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• Increased Zn lowers Mg isotope frac
tionation between plants and nutrient 
solutions. 

• Excess Zn weakens Mg acquisition by 
the active pathway during root uptake. 

• Zn cannot competitively inhibit the 
movement of Mg from roots to aerial 
biomass.  
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A B S T R A C T   

Magnesium (Mg) and zinc (Zn) are essential nutrients for plants. Mg deficiency often occurs in rice plants grown 
in Zn-polluted soil. However, the mechanism for this correlation is unclear. Here, we performed culture ex
periments on rice plants (Oryza sativa L.) and used Mg isotopes to investigate mechanisms of Zn stress on plant 
Mg deficiency. Our results show that excess Zn can significantly reduce the uptake of Mg in rice tissues. The root 
displays positive Δ26Mgplant-nutrient values (δ26Mgplant-δ26Mgnutrient; 1.90 ‰ to 2.06 ‰), which suggests that Mg 
enters the root cells mainly via Mg-specific transporters rather than non-selective diffusion. The decreased 
Δ26Mgplant-nutrient values with increasing Zn supply can be explained by the competition between Zn and Mg, both 
of which combine with same transporters in roots. In contrast, the shoots (stem and leaf) display much lower 
δ26Mg values than roots, which suggests that the transport of Mg from roots to aerial biomass is mainly via free 
Mg ions, during which Zn cannot competitively inhibit the movement of Mg. Our study suggests that the Mg 
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deficiency in rice plants can be caused by high Zn-levels in soils and highlights the necessity of soil Zn- 
remediation in solving Mg deficiency problems in rice plants.   

1. Introduction 

Magnesium (Mg) is an essential nutrient and plays a critical role in 
maintaining the physiological functions in plants, including photosyn
thetic carbon fixation (e.g., Lilley et al., 1974), chlorophyll synthesis (e. 
g., Knoop et al., 2005; Li et al., 2021), protein synthesis (e.g., Zheng 
et al., 1993), and enzyme activation (e.g., Marschner, 2011). Although 
Mg is relatively abundant in Earth’s crust (with an abundance of ~2.33 
% and ranking the 8th), Mg deficiency in plants is a widespread problem 
(e.g., Tan et al., 1991; Aitken et al., 1999; Guo et al., 2016), particularly 
in soils with long-term unbalanced crop fertilization (Guo et al., 2016) 
or in acidic soils with low cation exchange capacity (Tan et al., 1991; 
Aitken et al., 1999), posing significant threats to the yield and nutri
tional quality of crops. Therefore, improving our understanding on 
physiological processes during Mg homeostasis in plants is necessary to 
effectively implementing Mg-biofortification. 

Zinc (Zn) is another essential nutrient in plants (e.g., Broadley et al., 
2007; Wu et al., 2010) and can regulate redox reactions and protein 
synthesis during plant growth (Sinclair and Krämer, 2012). However, 
the Zn concentration in soils may rise as a result of expanded industrial 
and agricultural activities (e.g., mining, smelting, and use of fertilizers 
and pesticides) (Nriagu and Pacynat, 1988; Nriagu, 1996), which could 
limit plant growth (Horler et al., 1980; Sagardoy et al., 2009). More 
importantly, the excess amount of Zn could compete with other nutri
ents including Fe (e.g., Hanjagi and Singh, 2017; Kawakami and Bhullar, 
2018; Vigani et al., 2018), affecting plant’s capability of absorbing and 
utilizing them. For instance, the excess Zn has been reported to inhibit 
Fe-uptakes in roots of rice and affect Fe transport in stems due to the 
competition between Zn and Fe(II) which are likely combining with the 
same transporter-proteins (e.g., OsIRT1 in roots), resulting in the sys
tematic variation of Fe isotope compositions in rice organs (Wu et al., 
2022). Previous studies reported that cations including H+, Mn2+, Al3+, 
NH4

+, and K+ can induce Mg deficiency in plants by interfering with root 
Mg2+ uptake (e.g., Lasa et al., 2000; Gransee and Führs, 2013; Kun
hikrishnan et al., 2016; Xie et al., 2021). It is conceivable that excess Zn 
may also affect the acquisition of Mg during plant growth since Zn may 
share similar transporter-proteins with a variety of metal ions including 
Mg2+, Zn2+ and Fe2+ (e.g., Shaul, 2002). However, this possibility has 
not been systematically studied. 

Mg has three stable isotopes (24Mg, 25Mg and 26Mg), which have 
almost identical chemical properties. Therefore, Mg homeostasis 
generally has little effect on Mg isotope fractionation. However, previ
ous studies have shown that subtle Mg isotope fractionations may occur 
during physiological processes (e.g., Mg uptake and transport), thus Mg 
isotope ratios have great potential in identifying and differentiating 
these processes, as different physiological processes trigger varied Mg 
isotope fractionations (e.g., Wiggenhauser et al., 2022; Black et al., 
2006; Black et al., 2008; Bolou-Bi et al., 2010; Pokharel et al., 2018; 
Wrobel et al., 2020; Wang et al., 2020). Positive shifts in δ26Mg values 
have been reported between plant tissues and the source of their nu
trients (i.e., soil and hydroponic nutrient solutions) (e.g., Black et al., 
2008; Bolou-Bi et al., 2010; Pokharel et al., 2018; Wrobel et al., 2020; 
Wang et al., 2020; Tipper et al., 2010; Kimmig et al., 2018; Bolou-Bi 
et al., 2012; Opfergelt et al., 2014), suggesting that plants preferentially 
take up isotopically heavy Mg from the source of their nutrients. In 
addition, ground tissues (e.g., grain, stem, and foliage) tend to have 
lower δ26Mg values than roots, suggesting the preferential translocation 
of isotopically light Mg in plant bodies (e.g., Black et al., 2008; Bolou-Bi 
et al., 2010; Wang et al., 2020; Gao et al., 2018). Yet, Mg isotopic studies 
regarding Zn stress on Mg deficiency in plants are lacking. 

In this study, rice plants (Oryza sativa L.) were cultured in 

hydroponic solutions with varied Zn concentrations. Mg isotope com
positions are measured to understand how the uptake and translocation 
of Mg respond to excess Zn supply during rice growth. These Mg isotope 
fractionations provide constraints on biological processes during Mg 
uptake and internal translocation. 

2. Methods and materials 

2.1. Experimental design 

Rice plants (Oryza sativa L. cv. Youyou 128) were cultivated hydro
ponically in a growth chamber under controlled conditions using 
Kimura-B nutrient (KBN) solutions containing ~370 μM (NH4)2SO4, 
~550 μM MgSO4•7H2O, ~90 μM K2SO4, ~180 μM KNO3, ~370 μM Ca 
(NO3)2•4H2O, ~180 μM KH2PO4, ~100 μM NaCl, ~50 μM Fe-EDTA, 
~1 μM CuSO4•5H2O, ~5 μM MnSO4•H2O, ~10 μM H3BO3, ~0.5 μM 
Na2MoO4•2H2O, and ~0.2 μM CoSO4•7H2O (Wu et al., 2022). The day 
and night temperatures were set to 25 ◦C and 20 ◦C, respectively, and the 
photoperiod and light intensity were set as 14 h and 400 μmol m− 2 s− 1, 
respectively. The relative humidity of the growth chamber was 
approximately 70–95 %. 

Rice seeds were sterilized with ~10 % H2O2 (v/v) for ~10 min fol
lowed by rinsing in ultrapure water (~18.2 MΩ•cm) for ~10 min. After 
being soaked in sterile deionized water for ~1 day at ~37 ◦C, they were 
germinated at ~25 ◦C for ~3 days on moist filter paper placed in Petri 
dishes. After germination, seedlings were grown in deionized water for 
~7 days and subsequently cultivated in half-strength KBN solution until 
the fifth leaf appeared. The plants were then divided and transferred into 
containers with KBN solution. A previous study demonstrated that Zn 
phytotoxicity occurs when external Zn2+ concentration reached 56 μM 
(Wang et al., 2022). As such, the Zn concentrations in the nutrient so
lutions were set to ~1 μM (CK, the control experiment), ~10 μM (T1), 
~50 μM (T2), and ~ 100 μM (T3, possible with Zn phytotoxicity) by 
adding ZnSO4•7H2O to study the effect of Zn stress on Mg uptake. The 
pH value of the original KBN solution was adjusted to ~5.6 with sodium 
bicarbonate. The Mg speciation in the KBN nutrient solution was 
calculated using MINTEQ 3.0 (Gustafsson, 2011), and the results are 
shown in Table S1. The hydroponic containers had the same specifica
tions, and the nutrient solution was replaced every three days. A cap was 
placed over each container to minimize water loss by evaporation. 

Approximately 5 mL of nutrient solutions in the CK and T3 experi
ments were sampled on the 24th, 25th, and 26th day. Rice plants were 
sampled on the 30th day during the tillering stage. Approximately 
10–20 plants were collected from each container and then dissected into 
roots, stems, and leaves with ceramic scissors. After collection, plant 
tissues were rinsed with ultrapure water (~18.2 MΩ•cm) to remove 
impurities and then dried in an oven at ~105 ◦C for ~1.5 h and at 
~75 ◦C for another ~48 h. The dry mass of plant tissues was weighed 
and recorded. The same plant tissues from each container were com
bined and cut into small pieces (~2 mm) with ceramic scissors prior to 
chemical analyses. 

2.2. Element concentration analysis 

Acids (including HNO3, HCl, and HF) used in this study were of BV-III 
grade and were distilled using a DST-1000 sub-boiling distillation sys
tem (Savillex, USA). Ultrapure water (18.2 MΩ⋅cm) was obtained using 
a Milli-Q® Element system (Millipore Reference A+, USA). H2O2 (trace 
analysis grade) was purchased from Thermo Scientific™ (USA). The 
digestion of plant tissues was conducted in a class-1000 clean labora
tory. Approximately 3–300 mg of sample was first digested using a 
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microwave digestion system (Milestone, Italy) in ~10 mL of concen
trated acid mixture (HNO3/HF = 7/3, v/v). Following the complete 
digestion, the digests were evaporated to dryness in Teflon beakers 
(Savillex, USA) on a hotplate and then treated with ~7 mL of solution 
containing HNO3 and H2O2 (HNO3/H2O2 = 5/2, v/v). The nutrient so
lution was evaporated to dryness and directly treated with ~3.5 mL of 
HNO3 and H2O2 mixture (HNO3/H2O2 = 5/2, v/v) to remove any 
organic matter. Subsequently, each sample solution was split into two 
aliquots for analyzing elemental concentrations and for column chem
istry to separate pure Mg. 

One aliquot of digested samples was analyzed for Mg concentrations 
using an inductively- coupled-plasma optical-emission-spectrometer 
(ICP-OES, Perkin Elmer, USA) and for Zn concentrations by an 
inductively-coupled-plasma mass-spectrometer (ICP-MS, Perkin Elmer, 
USA) at the Guangdong Institute of Eco-environmental Sciences & 
Technology, Guangdong, China. The detection limits are 40 ng/L for Mg 
using ICP-OES and 0.3 ng/L for Zn using ICP-MS. Replicate measure
ments of standard reference material 1570a (spinach leaves) yielded a 
relative error less than ±1 % for Mg and ± 5 % for Zn compared with 
certified values. 

2.3. Mg purification and isotope analysis 

Mg isotope ratios were analyzed for plant tissues and nutrient solu
tion at the Institute of Geochemistry, Chinese Academy of Sciences. 
Detailed procedures for column chemistry and isotopic measurements 
have been previously reported (Gao et al., 2019). Briefly, sample solu
tions containing ~20 μg of Mg were loaded onto ~2.3 mL of 200–400 
mesh AG50W-X8 resin (Bio-Rad, USA) and eluted with 1 M HNO3. 
Matrix elements were removed using ~23 mL of 1 M HNO3, and then Mg 
was eluted by ~15 mL of 1 M HNO3. The geological reference material 
BHVO-2 was processed together with samples during each purification 
session. The total procedural blank was <10 ng, which represented 
<0.1 % of the Mg loaded on the column. Mg isotope ratios were deter
mined on a Neptune Plus Multi-Collector Inductively Coupled Plasma 
Mass Spectrometry (Thermo Finnigan, USA) under wet plasma mode 
and using the standard-sample bracketing technique. The GSB Mg so
lution was routinely used as an in-house standard. Each sample was 
measured at least three times to achieve the desired precision. The Mg 
isotope composition of a sample was expressed as the deviation of the 
xMg/24Mg ratio from that of the DSM3 standard as follows: 

δxMg (‰) =

[( xMg
/24Mg

)

sample( xMg
/24Mg

)

DSM3

− 1

]

× 1000, (1)  

where x refers to mass of 25 or 26. Two standard deviations (2SD) were 
reported in tables and shown in plots. The δ25Mg and δ26Mg values of 
GSB relative to DSM3 are − 1.04 ± 0.02 ‰ and − 2.03 ± 0.04 ‰ (2SD, n 
= 225), respectively, and USGS standard BHVO-2 yielded an average 
δ26Mg value of − 0.23 ± 0.06 ‰ (2SD, n = 3). They are consistent with 
previously published results within analytical uncertainty (Teng et al., 
2015; Gao et al., 2019). 

2.4. Calculation of Mg mass and isotope composition of plant tissues 

The mass of Mg in each plant tissue (Mtissue) was calculated by 
multiplying the Mg concentration by the dry weight: 

Mtissue = Ctissue ×Wtissue, (2)  

where Ctissue and Wtissue are Mg concentration and dry weight of tissue of 
interest, respectively. The Mg isotope compositions of shoots 
(δ56Mgshoot) and whole plants (δ56Mgwhole) were calculated based on the 
mass balance equation as follows: 

δ26Mgshoot or whole =

∑
δ26Mgtissue × Mtissue

∑
Mtissue

, (3)  

where δ26Mgtissue is δ26Mg value of tissue. The shoot includes stem and 
leaf. The whole plant includes all tissues. The differences in the δ26Mg 
value between the bulk plant and nutrient solution (Δ26Mgplant-solution) 
and between the shoot and root (Δ26Mgshoot-root) were calculated as 
follows: 

Δ26Mgplant− solution = δ26Mgplant − δ26Mgsolution, (4)  

Δ26Mgshoot− root = δ26Mgshoot − δ26Mgroot. (5) 

The standard errors of these mean values are propagated from 
standard errors of dry weight of tissues and δ26Mg values using the 
Monte Carlo method after 2 million simulations. 

2.5. Statistical analysis 

Group differences were assessed by one-way ANOVA with Duncan’s 
post hoc test using SPSS 23.0 (IBM, IL, USA). Statistical significance (p) 
was set at <0.05 (two-tailed). 

3. Result and discussion 

3.1. Excess Zn supply limits rice plant growth 

Data of dry masses and Zn concentrations on the same samples have 
been published in Wu et al. (2022). Analytical results of Mg concen
trations and Mg isotope compositions in this study are summarized in 
Table 1. Statistically-insignificant differences in dry mass can be 
observed among bulk plant and individual tissues (shoot, root, stem, and 
leaf) among the CK, T1, and T2 groups (Fig. S1), despite the T3 group 
showing slightly low mass. This provides strong evidence that excess Zn 
supply could limit plant growth. 

3.2. Excess Zn supply limits uptake of Mg by rice plants 

Zn and Mg concentrations of bulk plants and tissues from individual 
organs (including shoot, root, stem, and leaf) show opposite trends with 
increasing Zn concentrations in the nutrient solutions (Fig. 1a and c), i. 
e., Zn concentrations increased but Mg concentrations decreased from 
experiments CK, T1, T2 to T3. The biomasses of Mg and Zn in bulk plants 
and individual tissues were calculated by multiplying Mg and Zn con
centrations with their dry weight using Eq. (2). The increase of Zn bio
masses and decrease of Mg biomasses can be noted for bulk plants and 
individual tissues from experiments CK, T1, T2 to T3 as shown in Fig. 1b 
and d. These results suggest that excess Zn supply could limit the uptake 
of Mg by rice plants. 

3.3. Mg isotope fractionation during uptake of Mg by rice plant 

The source of Mg in the nutrient solution (MgSO4•7H2O) has a δ26Mg 
value of − 4.69 ± 0.04 ‰ (2SD, n = 4) (Table 1). Throughout the 
experiment, the deviations in δ26Mg value of the nutrient solution from 
that of the MgSO4•7H2O salt (reported as Δ26Mgnutrient-salt) ranged from 
− 0.03 ± 0.06 ‰ (2SD, n = 3) to 0.02 ± 0.05 ‰ (2SD, n = 3) for group 
CK and from − 0.04 ± 0.08 ‰ (2SD, n = 3) to 0.00 ± 0.08 ‰ (2SD, n =
3) for group T3 (Fig. S2). However, all tissues show higher δ26Mg values 
than the nutrient solution (Table 1), consistent with previous observa
tions that plants preferentially take up isotopically heavy Mg from the 
growth medium (e.g., Black et al., 2008; Pokharel et al., 2018; Wang 
et al., 2020). 

Interestingly, as the Zn supply increased, the δ26Mg values of plant 
tissues decreased from − 2.53 ± 0.06 ‰ (2SD, n = 3) to − 2.62 ± 0.01 ‰ 
(2SD, n = 4) in roots, from − 2.42 ± 0.03 ‰ (2SD, n = 4) to − 2.60 ±
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0.01 ‰ (2SD, n = 3) in stems, and from − 2.80 ± 0.04 ‰ (2SD, n = 3) to 
− 2.97 ± 0.09 ‰ (2SD, n = 3) in leaves (Fig. 2). This suggests that the 
elevated Zn stress leads to smaller Mg isotope fractionation between 
growth medium and plants. These changes are unlikely to be caused by 
variations in Mg speciation and Mg concentration in the nutrient solu
tion, as modeling results show that most Mg is present as Mg(H2O)6

2+

complexes (93.8–94.5 %; Table S1), and the Mg concentrations of all 
nutrient solutions are consistently around 550 μM. In addition, the lack 
of significant changes in the δ26Mg value of nutrient solution over three 
days before the solution was replaced (Fig. S2) cannot explain large 
variances in δ26Mg values of plant tissues. 

Mg in nutrient solution must pass through the cell wall before 
reaching the plasma membrane of root cells (Marschner, 2011). During 
the process, Mg can be either transported via Mg-specific transporters (e. 
g., Li et al., 2001; Gebert et al., 2009), or via non-selective cation 
channels in the plasma membrane (e.g., Hermans et al., 2013; Tang and 
Luan, 2020). In the former case, the pectins in cell walls consist of 

polygalacturonic acid, of which the carboxylic groups (R-COO− ) act as 
cation exchangers in the cell wall continuum of roots. Both laboratory 
experiments and theoretical calculations have suggested that binding 
with organic molecules induces an enrichment of heavy Mg isotopes in 
Mg-organic complexes (e.g., Black et al., 2007; Bolou-Bi et al., 2010; 
Moynier and Fujii, 2017; Pokharel et al., 2018), as the Mg–O bond 
strength in water complexes may be weaker than that in organic com
plexes because stronger bonds concentrate heavy isotopes relative to 
weaker bonds (Urey, 1947; Schauble, 2004). This process is an active 
transport pathway that is energy-consuming and requires Mg to be 
bound to membrane proteins. This process is usually unidirectional, as 
revealed by isotope labeling experiments (Kuhn et al., 2000; Tanoi et al., 
2014), and will preserve this enrichment of 26Mg in plants. In the latter 
case, Mg migrates passively mainly as a free Mg(H2O)6

2+ complex 
(Marschner, 2011), and cross-membrane transport of free Mg(H2O)6

2+

complex may produce limited Mg isotope fractionation (e.g., Pokharel 
et al., 2017; Pokharel et al., 2018) due to its large mass, as observed for 
the negligible Mg isotope fractionation during diffusion in water 
(Richter et al., 2006). Thus, the degree of Mg isotope fractionation 
during root uptake depends on the relative contribution of these two 
pathways. 

Wu et al. (2022) discovered that the Fe isotope fractionation between 
whole plant and nutrient solution (Δ56Feplant-nutrient) decreases with 
increasing Zn supply, suggesting that excess Zn inhibits Fe acquisition in 
rice due to the competition between Zn2+ and Fe2+, both of which can 
combine with OsIRT1 (Fe2+ transporter) in roots. The decreasing 
Δ26Mgplant-nutrient values with increasing Zn mass can be explained by a 
similar mechanism (Fig. 3a). Previous studies have shown that Mg up
take by roots in higher plants is mediated by MGT family members (Li 
et al., 2001; Chen et al., 2012). Although it is possible that binding with 
different organic molecules induces various degrees of 26Mg enrichment 
in Mg-organic complexes (e.g., Black et al., 2007; Bolou-Bi et al., 2010; 
Moynier and Fujii, 2017; Pokharel et al., 2018), this fractionation is not 
expected to be affected by Zn. Later, 63Ni tracer experiments showed 
that MGT family members might also transport other divalent cations, 
including Ni, Co, Fe, Mn and Cu (Li et al., 2001), and potentially Zn. 
MAGNESIUM/PROTON EXCHANGER 1 (MHX1) encodes a vacuolar 

Fig. 1. Concentrations and biomasses of Zn (a-b) and Mg (c-d) in roots, stems, leaves, shoots, and bulk plants. Samples from 10 to 20 plants were combined and 
analyzed for Mg and Zn concentrations, and 2SDs were calculated from three repeated measurements of each sample. The different uppercase letters (in A, B, and C) 
represent significant differences among the four treatments (one-way ANOVA p < 0.05). 

Fig. 2. Mg isotope compositions of roots, stems, leaves, shoots, and bulk plants. 
Samples from 10 to 20 plants were combined and analyzed for Mg isotope 
composition, and 2SDs were calculated from three repeated measurements of 
each sample. 
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transporter that is present in roots and exchanges protons with both 
Mg2+ and Zn2+ ions (Shaul, 2002). Thus, Zn2+ and Mg2+ may compete 
for transporter proteins (e.g., MGT and MHX1), weakening Mg acqui
sition by the active pathway but enhancing Mg acquisition by the pas
sive pathway (Fig. 3b), thereby leading to decreases in both Δ26Mgplant- 

nutrient value and Mg biomass with increasing Zn supply. 

3.4. Mg isotope fractionation during transport from roots to shoots 

Once within the root, Mg moves radially toward the root center 
where stem vessels are localized for transport to the leaves (Hermans 
et al., 2013). Our results showed that the root-shoot translocation pro
cess can slightly fractionate Mg isotopes (Δ26Mgshoot-root = − 0.10 ‰ to 
− 0.18 ‰; Fig. 2), leading to an enrichment of isotopically light Mg in 
stems and leaves relative to roots. Bolou-Bi et al. (2010) ascribed the 
negative fractionation to two different Mg pools in roots: ionic Mg fa
voring light isotopes and Mg bound to organic ligands (e.g., ATP and 
proteins) favoring heavy isotopes. Previous studies indicated that Mg in 
both pools migrates to shoots, while free ionic Mg is more readily 
transported from roots to shoots (e.g., Todd, 1961; Kirkby and Mengel, 
1976; Bradfield, 1976; Schell, 1997). This may explain the negative 
Δ26Mgshoot-root values observed in our study. 

Surprisingly, our results show that within error bars, the Δ26Mgshoot- 

root value varied slightly (less than ~0.09 ‰) with increasing Zn supply 
(Fig. 3c). This suggests that increasing Zn supply has a limited effect on 

Mg isotope fractionation during the translocation of Mg from root to 
ground tissues, implying that the upward translocation of Mg may not be 
affected by Zn stress. To test this hypothesis, the transport efficiencies of 
Mg from root to stem (φ2/φ1) and from stem to leaf (φ3/φ2) were 
determined based on a mass balance box model using the biomasses, Mg 
concentrations, and Mg isotope compositions of rice tissues (a detailed 
model calculation process is presented in Text S1 of the SI). The 
modeling results showed that both the φ2/φ1 and φ3/φ2 ratios 
remained unchanged with increasing Zn supply (Fig. 4), suggesting that 
the addition of Zn did not affect the Mg transport efficiency from roots to 
stems or from stems to leaves. This is consistent with the idea that Mg2+

may be transported to the aerial biomass mainly by a transpiration 
stream moving through the xylem vessels (Hermans et al., 2013), during 
which Zn2+ cannot competitively inhibit the movement of free Mg2+

from the roots to the aerial parts (Fig. 3c). 

4. Conclusion and environmental implication 

The Mg deficiency in cereal grains becomes an increasingly severe 
problem on a global scale (e.g., Cakmak and Yazici, 2010; Rosanoff 
et al., 2012), and Mg biofortification is a promising approach to address 
human Mg deficiency. Mg deficiency may occur in plants growing in 
highly leached acid soils with low cation concentration and exchange 
capacity (Tan et al., 1991; Aitken et al., 1999), and the deficiency of Mg 
in plant may be induced by the presence of excess cations that may 

Fig. 3. Zn biomass vs. Δ26Mgplant-nutrient (a) and Δ26Mgshoot-root (c). (b) Scheme of Mg uptake and transport regulated by excess Zn in rice.  
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compete with Mg2+ for binding with negatively-charged sites in root 
apoplasm (e.g., Liu and Huettl, 1991; Marschner, 2011). 

To the best of our knowledge, the current study is the first to 
investigate the mechanism of Zn stress on Mg deficiency in rice plants 
based on Mg isotope compositions. This study shows that excess Zn 
supply can limit the uptake of Mg by roots of rice plants. The Mg isotope 
fractionations indicate that the Mg-uptake by rice roots from nutrient 
solutions is mainly facilitated by active Mg-specific transporters, with 
which Zn may also combine. Thus, the excess amount of Zn may weaken 
the capability of Mg-uptake by rice roots. In contrast, Mg(H2O)6

2+

complexes are mostly transported from roots to aerial biomass when 
there is little competition between Zn and Mg (Fig. 3). However, these 
mechanisms shall be verified and refined at molecular level by studying 
transporter genes in our future studies. 

It has been reported that Mg concentrations in rice have undergone a 
clear decline over the past 60 years, most probably due to the dilution of 
Mg associated with marked increases in grain yields as well as imbal
anced mineral fertilization without considering crop demand for Mg 
(Guo et al., 2016). In highly leached and Zn-contaminated soils with low 
Mg/Zn ratio, our study suggests that measures, including optimizing soil 
pH, providing balanced fertilization, and avoiding excessive Zn appli
cation, should be taken at the root level to minimize the negative effects 
of excess Zn on Mg-uptake. 

Our results also demonstrate that stable Mg isotope signatures of 
plants can provide new insights into Mg-uptake and translocation 
pathways. Once precise Mg isotope fractionation factors involved in 
active or passive pathways are determined, the relative contribution 
from them may be quantified. This is important information for breeding 
rice crops with high Mg-uptake efficiency. 
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