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Abstract: Silicon (Si) is one of the main biogenic elements in the aquatic ecosystem of lakes,
significantly affecting the primary productivity of lakes. Lake sediment is an important sink of Si,
which exists in different Si forms and will be released and participate in the recycling of Si when
the sediment environment changes. Compared to carbon (C), nitrogen (N) and phosphorus (P),
the understanding of different Si forms in sediments and their biogeochemical cycling is currently
insufficient. Dianchi Lake, a typical eutrophic lake in southwest China, was selected as an example,
and the contents of different Si forms and biogenic silicon (BSi), as well as their correlations with
total organic carbon (TOC), total nitrogen (TN), and chlorophyll a in the surface sediments, were
systematically investigated to explore Si’s recycling characteristics. The results showed that the
coupling relationship of the four different Si forms in the surface sediments of Dianchi Lake was
poor (p > 0.05), indicating that their sources were relatively independent. Moreover, their formation
may be greatly influenced by the adsorption, fixation and redistribution of dissolved silicon by
different lake substances. The contents of different Si forms in the surface sediments of Dianchi
Lake were ranked as iron-manganese-oxide-bonded silicon (IMOF-Si) > organic sulfide-bonded
silicon (OSF-Si) > ion-exchangeable silicon (IEF-Si) > carbonate-bound silicon (CF-Si). In particular,
the contents of IMOF-Si and OSF-Si reached 2983.7~3434.7 mg/kg and 1067.6~1324.3 mg/kg,
respectively, suggesting that the release and recycling of Si in surface sediments may be more
sensitive to changes in redox conditions at the sediment–water interface, which become the main
pathway for Si recycling, and the slow degradation of organic matter rich in OSF-Si may lead to
long-term and continuous endogenous Si recycling. The low proportion (0.3~0.6%) and spatial
differences of biogenic silicon (BSi) in the surface sediments of Dianchi Lake, as well as the poor
correlation between BSi and TOC, TN, and chlorophyll a, indicated that the primary productivity
of Dianchi Lake was still dominated by cyanobacteria and other algal blooms, while the relative
abundance of siliceous organisms such as diatoms was low and closer to the central area of Dianchi
Lake. Additionally, BSi may have a faster release capability relative to TOC and may participate in
Si recycling.

Keywords: biogenic silicon; Dianchi Lake; different silicon forms; sediments; silicon recycling

1. Introduction

Silicon (Si) is the second most abundant chemical element on Earth, the parent
material element of soil, and the element that is the focus of the current research on
global environmental change [1]. Like carbon (C), nitrogen (N) and phosphorus (P), Si is
one of the most important biogenic elements and has a significant impact on the primary
productivity of the water environment such as oceans and lakes [2,3]. For example,
Si is an important component of the cell wall and bone structure of many aquatic
organisms. Lake sediment is an important reservoir of Si. Usually, terrigenous Si is
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placed into the lake in the form of silicon-containing mineral weathering with runoff [4].
Part of the Si is deposited directly, and the other part is in the form of dissolved
monosilicic acid, which can be absorbed and utilized by aquatic organisms (such as
diatoms, phytoplankton (plants), etc.) [5]. The Si in the sediment exists as different Si
phases or fractionations and can be mainly divided into two categories, according to
whether it is active or not—valid silicon (Valid-Si) and nonvalid silicon (Nonvalid-Si).
Nonvalid-Si comprises more than 90% inactive insoluble silicate minerals, which have
little influence on the biogeochemical cycle of Si. On the other hand, Valid-Si, which
accounts for a very small proportion, plays a crucial role in the biogeochemical cycle
of Si in water environments [6–8]. Valid-Si in sediments includes different Si forms,
which combine with different substances and have different biological availability
for aquatic organisms. Especially when the environment of sediment changes, the
different Si forms in Valid-Si have different sensitivity values and will be dissolved and
released in different degrees, just like N and P, which can be absorbed and utilized by
aquatic organisms and have a significant impact on the primary productivity of lake
water ecosystem. In addition, biogenic silicon (BSi, also known as biological opal) in
the sediment is mainly deposited by siliceous plankton (such as diatoms, radiolaria
and sponges, etc.), which can comprehensively reflect the spatio-temporal change
information of the siliceous biological productivity and play an indicator role in the
eutrophication and algal evolution of the lake [9,10]. However, compared with the
research studies on C, N and P in lakes, the current research on Si in lake environments
is very scarce and even lacks some basic data. There are many deficiencies in the
comprehensive understanding of the biogeochemical cycle of Si in lake ecosystems and
the coupling relationship between different biogenic elements.

Dianchi Lake is the largest plateau freshwater lake in southwest China, and it is one of
the most serious eutrophication lakes in China. Historically, Dianchi Lake was obviously
polluted by urban domestic sewage, surrounding industrial, mining and agricultural non-
point sources, and the water quality of the lake continued to deteriorate, with eutrophication
being very serious [11]. For a long time, there have been a lot of studies on the pollution
and control of N and P, the mechanism of burial and release of N and P in sediments
and their effects on eutrophication and the cyanobacteria bloom outbreak in Dianchi
Lake [12,13]. However, so far, the eutrophication problem in Dianchi Lake is still very
prominent, and large-scale algal bloom events occur almost every year, which indicates
that the understanding of the relationship between biogenic elements and eutrophication
and the mechanism of algal bloom occurrence is not comprehensive. As one of the main
biogenic elements, Si, like N and P, is also an important contributor to water nutrients,
which may also have a deep impact on the primary productivity of Dianchi Lake, such
as the growth and succession of algae [14]. However, until now, in the international
community, apart from the preliminary research on the BSi deposition records of Dianchi
Lake 10 years ago [15], there is almost no other basic information about the different
chemical forms and biogeochemical cycle characteristics of Si in Dianchi Lake. In this
study, for the first time, the spatial distribution characteristics of different Si forms and
BSi, as well as their correlation with total organic carbon (TOC), total nitrogen (TN) and
chlorophyll a, in the surface sediments of Dianchi Lake were analyzed. The filling of
these basic information laid a foundation for exploring the sources, bioavailability and
biogeochemical cycle characteristics of Si in the sediments of Dianchi Lake. It provides a
scientific basis for further understanding of the coupling relationship between the cycle
of different biogenic elements, eutrophication, primary productivity succession and lake
ecosystem evolution in Dianchi Lake.
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2. Materials and Methods
2.1. Sample Collection

In April 2019, six representative sites (S1~S6) in Dianchi Lake, southwest of China,
were selected for collecting surface sediments (Figure 1). After the sediment samples were
collected, they were quickly transported back to the laboratory in the dark and refrigerated.
After a series of pre-treatments, such as freeze-drying, foreign matter removing, agate
pear-grinding, and sifting (100 mesh), the samples were frozen and stored at −20 ◦C for
later use.
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2.2. Sequential Extraction of Different Si Forms in Sediments

Valid-Si in sediments can be divided into ion-exchangeable silicon (IEF-Si), carbonate-
bound silicon (CF-Si), iron-manganese-oxide-bonded silicon (IMOF-Si) and organic sulfide-
bonded silicon (OSF-Si) based on the sequential extraction process of modified Tessier
method [6,16,17]. The sequential extraction steps are summarized as follows (Figure 2):
The 0.400 g sediment sample was accurately weighed and placed into a 50 mL plastic cen-
trifuge tube, 20 mL 1 mol/L MgCl2 solution was added, and then the sample continuously
shaken at room temperature for 1 h. The supernate containing IEF-Si was obtained after
centrifugation at 4000 r/min (for 15 min); 20 mL 1 mol/L NaAc-HAc solution was added
to the centrifuged residue, which was continuously shaken at room temperature for 5 h.
After centrifugation with 4000 r/min (for 15 min), the supernate containing CF-Si was
obtained; 20 mL 0.04 mol/L NH2OH-HCl-25% HAc solution was added to the centrifuged
residue and extracted in a water bath at 96 ◦C for 5 h. After centrifugation at 4000 r/min
(for 15 min), the supernate containing IMOF-Si was obtained; 2.5 mL 30% H2O2 solution
and 1.5 mL 0.02 M HNO3 solution were added to the centrifuged residue. After the re-
action was mild, it was extracted in a water bath at 85 ◦C for 5 h. After cooling, 2.0 mL
3.2 mol/L NH4Ac solution was added and then continuously shaken at room temperature
for 30 min. After centrifugation at 4000 r/min (for 15 min), the supernate containing OSF-Si
was obtained. (It is worth mentioning that glass containers were not used or the retention
time of the solution in glass containers was minimized as much as possible to prevent the
introduction of external Si during the sequential extraction process of different Si forms,
the preparation of the extraction solution and the subsequent determination of Si content).
All samples were set in three parallel.
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2.3. Extraction of BSi in Sediments

In total, 0.100 g sediment sample was accurately weighed and placed into a 50 mL
plastic centrifuge tube, and 2.5 mL 10% H2O2 solution was added. After standing out for
30 min, 2.5 mL 1 mol/L HCl was added; then, ultrasonic oscillation was carried out for
30 min to effectively remove the carbonate and organic matter. Next, 10 mL pure water
was added for washing the residue. After centrifugation at 4000 r/min for 15 min, the
supernate was discarded, and the residue was freezing-dried. The, 20 mL 2 mol/L Na2CO3
solution was accurately added, ultrasonic oscillation was carried out for 30 min, and the
solution was heated in a water bath at 85 ◦C, stirred at an interval of 2 h, and removed
after 5 h. After centrifugation at 4000 r/min for 15 min, the supernate containing BSi was
obtained (Figure 3) [15]. All samples were set in three parallel.
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Figure 3. Extraction steps of biogenic silicon (BSi) in sediments.

The content of different Si forms and BSi in the supernate was determined at a wave-
length of 812 nm with silicon-molybdenum blue spectrophotometry [18,19].

2.4. Determination of Chlorophyll a in Sediments

In total, 0.050 g sediment sample was accurately weighed and placed into a centrifuge
tube, and 5 mL acetone–formaldehyde–water mixture (the three reagents in a volume ratio
of 45:45:10) was added; placed into 0 ◦C ice–water mixture for ultrasonic extraction for 24 h;
and quickly centrifuged at 4000 r/min for 10 min. Then, the supernate was taken directly
for spectrophotometric determination of chlorophyll a content at wavelengths 649 nm and
665 nm, respectively. All samples were set in three parallel. (Note: Above experimental
operation was conducted as far as possible from light, under dark conditions, to prevent
the photolysis of chlorophyll a).

2.5. Data Statistics

Excel 2010, SPSS 2022 and Sigmaplot 10.0 were used in data sorting, statistics and
plotting, respectively.
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3. Results and Discussion
3.1. Content and Environmental Significance of Different Si Forms in Sediments

The different chemical forms of Si in the sediments reflect the differences of adsorption,
fixation and co-precipitation of dissolved monosilicic acid by different substances in the
lake. Due to the different binding and retention abilities of different substances relative to
Si, the content of different chemical forms of Si is greatly different; however, on the other
hand, different chemical forms of Si have different biological activities and can participate
in the biogeochemical recycling of Si in the lake water ecosystem to different degrees. In
general, the content of different Si forms in the surface sediments of Dianchi Lake varies
greatly and is ranked as IMOF-Si > OSF-Si > IEF-Si > CF-Si (Figures 4–6), which exhibiting
similar characteristics to previous reports on other lakes [6].

The IEF-Si content in the surface sediments of Dianchi Lake was generally low and
ranged from 77.5 to 89.2 mg/kg, only accounting for 1.7~2.0% of Valid-Si. Moreover, there
was no significant difference in IEF-Si content among the surface sediments at different sites
in Dianchi Lake (p > 0.05) (Figures 4 and 5), which indicates that IEF-Si may be adsorbed
by some active ions and sediment minerals, and regional spatial heterogeneity has little
influence on it. Compared with the other three Si forms, IEF-Si has the highest biological
activity and is the most sensitive to environmental reactions, such as wind and benthic
bioturbation at the bottom of the lake, temperature and pH changes at the interface between
sediment and water, etc. Therefore, it can easily be dissolved through direct dissolution
or ion exchange, and it can then be released into the overlying water to be absorbed and
utilized by plankton [6,20].

CF-Si in sediments mainly refers to silicon in the form of co-precipitation with car-
bonate, which can be easily re-released into the overlying water for biological absorption
and utilization along with the carbonate dissolution in an acidic pH environment [21].
CF-Si content in the surface sediments of Dianchi Lake was between 50.1 and 94.2 mg/kg,
only accounting for 1.1~2.0% of Valid-Si (Figures 4 and 5). CF-Si content of the surface
sediments was the highest at the S1 site (94.2 mg/kg), followed by the S5 site (77.9 mg/kg).
The surrounding areas near the S1 site and S5 site of the Dianchi Lake are rich in phosphate
mineral resources (mainly carbonate phosphorite and silicate phosphorite) [22,23]. When
these minerals are weathered, the carbonate drains gradually into the lake [24], making
it more likely to form calcium carbonate and co-precipitate part of Si. It may also be the
reason for the relatively high content of CF-Si among the surface sediments at these two
sites in Dianchi Lake. The contents of CF-Si in surface sediments at other different sites
of Dianchi Lake were very low, and the difference among them was small (<60.4 mg/kg).
Additionally, the content of CF-Si in the surface sediments at the same site was the lowest
compared with the other three Si forms.

IMOF-Si in sediments mainly refers to silicon combined with iron and manganese
oxides. That is, under oxidation conditions, Fe2+ and Mn2+ in low-priced states can be
oxidized to form iron and manganese oxides, which can continuously adsorb and co-
deposit dissolved Si in the water. Therefore, IMOF-Si is sensitive to changes in redox
conditions at the sediment–water interface at the bottom of lakes. In particular, under
anaerobic reduction conditions, with the reduction of Fe3+ to Fe2+ and Mn4+ to Mn2+, Si can
be released synchronously with Fe and Mn to the overlying water [25]. IMOF-Si content in
the surface sediments at different sites of Dianchi Lake ranged from 2983.7 to 3434.7 mg/kg,
accounting for 68.2 to 73.9% of Valid-Si (Figures 4 and 5), which is significantly higher
than that of the other three Si forms. Further, there was no significant difference in the
contents of IMOF-Si in the surface sediments at different sites of Dianchi Lake. As the
most abundant active silicon donor form in surface sediments, when the lake bottom is
prone to hypoxia with the intensification of eutrophication„ along with the reduction and
dissolution of iron and manganese oxides in the sediment, which can promote the release
of IMOF-Si to participate in the Si recycling of water bodies and is the most important way
for the release of silicon within sediment.
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OSF-Si in sediments mainly refers to silicon combined with organic sulfide, which
is relatively stable and has low bioavailability, and it cannot be easily activated and re-
leased in a short period of time [26]. However, OSF-Si is released slowly along with the
degradation of organic matter in sediment. In the surface sediments of Dianchi Lake,
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OSF-Si content ranged from 1067.6 to 1324.3 mg/kg, accounting for 23.0 to 28.4% of Valid-Si
(Figures 4 and 5). There is no significant difference in OSF-Si content in the surface sedi-
ments at other sites, except for the S3 site (with the lowest OSF-Si content of 1067.6 mg/kg
in the surface sediment) of Dianchi Lake. In general, OSF-Si, as the second largest active
silicon form in the surface sediments of Dianchi Lake, along with the degradation of organic
matter in sediments, can be released to participate in the Si recycling of water bodies and
may play an important role in the biogeochemical recycling of Si in the water ecosystem of
Dianchi Lake in the long run.

In summary, it can be calculated that the content of Valid-Si in the surface sediments of
Dianchi Lake ranged from 4352.9 to 4753.7 mg/kg and that in its content in the surface sedi-
ments at different sites of the whole lake shows relatively small difference (Figures 7 and 8).
Four different Si forms of Valid-Si with different biological availability and environmental
sensitivity, becoming the main internal silicon contributor, can participate in the Si recycling
of lake water ecosystems to different degrees. The total amount of the most Bioactive-Si
(which mainly contains IEF-Si and CF-Si) in the surface sediments ranged from 131.9 to
182.4 mg/kg, accounting for only 2.8 to 3.9% of Valid-Si (Figure 7). Moreover, the amount
of Bioactive-Si in the surface sediments at the S1 and S5 sites was significantly higher than
that at the other sites, mainly due to the significantly higher CF-Si content at the two sites
(Figure 8). Although the amount of Bioactive-Si in the surface sediments of Dianchi Lake is
very small in general, it has a crucial and important impact on the biogeochemical recycling
and primary productivity of silicon in its lake water environment.
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3.2. Indicator of BSi Contents, TOC/BSi (C/Si) and TN/BSi (N/Si) in Sediments

In natural water, silicon often exists in the form of dissolved monomer orthosilicate,
which is an essential nutrient for the growth and reproduction of siliceous plankton.
Dissolved silicon can be absorbed and assimilated by siliceous plankton, such as diatoms,
radiolaria and spongium. After the death of these siliceous plankton, the diatom debris
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usually settles faster than other algae, the solubility of the diatom shell is relatively low,
and it is continuously deposited to form biogenic silicon (BSi). Therefore, the significant
difference between BSi and different chemical forms of silicon in sediments is that silicon
with different chemical forms mainly reflects the state of silicon adsorbed and combined
by different sediment substances, while BSi comes from the deposition of siliceous aquatic
organisms, such as diatoms, which clearly indicates the occurrence of changes in the
primary water productivity process.

The BSi content in the surface sediments of Dianchi Lake ranged from 3107.1 to
6319.9 mg/kg and had a certain spatial distribution difference (Figures 8 and 9). Overall,
the BSi content in the sediments near the center of the lake (such as at the S2, S3, and S4
sites) was higher than that in the northern and southern areas near the lakeside (such
as at the S1, S5, and S6 sites). To a certain extent, this indicated that there were spatial
differences in the level of primary productivity (such as diatoms) in different regions
of Dianchi Lake. It is worth noting that BSi at different surface sediments in Dianchi
Lake accounted for 0.3~0.6%, with an average of 0.5%, which is relatively low. For
example, the mean BSi content in the sediments of three non-eutrophication reservoirs
in southwest China was 2.8%, 1.3%, and 1.8%, respectively [27]. Dianchi Lake is a typical
eutrophic lake, and algal bloom events often occur there. The dominant species of algal
bloom is cyanobacteria [28,29]. As different algae compete for growth, non-dominant
diatoms are relatively unsuccessful and their abundance further decreases, which is
one of the possible reasons for the low BSi content in the sediments of Dianchi Lake.
However, BSi content in sediments can still be a clear indication of the spatial change and
succession behavior of diatoms, and the sediment core samples can be used tp evaluate
the historical succession of diatoms through the deposition records of BSi, providing
references for the historical evolution of a lake environment [15]. Diatom sedimentation
is generally fast, but the mineralization rate is relatively slow compared with nitrogen
and phosphorus, which can easily lead to a lack of silicon in the water and an imbalance
of silicon, nitrogen and phosphorus. Therefore, eutrophic algae, such as cyanobacteria,
will gradually become the dominant species [30,31]. In addition, generally, finer particles
in the sediments near the lake center are conducive to the accumulation of BSi, and
the coarser and better permeable sediments near the lake shore are conducive to the
dissolution and release of BSi in the sediments [32,33], which is consistent with the fact
that BSi content in the lake center of Dianchi Lake is relatively higher than that in the
areas near the lake shore in the north and the south.
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Based on the TN (0.5~1.0%) and TOC (4.1~8.2%) data collected from the same batch
of sediments by Jin [22], the C/Si atomic molar ratio of TOC to BSi in the Dianchi Lake
surface sediments is between 20.9 and 50.7, and the N/Si atomic molar ratio of TN to BSi
is between 2.5 and 5.2 (Figure 9). The atomic molar ratio of C/Si and N/Si at the middle
S3 site is relatively low, while it is the highest at the S1 site in the south. Combined
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with the famous Redfield ratio (C/N/Si = 106:16:16, i.e., C/Si = 6.625; N/Si = 1) [34,35],
both C/Si and N/Si in sediments were significantly higher than the Redfield values in
this study, indicating that the dissolution and release rate of BSi in surface sediments
may be higher than the degradation rate of organic matter, and it can preferentially
participate in recycling. In addition, the pH of water in the Dianchi Lake is generally
alkaline (pH~9), which may also promote the release and dissolution of BSi in surface
sediments [36,37].

3.3. Correlation between Different Si Forms, BSi, TOC, TN and Chlorophyll a in Sediments

There is no significant correlation between the four different Si forms in the sur-
face sediments of Dianchi Lake, indicating that the dissolved Si in water may exist or
be adsorbed by different substances to co-precipitate and be redistributed relatively
independently, while the direct coupling and sediment transport of terrigenous Si may
have little influence (Table 1). IMOF-Si and CF-Si in surface sediments were significantly
correlated with Valid-Si and Bioactive-Si, respectively (their correlation coefficients were
0.860 and 0.938, respectively; p < 0.01) (Table 1), indicating that the two had a decisive
influence on the contents of Valid-Si and Bioactive-Si, respectively. This also shows that
endogenous active Si release from surface sediments may be more sensitive to changes in
redox conditions or pH at the sediment–water interface. The content of chlorophyll a in
the surface sediments of Dianchi Lake ranged from 3.1 × 10−2 to 11.4 × 10−2 mg/g, and
the content of chlorophyll a at the S1 site was significantly higher than that at the other
sites (Figures 8 and 10). In the surface sediments of Dianchi Lake, CF-Si was significantly
correlated with TOC, TN and chlorophyll a, respectively (p < 0.01), and TOC, TN and
chlorophyll a were also significantly correlated with each other (p < 0.01) (Table 1). This
indicates that there was homology and a coupling relationship between them. TOC is
mainly derived from the deposition of organic matter, and the C/N atomic molar ratio
of TOC to TN in the surface sediments of Dianchi Lake is between 8.9 and 9.4, indicating
that the organic matter in the surface sediments is mainly algae-derived (rather than
comprising terrestrial macroplants) [22,38]. In other words, the residual sedimentation
of a large number of cyanobacteria with chlorophyll a in the water body of Dianchi Lake
are the main contributors to the organic matter in its surface sediments. In addition,
the formation of CF-Si may be related to the carbonate that co-precipitated Si directly
into the sediment. Moreover, this very significant correlation indicates that the plankton
in Dianchi Lake may also absorb water carbonates, making their biological skeleton
contain both carbonates and silicates [39,40]. Therefore, the deposition of biological
residue may become a key contributor to CF-Si. BSi is not correlated with TOC, TN and
chlorophyll a, which also proved that Dianchi Lake, as a eutrophic lake, may have an
insignificant impact on the contribution of siliceous biological residues, such as diatoms,
to the organic matter in the sediments. On the other hand, this indicated that the dom-
inant bloom algae, such as cyanobacteria, play a decisive role in the accumulation of
organic matter in surface sediments. In addition, there was a significant negative corre-
lation between OSF-Si and BSi (R = −0.620, p < 0.01). However, there was no significant
correlation between OSF-Si and TOC, TN, or chlorophyll a (Table 1). The difference
between biosilicon and silicone (BSi-(OSF-Si)) showed a good positive correlation with
BSi (R = 0.998, p < 0.01) and a significant negative correlation with OSF-Si (R = −0.670,
p < 0.01) (Figure 11). Since OSF-Si is generally considered to be an organosilicon form,
these results indicated that OSF-Si in surface sediments may be mainly derived from
the accumulation of residues of another class of siliceous organisms, which may be in
obvious competition with diatoms (major contributors to BSi) for the uptake of silica in
water bodies.
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Table 1. Correlation of different Si forms, BSi, chlorophyll a, TOC and TN in surface sediments of
Dianchi Lake.

IEF-Si CF-Si IMOF-Si OSF-Si Valid-Si Bioactive-Si BSi Chlorophyll a TN TOC

IEF-Si 1
CF-Si 0.287 1

IMOF-Si 0.137 −0.083 1
OSF-Si −0.115 0.175 −0.269 1
Valid-Si 0.138 0.098 0.860 ** 0.251 1

Bioactive-Si 0.601 0.938 ** −0.020 0.105 0.132 1
BSi −0.024 −0.193 0.088 −0.620 ** −0.245 −0.170 1

Chlorophyll a 0.102 0.850 ** −0.263 0.133 −0.131 0.746 ** −0.254 1
TN 0.402 0.722 ** −0.265 −0.026 −0.204 0.748 ** 0.168 0.644 ** 1

TOC 0.394 0.733 ** −0.280 0.001 −0.206 0.754 ** 0.140 0.654 ** 0.999 ** 1

Note: “**” represents a significant correlation (p < 0.01, n = 18).
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4. Conclusions

(1) The coupling relationship between the four different Si forms in the surface sediments
of Dianchi Lake was poor (p > 0.05), indicating that their sources were relatively inde-
pendent and that their formation was more likely to be influenced by the adsorption,
fixation and redistribution of dissolved silicon by different lake substances. Moreover,
the influence of direct input and transport settlement of terrigenous silicon might be
very small. The order of the relationship between the content of different Si forms in
the surface sediments was IMF-Si > OSF-Si > IEF-Si > CF-Si.

(2) IMOF-Si (2983.7~3434.7 mg/kg) and CF-Si (50.1~94.2 mg/kg) in the surface sedi-
ments of Dianchi Lake had decisive effects on Valid-Si and Bioactive-Si, respectively.
Furthermore, the release and recycling of sediment Si may be more sensitive to the
redox conditions or pH changes at the sediment–water interface. In particular, the
change of sediment redox conditions was the main method of silicon recycling in the
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surface sediments of Dianchi Lake. In addition, the slow degradation of OSF-Si-rich
organosilicones may lead to long-term and continuous internal silicon recycling.

(3) The low proportion (0.3~0.6%) and large spatial difference of BSi in the surface
sediments of Dianchi Lake, as well as the poor correlation between BSi and TOC, TN
and chlorophyll a, indicated that the primary productivity of Dianchi Lake was still
dominated by bloom algae, such as cyanobacteria, while the relative abundance of
siliceous organisms such as diatoms was low and closer to the lake center. However,
BSi may have a faster dissolution and release ability than TOC to participate in silicon
recycling within lake water ecosystems.
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