–SIMS), and transmis-
sion electron microscope (TEM), this study analyzed the 
mineralogy and in-situ elemental distribution in smectite-
rich tuffaceous sediments, thus facilitating the direct identi-
fication and observation of Li-bearing minerals at micro to 
nano scales. Moreover, employing Nuclear Magnetic Reso-
nance (NMR), we have investigated the bonding environ-
ment of Li, which provides new insights into the occurrence 
of Li in the Li-bearing minerals.

2  Geological setting

The McDermitt caldera, located on the border between 
northern Nevada and southeastern Oregon in the United 

States (Fig. 1), displays an irregular keyhole shape, cov-
ering an area of 40 × (30 − 22)  km2 (Fig. 2; Henry et al. 
2017). Volcanic activity at the McDermitt caldera was 
associated with the impingement of the Yellowstone plume 
into the transitional continental crust at the western margin 
of the North American craton (Camp et al. 2015; Benson 
et al. 2017a, 2017b). The North American craton later 
moved over the relatively stable plume tail, and younger 
silicic centers emerged to the east, creating a linear vol-
canic track (Fig. 1; Griffiths and Campbell 1991; Camp 
and Ross 2004; Coble and Mahood 2012). Plume material 
preferentially ascended beneath thinner accreted oceanic 
lithosphere located west and north of the 87Sr/86Sr = 0.704 
isopleth (Camp et al. 2015), resulting in an eruption of 
effusive Columbia River Basalt Group lavas north of 
McDermitt caldera (Fig. 1) between ~ 17 and 15 million 
years (Ma) ago. Mafic underplating and magmatic intru-
sions caused low degrees of partial melting of the transi-
tional continental crust which lies between the 87Sr/86Sr 
0.706 and 0.704 isopleths forming peralkaline rhyolitic 
magma chambers in the upper crust, and contributing to 
the initial enrichment of Li (Coble and Mahood 2012; 
Benson et al. 2017a, 2017b, 2023).

The eruption of McDermitt Tuff at ~ 16.39 Ma resulted 
in the evacuation of approximately 1000  km3 of Li-rich 
rhyolitic magma (Benson et al. 2017a, 2023; Henry et al. 
2017), which led to the large-scale collapse of landforms 
and the formation of McDermitt caldera and related cal-
dera lake (Lithium Americas Corporation 2018a; Castor 
and Henry 2020). Between 16.4 and 15.7 Ma ago, regional 
pyroclastic eruptions resulted in the deposition of glass-
rich tuff within the caldera (Castor and Henry 2020). Dur-
ing this interval, post-collapse magmatic resurgence led 
to the uplift of intracaldera McDermitt Tuff forming an 
irregular dome (Montana Mountains) extending northward 
(Fig. 2; Castor and Henry 2020). Lithium is concentrated 
in lacustrine tuffaceous sediments which mainly accumu-
lated in the moat between the caldera wall and central 
dome (Fig. 2). The exposure of tuffaceous sediments in 
the eastern and southern regions of the caldera is limited 
due to the overlay of Quaternary sediments (Fig. 2). Clays 
constitute between 60% and 90% volume of the Li-rich 
sediments, with the remaining volume being occupied 
by a variety of other materials, including but not limited 
to, volcanic ash, sandstones, carbonates, conglomerates, 
and mafic to felsic lavas (Lithium Americas Corporation 
2018b; Castor and Henry 2020; Benson et al. 2023). The 
dominant Li-bearing clay mineral in claystone throughout 
the caldera is interpreted as smectite (Castor and Henry 
2020; Benson et al. 2023), while Li-illite clays, which are 
formed through hydrothermal alteration, are exclusively 
found in proximity to faults related to magmatic resur-
gence (Benson et al. 2023).
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3  Sampling and analytical methods

3.1  Scanning electron microscope (SEM) analysis

Smectite-rich tuffaceous sediments from McDermitt caldera, 
northern Nevada, west United States were collected in this 
study. Representative sample MC-1 with a Li concentration 
of 1940 ppm was made into a polished thin section for SEM 
observation. Mineralogy characterization and back-scattered 
electron (BSE) imagery were performed on the Scios-FIB 
emission field SEM, equipped with an energy dispersive 
spectrometer (EDS) at the Institute of Geochemistry, Chi-
nese Academy of Sciences (IGCAS), Guiyang, China. FIB 
foil was obtained from polished sections using the FEI Scios 
dual-beam system. Foils were cut from the target area using 
FIB and mounted on Cu grids.

3.2  TOF–SIMS and TEM analysis

The unthinned foil F1 (Fig. 3d) was used for TOF–SIMS 
analysis at the National Central for Electron Spectros-
copy, Tsinghua University, Beijing, China. The foil then 

thinned to electron transparency, ideally ~ 100 Å in thick-
ness, and was characterized using the FEI Talos F200X 
field-emission scanning transmission electron microscope 
(FE-STEM) operating at 200 kV at the Suzhou Institute 
of Nano-Tech and Nano-Bionics, Chinese Academy of 
Sciences.

3.3  Nuclear magnetic resonance (NMR) analysis

The clay-Li coordination environment cannot be directly 
detected by common synchrotron-based techniques (e.g., 
X-ray absorption fine structure) and remains an open ques-
tion. NMR spectroscopy analysis was performed to deter-
mine the coordination environment of Li within the host 
mineral of the sample. Solid-state 7Li NMR experiments 
were performed on a Bruker Avance III HD 400WB (9.4 T) 
spectrometer operating at a frequency of 155.2 MHz for 7Li. 
A WVT double-resonance 4 mm o.d. Bruker cross-polari-
zation magic-angle-spinning (CP-MAS) probe with a spin-
ning frequency of 10.0 kHz was used. The 7Li NMR spectra 
were recorded with a single pulse excitation using a short 
pulse length (0.32 μs, with a tip angle of pi/12) to obtain 

Fig. 1  McDermitt caldera in relation to Yellowstone hotspot track and Columbia River Basalt Province. The location of McDermitt Caldera, 
Yellowstone hotspot track, and Columbia River Basalt Province, according to Benson and Mahood (2016) and Henry et al. (2017); 87Sr/86Sri iso-
pleths according to Benson and Mahood (2016)
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quantitative results and a recycle delay of 1 s. 7Li chemi-
cal shifts were referenced using LiCl 1 M in solution as an 
external reference (0 ppm).

4  Results

4.1  SEM analysis

SEM in backscattered electron (BSE) mode (Fig. 3) and 
energy dispersive spectrometer  (EDS) analysis revealed 
that the tuffaceous sediment samples comprise volcanogenic 
crystal fragments, carbonate mineral, and clay mineral, con-
sistent with the XRD results of Castor and Henry (2020) 

Fig. 2  Simplified geologic map of the McDermitt caldera (after Castor and Henry 2020)
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and Morissette (2012). Crystal fragments, which include 
biotite, quartz, hornblende, plagioclase, and alkali feldspar, 
were observed to display subhedral to angular or polygonal 
shapes, ranging in size from 20 to 500 μm (Fig. 3a–c). Most 
of them have smooth and clean surfaces and are dispersed 
randomly within the matrix without an obvious orientation 
(Fig. 3a–c). The plagioclase primarily consists of albite, oli-
goclase, and andesine, with a relatively smaller proportion of 
alkali feldspar. Some feldspars have been subject to dissolu-
tion and are filled and enclosed locally by smectite (Fig. 3c). 
Biotite was observed to be the dominant femic phase, while 
amphibole and pyroxene are typically found to be barren. 
Carbonate minerals, predominantly calcite, are observed to 
have an uneven spatial distribution (Fig. 3). Notably, some 
calcite that coexists with clays exhibits a morphology akin to 
spherulitic calcite (Fig. 3e). Observations under SEM-BSE 
mode reveal that clay aggregates, which surround the crystal 
fragments, typically show a darker appearance contrasted 
with the crystal fragments themselves (Fig. 3). The clay 
matrix is primarily composed of O, Si, and Mg (Fig. 3f), 
consistent with magnesian smectite.

4.2  TOF–SIMS analysis

The TOF–SIMS foil (F1) was located within the clay matrix 
(Fig. 3a). Fig. 4 presents the TOF–SIMS positive secondary 
ion image for several elements on the FIB cross-section, 
with intensity color-coded. Black in the images represents 
areas with no signal or minimal ion presence, while white 

indicates maximum signal strength and points of maximum 
ion abundance. The ion corresponding to the intensity dis-
tribution map and its MC and TC values are displayed at 
the bottom left of each image. The short columnar min-
eral located in the upper right of the cross-section, which 
is enriched in K, Al, and Si (Fig. 4b, c, g), aligns with the 
characteristics of alkali feldspar (Fig. 4c). The flaky min-
eral situated in the lower right, which contains K, Al, Fe, 
Si, and Mg (Fig. 4a–d, g), aligns with the characteristics of 
biotite (Fig. 4d). Excluding feldspar and biotite, the primary 
mineral in the cross-section is a homogeneous phase that is 
rich in Si and Mg, while virtually devoid of Al (Fig. 4a–c). 
This observation aligns with the results from the SEM–EDS 
analysis (Fig. 3f), indicating that it is Mg-smectite. The 
interlayer cations of Mg-smectite mainly consist of Ca, K, 
and Na (Fig. 4f–h). The spatial distribution of both Li and 
Mg-smectite presents a high degree of similarity (Fig. 4a, e). 
K-feldspar and biotite present in the matrix do not show an 
enrichment of Li, suggesting that Mg-smectite is the primary 
carrier of Li.

4.3  TEM analysis

Mg-smectite crystallites, as observed in HRTEM imaging, 
are characterized by curved lattice fringes and layer termina-
tions, with interlayer spacings that span from 13.3 to 14.7 Å 
(Fig. 5a, b), which is in good agreement with the prior 
XRD analysis (Morissette 2012; Castor and Henry 2020). 
An illite-like phase which may formed by the illitization 

Fig. 3  SEM and EDS analysis of the tuffaceous sediments. a, b Volcanogenic minerals, calcite, and the surrounding Mg-smectite. F1 is the FIB 
excavation site; c albite exhibits dissolution edge structures and is filled and coated in-situ by clay minerals; d the cross section of F1; e Mg-
smectite and coexisting spherulitic calcite; f EDS spectra for Mg-smectite. Abbreviation: Olg, Olgoclase; Aug, Augite; Ab, Albite; Bt, Biotite; 
Afs, alkaline feldspar; Ads, Adesine; Ilm, Ilmenite; Qtz, Quartz; And, Andradite; Cal, Calcite; Mg-Sme, Mg-Smectite
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of smectite was found within the smectite matrix (Fig. 5b; 
white rectangle), characterised by relatively straight layers 
and lattice spacings of ~ 10.2 Å, as determined by fast Fou-
rier transform analysis (Fig. 5c).

4.4  NMR analysis

In this study, 7Li-NMR analysis is performed to clarify 
the bonding environment of Li. 6Li and 7Li have the same 

Fig. 4  TOF–SIMS positive secondary ion image collected from F1 for a Mg, b Si, c Al, d Fe, e Li, f Ca, g K, h Na. Abbreviation: Mc, Maxi-
mum counts per pixel; Tc, Total counts of entire image; Mg-Sme, Mg-Smectite; Afs, Alkaline feldspar; Bt, Biotite

Fig. 5  a HRTEM bright-field (BF) images of smectite showing variable fringe spacing; b illite-like phase (white rectangular) is surrounded by 
smectite; c FFT image from the white rectangular area reveals an illite-like layer spacing of approximately 10.2 Å
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chemical shift in identical environments, which mainly 
depends on the coordination number. The experiment 
revealed a single peak in the 7Li-NMR spectrum of sample 
MC-1, exhibiting a chemical shift of − 1.1 ppm (Fig. 6). This 
result indicates that Li in the sample has a single predomi-
nant bonding environment.

5  Discussion

5.1  Lithium’s host minerals and bonding environment

Due to its moderately incompatible behavior, Li prefers to 
remain in the residual melt during magmatic differentia-
tion (Neukampf et al. 2019). A rapidly cooling process can 
induce the Li-rich melt to crystallize to form fine-grained 

minerals or quench to form volcanic glass (Černý et al. 2005; 
Ellis et al. 2022). In the present research, no fresh glass 
shards were detected using SEM, and the in-situ TOF–SIMS 
analysis revealed that magmatic fine-grained minerals such 
as biotite and feldspar demonstrate a low Li concentration 
(Figs. 3a–c, e and 4c–e, g). The Mg-rich clay matrix is rec-
ognized as the primary carrier for Li (Fig. 4a, e).

As depicted in the given figure (Fig. 7), in Mg-smectite, 
Li (a) likely substitutes for Mg in octahedral sites, exhibit-
ing a coordination number of 6; (b) is adsorbed as bidentate 
inner-sphere complexes on the edge and basal surface sites, 
with a coordination number of 4; (c) is absorbed as outer-
sphere complexes in interlayer sites, also with a coordination 
number of 4; (d) is located in pseudo-hexagonal sites, with a 
coordination number of 6 (Meunier 2005; Kalo et al. 2012; 
Bauer and Velde 2014; Hindshaw et al. 2019; Borst et al. 
2020; Li and Liu 2020; Zhang et al. 2021; Li et al. 2023).

A decrease in coordination number results in reduced 
electron shielding and a more positive chemical shift (Hind-
shaw et al. 2019). According to previous experiments, the 
chemical shift for Li with a coordination number of 4 has a 
positive 7Li-NMR chemical shift (0–1 ppm), while Li with 
a coordination number of 6 has a negative chemical shift 
(− 0.3 to − 1.3 ppm; Xu and Stebbins 1995). The 7Li-NMR 
results of laboratory-synthesized Mg-rich phyllosilicate 
show that the pseudo-hexagonal Li displays a chemical shift 
close to 0 (approximately − 0.1 to − 0.2 ppm). Our experi-
ment results indicate that the 7Li-NMR chemical shift of 
the Mg-smectite rich sample is − 1.10 ppm (Fig. 6), which 
falls within the range of chemical shifts observed for 6-coor-
dinated Li (− 0.3 to − 1.3 ppm; Xu and Stebbins 1995). In 
addition, the structural charge of Mg-smectite, originating in 
the internal octahedral site and distanced from the clay sur-
face, is not favorable for the formation of pseudo-hexagonal 
6-coordinated Li (Bauer and Velde 2014). Therefore, the 
chemical shift of 6-coordinated Li observed in the 7Li-NMR 
spectrum is mainly attributed to Li in octahedral sites of the 
Mg-smectite indicating that the Mg-smectite under study is 
actually hectorite.Fig. 6  7Li-NMR spectra of tuffaceous sediments enriched with Mg-

smectite

Fig. 7  Schematic figure of 
the overall structure of a 2:1 
type clay mineral shown from 
two different perspectives and 
potential lithium binding sites
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5.2  The source of Li and the mineralization 
environment

Previous research has established the McDermitt tuff as a 
significant Li repository (Benson et al. 2017a; Castor and 
Henry 2020). Prior to the tuff eruption, the magma exhibited 
high initial concentrations of Li, which can be attributed to 
the assimilation of a segment of the felsic continental crust 
(Benson et al. 2017a). Li present in tuff glass is more suscep-
tible to weathering and potential loss processes compared to 
other crystalline phases where it is structurally bound within 
minerals (Ellis et al. 2022). Li presents similar behavior to 
Na during glass hydration, being rapidly released into the 
coexisting water (Cuadros et al. 2013a; Ellis et al. 2022). 
Furthermore, as the intracaldera ignimbrite undergoes cool-
ing, surface degassing may contribute a certain amount of Li 
to the related hydrologic system (Hofstra et al. 2013; Ellis 
et al. 2018, 2022).

The McDermitt caldera functioned as an evaporative, sili-
ceous undrained basin (Castor and Henry 2020). The lacus-
trine setting within this basin exhibited elevated salinity and 
pH levels, a characteristic supported by the coexistence of 
autogenetic carbonate and smectite (Fig. 3e; Darragi and 
Tardy 1987; Hover and Ashley 2003; Furquim et al. 2008; 
Castor and Henry 2020). The evolution of water chemical 
composition in such a closed system can be attributed to 
normal evaporative processes and/or hydrolysis of crystal-
line and volcanic glass present in the sediments (Langella 
et al. 2001). Through the hydration of volcanic glass and 
mineral fragments, an interdiffusion process is initiated. 
This process involves the outward diffusion of alkaline and 

alkaline earth cations, while  H+ ions diffuse inward (e.g., 
volcanic glass +  H+ = altered glass +  Na+ +  K+ +  OH−; 
Fig. 8a, Langella et al. 2001; McHenry 2009). This process 
of ion exchange, in conjunction with evaporation within the 
hydrologically closed basin, leads the lake water or pore 
water towards a saline–alkaline condition (Fiore et al. 1999; 
Langella et al. 2001; McHenry 2009; Deocampo and Jones 
2014; Parruzot et al. 2015).

5.3  The formation of hectorite

The genesis of clay minerals in non-tuffaceous sedimentary 
rocks is complex, with both authigenic and detrital origins. 
In contrast, volcanic ash lacks clay minerals, rendering the 
genesis of clay minerals comparatively straightforward. 
These clay minerals in tuffaceous sediments are typically 
formed through transformation of volcanic glass (Hong et al. 
2019a, 2019b; Yang et al. 2023). When deposited in surface 
environments, thermodynamically unstable glass shards 
undergo rapid transformation into clays within a span of 
hours, days, or years (Berry 1999; Hong et al. 2017, 2019a), 
leading to the extensive absence of volcanic glass in the tuf-
faceous sediments.

The HRTEM images of hectorite in this study are con-
sistent with lacustrine clay authigenesis, which tends to 
produce clay minerals with relatively low crystallinity 
(Fig. 5; Deocampo et al. 2009, 2010). The depositional 
environment controls the type of lacustrine autogenetic 
clays formed through glass transformation (Hong et al. 
2017, 2019a). In acidic and freshwater environments with 
low ionic activity, such as coal-bearing swamps or shallow 

Fig. 8  Schematic model for the formation of McDermitt caldera-hosted Li-rich tuffaceous sediments
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lakes, the alteration of volcanic glass to kaolinite occurs 
(Spears 2012; Pellenard et al. 2017). By contrast, volcanic 
glass typically transforms into smectites in alkaline envi-
ronments with relatively high ionic activity (as would be 
expected in the McDermitt paleo-lake; Huff 2016; Spears 
2012).

Volcanic glass transforms into smectites via two mod-
els: (1) dissolution and reprecipitation, and (2) in-situ 
solid-state transformation (Fiore et  al. 2001;  Cuadros 
et al. 2013a, 2013b). The intracaldera tuff, primarily rhy-
olitic, has glass constituents with a high Al/Mg ratio (Le 
Maitre 1976; Kawano and Tomita 2001; Mandeville et al. 
2002; Henry et al. 2017). Should autogenetic smectites 
originate from the in-situ transformation of volcanic glass, 
they would be inclined to incorporate Al into their octahe-
dral sites, leading to the genesis of dioctahedral smectites 
(Cuadros et al. 2013a, 2013b). In fact, under elevated pH 
(e.g., pH = 9), trioctahedral smectite genesis is possible via 
a dissolution–precipitation mechanism acting upon vol-
canic glass with a low concentration of Mg (Cuadros et al. 
2013a, 2013b). Consequently, the genesis of hectorite (tri-
octahedral smectite), within tuffaceous sediments is better 
explained by the dissolution-reprecipitation model.

The process of magnesian smectites precipitating in 
solution is predominantly governed by the ion activity of 
Mg and Si, along with the pH value (Deocampo 2015; 
Pozo and Calvo 2018). Rhyolitic volcanic rocks typically 
display low MgO content, ranging from 0.4% to 1.8% (Le 
Maitre 1976). The incorporation of Mg into clay miner-
als within rhyolitic ash beds is predominantly attributed 
to sediment pore waters (Arslan et al. 2010). During the 
sedimentary process, Mg and Si can diffuse into pore 
waters through the dissolution of volcanic glass and vol-
canogenic crystal fragments (e.g., biotite and feldspar) 
present in tuffaceous sediments (Fig. 8a; Capelli et al. 
2021). As evaporation and leaching proceed, there is a 
corresponding progressive increase in the concentration 
of Li, Mg, and Si, along with the salinity and alkalinity of 
the pore waters within the sediments. Calcium carbonate 
is typically the mineral that first reaches the threshold of 
solubility (Deocampo and Jones 2014). In contrast,  Mg2+ 
ions have a higher kinetic barrier to overcome dehydration 
of their surrounding hydration sphere and form carbonate 
minerals, thus making precipitation less likely (Deocampo 
2015). Once the silicates precipitate, therefore, they are 
precipitating in an Mg and Li-enriched aqueous environ-
ment, leading to the neoformation of hectorite (Fig. 8b). 
It’s worth mentioning that the occurrence of illitization 
within the matrix (Fig. 5b) is presumably a result of the 
interaction between pre-existing smectite and the remain-
ing K-rich brines, contrasting with the thermally induced 
illitization associated with burial diagenesis.

6  Conclusions

1) The smectite intervals, found in the Li-rich tuffaceous 
sediments within the McDermitt caldera predominantly 
consist of clay minerals, volcanic minerals and carbon-
ate. The clay minerals are observed to either fill intersti-
tial spaces between volcanic minerals or envelop them.

2) The primary mineral hosting Li is identified as Mg-
smectite in the examined intervals. Li, exhibiting 6-coor-
dination and structural binding in the octahedral sites of 
Mg-smectite, implies that the Mg-smectite is essentially 
hectorite.

3) The hectorite was precipitated from lake waters or pore 
fluids characterized by high salinity and pH which can 
be supported by the coexisting spherulitic calcite.

4) A lack of volcanic glass in the samples indicates its com-
plete transformation into clays. The high Mg/Al ratio 
observed in the hectorite suggests that the hectorite gen-
esis occurs via a dissolution–precipitation process.
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