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ABSTRACT 

In the past decade, China has motivated proactive emission control measures that have successfully reduced 
emissions of many air pollutants. For atmospheric mercury, which is a globally transported neurotoxin, 
much less is known about the long-term changes in its concentrations and anthropogenic emissions in 
China. In this study, over a decade of continuous observations at four Chinese sites show that gaseous 
elemental mercury (GEM) concentrations continuously increased until the early 2010s, followed by 
significant declines at rates of 1.8%–6.1% yr−1 until 2022. The GEM decline from 2013 to 2022 (by 
38.6% ± 12.7%) coincided with the decreasing concentrations of criteria air pollutants in China and were 
larger than those observed elsewhere in the northern hemisphere (5.7%–14.2%). The co-benefits of 
emission control measures contributed to the reduced anthropogenic Hg emissions and led to the GEM 

decline in China. We estimated that anthropogenic GEM emissions in China were reduced by 38%–50% 

(116–151 tons) from 2013 to 2022 using the machine-learning and relationship models. 

Keywords: atmospheric mercury, long-term trend, anthropogenic emission reductions, co-benefits of 
clean air action 
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successfully reduced by 21%–59% during 2013–2017 
[3 ]. 

Hg can be toxic to human and ecosystem health. 
Hg in air is transported globally due to the long at- 
mospheric lifetime (3 months to 2 years) of gaseous 
elemental mercury (GEM), the dominant form of at- 
mospheric Hg [4 ]. GEM in the atmosphere can be 
deposited onto Earth’s surfaces directly through dry 
deposition and indirectly through atmospheric oxi- 
dation followed by wet and dry deposition of Hg(II). 
On regional to global scales, direct GEM dry depo- 
sition contributes more than half of the total atmo- 
spheric Hg deposition [5 ]. The deposited Hg can be 
converted into methylmercury in aquatic ecosystems 
and subsequently bioaccumulated in food chains, 
posing severe health risks to humans and wi ld life [6 ]. 
The Minamata Convention on Hg went into force in 
2017, aiming to protect human health and the envi- 
ronment from anthropogenic releases of Hg. Consid- 
ering that China has been the world’s leading emit- 
ter of atmospheric Hg ( ∼30% of the world total) 
since the 1990s [1 ,7 ], the changes in anthropogenic 
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NTRODUCTION 

hina is the largest anthropogenic source region of
ajor air pollutants due to rapid economic growth

n the past two decades, contributing 20%–33% of
he total amount of pollutants (e.g. mercury (Hg),
ulfur dioxide (SO2 ), nitrogen oxides (NOx ), car-
on monoxide (CO), black carbon and organic car-
on) emitted worldwide [1 ,2 ]. To protect human
ealth, the Chinese government has been imple-
enting comprehensive emission control measures
ince 2013, which include (i) strengthening indus-
rial and vehicle emissions standards; (ii) phasing
ut outdated industrial capacity, small high-emitting
actories and small coal-fired industrial boilers;
iii) installing non-methane volatile organic com-
ound emission control facilities; and (iv) replac-
ng residential coal consumption with electricity and
atural gas [3 ]. Most notably, the ‘ultra-low’ emis-
ion standard came into force in 2014 to control pol-
utions from coal-fired power plants. Consequently,
he emissions of criteria air pollutants, such as fine

articulate matter (PM2.5 ), SO2 , NOx and CO, were 
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Figure 1. Locations of the long-term atmospheric GEM sampling sites. (A) Locations of rural sampling sites in China and 
anthropogenic GEM emissions in Asia in 2013 [1 ,8 ]. The dashed-line contours represent an example of the number of 5-day 
backward trajectory endpoints at the sampling sites during 2013. (B) Locations of the EMEP sites in Europe and the Polar 
regions. (C) Locations of the AMNet and CAPMoN sites in North America, the Polar regions and the Pacific Ocean. Color map 
in (B) and (C) shows the global gridded anthropogenic Hg emissions in 2015 [50 ]. 
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g emissions and ambient GEM concentrations in
hina bear important implications for Hg budget
nd cycling in the global environment. 
Due to the co-benefits of air pollution emission

ontrols since the early 2010s [3 ], anthropogenic Hg
missions in China were expected to decrease after
ecades of continuous increase according to bottom-
p inventory studies [8 ,9 ]. However, large uncertain-
ies (equivalent to ±1 SD: −20% to 23%) exist in
hese estimates in terms of total emission amounts
nd associated temporal trends. Several studies re-
orted appreciable declines in GEM concentrations
8%–22% yr−1 ) during 2014–2019 [10 –12 ] in urban
reas of eastern and northern China. These observa-
ions typically lasted for < 5 years and are inadequate
Page 2 of 11
for exploring the long-term trends in ambient GEM 

concentrations and anthropogenic Hg emissions in 
China. 

In this study, we report results of the first-ever 
long-term observations (2008–2022) in GEM con- 
centrations at four rural sites of different regions in 
mainland China (Fig. 1 ). The concentration trends 
are compared with those observed in other regions 
of the northern hemisphere. Analyses of criteria air 
pollutant data in China were performed to under- 
stand the drivers of the long-term GEM concentra- 
tion trend. Machine-learning and empirical relation- 
ship models were applied to the observed GEM data 
to estimate the rate of anthropogenic GEM emission 
changes in China over the past decade. 
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Figure 2. Comparison of annual mean GEM concentrations between China and other regions in the northern hemisphere. 
The white dots are the site-specific yearly mean GEM concentrations. Error bars represent the 1 SD of the mean GEM con- 
centrations in the regions. GEM concentrations in Europe, North America, Pacific Ocean and Polar regions were obtained 
from EMEP [47 ], AMNet [48 ] and CAPMoN networks. 
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ESULTS AND DISCUSSION 

EM concentration declines and source 

egions 
ulti-year mean ± 1 SD (based on annual mean)
EM concentrations at Mt. Waliguan (MWLG),
t. Changbai (MCB), Mt. Ai lao (M AL) and Mt.
amei (MDM) during the entire study periods were
.85 ± 0.23 (annual mean in the range of 1.57–2.26,
 = 15), 1.53 ± 0.14 (1.21–1.74, n = 14), 1.81 ± 0.40
1.26–2.49, n = 12) and 2.57 ± 0.71 (1.74–3.72,
 = 12) ng m−3 , respectively (Fig. 2 and Table S1).
he highest mean GEM concentration was observed
t MDM in eastern China under the influence of
trong regional anthropogenic sources and the low-
st value occurred at MCB, possibly due to its being
emote from source regions and the assimilation of
EM by vegetation (Fig. 1 ) [13 ,14 ]. 
In 2013, the annual mean GEM concentration

anged from 1.74 to 3.52 ng m−3 at the four Chi-
ese sites with an overall mean of 2.49 ng m−3 ,
hich was ∼70% higher than the overall mean
1.47 ng m−3 , range: 1.09–1.81) observed at other
lobal network sites. Since 2013, the mean GEM
oncentration at the four Chinese sites decreased
ontinuously to 1.48 ng m−3 in 2022, which was
12% higher than the mean value at other network
Page 3 of 11
sites (1.32 ng m−3 , n = 15) in 2022 (Fig. 2 and
Table S1). Noticeably, the annual mean GEM con- 
centrations in 2022 at MCB (1.21 ng m−3 ) in north-
eastern China and MAL (1.26 ng m−3 ) in south- 
western China had already fallen to within the range 
of 1.14–1.49 ng m−3 ( n = 15) in Europe, North
America, Polar regions and the Pacific Ocean, al- 
though those at MWLG (1.68 ng m−3 ) in northwest- 
ern China and MDM (1.74 ng m−3 ) in eastern China 
were sti l l slightly higher than the upper-end values
reported elsewhere. 

Trends in GEM concentrations 
Applying the trend reversal method (see Text S1) to 
the long-term GEM concentration data identified a 
reversal year of 2011, 2013, 2012 and 2014 at MWLG,
MCB, MAL and MDM, respectively (Fig. 3 A–D). 
The increasing trends before the reversals were 
statistically insignificant at all sites except MCB, 
with the rates ranging from 1.1% to 3.5% yr−1 

( n = 4). The upward trends in China contrast with
the declines in GEM that were broadly observed 
in Europe, North America and the North Atlantic 
Ocean [15 –18 ]. After the reversal year, GEM con-
centrations exhibited significant declines at a rate of 
1.8%, 2.5%, 4.5% and 6.1% yr−1 (mean: 3.7% yr−1 ) 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
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Figure 3. Trends of GEM and criteria pollutant concentrations. (A–D) Monthly mean GEM concentrations at MWLG, MCB, 
MAL and MAL, respectively. (E) Comparison of the trends in GEM concentrations in China, Europe, North America, Pacific 
Ocean and Polar regions during 2008–2022. (F) Trend in ground-level concentrations of air pollutants near the four sampling 
sites and anthropogenic Hg emissions in China during the study period. Light gray shaded areas in (A–D) indicate the trend 
reversal years. The green line and light-green shaded area are the monthly mean and 1 SD of the GEM concentrations 
observed elsewhere in the northern hemisphere, respectively. Data are normalized by dividing the means of each year by 
their corresponding means in 2013 in (E) and (F). The light-orange shaded area in (E) is the 1 SD of the GEM trend in China. 
GEM concentrations in Europe, North America, the Pacific Ocean and the Polar regions were obtained from EMEP [47 ], AMNet 
[48 ] and CAPMoN networks. Ground-level air pollutants data are from SDTF [29 ,49 ]. Chinese anthropogenic Hg emission data 
are from Liu et al. [8 ]. 
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t MWLG, MCB, MAL and MDM, respectively
 P -values < 0.001 for all, Fig. 3 A–D). The higher
ecreasing rates at MDM and MAL could have been
 result of the more elevated annual mean concen-
rations (e.g. 3.27 ng m−3 at MDM in 2014 and
.49 ng m−3 at MAL in 2012, Fig. 2 ) above the
ackground level in the northern hemisphere in the
eversal year, which provided a substantial potential
or GEM concentrations to decrease in the process
f the abatement of regional anthropogenic emis-
Page 4 of 11
sions. The decreasing rates of GEM in China were 
lower than those in Europe in the 1990s (e.g. Wank 
Mountain, Germany and Rörvik station, Sweden, 
from 7.0% to 9.0% yr−1 ) [19 ,20 ] when European 
anthropogenic Hg emissions were estimated to have 
decreased by 10% yr−1 [21 ], but were higher than 
the GEM decreasing rates observed worldwide since 
the 20 0 0s (from 0.5% to 2.6% yr−1 in Europe, North
America, East Asia and the North Atlantic Ocean) 
[15 –17 ,22 –25 ]. In the southern hemisphere, GEM 
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oncentrations showed a clear decrease (2.7% yr−1 )
rom 1996 to 2009 [22 ], but remained relatively
onstant since 2009 [26 ]. 
A comparison of the long-term trends in GEM

oncentrations during 2008–2022 between the ob-
ervations in China and elsewhere in the northern
emisphere is shown in Fig. 3 E. From 2008 to 2013,
EM concentrations at the rural sites in China in-
reased on average by 8.9%, whereas those in Europe
nd North America changed little ( < 4%) during the
ame period (Fig. 3 E). From 2013 to 2022, GEM
oncentrations in China decreased by 38.6 ± 12.7%,
hich was much higher than the mean decreases in
urope (13.1%), North America (13.5%), Polar re-
ions (6.4%) and the Pacific Ocean (11.8%) dur-
ng the same period (Fig. 3 E). The observations
n China, together with those made elsewhere in
he northern hemisphere, indicate a widespread de-
line in GEM concentrations in the northern hemi-
phere in the past decade. The declining GEM trends
bserved in China are consistent with the trends
n anthropogenic Hg emissions during 2008–2017
Fig. 3 F), which also increased by 4.4% from 2008
o 2013, peaked in 2013 and then decreased by 22%
rom 2013 to 2017 [8 ]. 

nthropogenic emission reduction as the 

river for GEM decline 

 multiple-site concentration-weighted trajectories
CWTs) receptor model (see Text S2) reveals that
he potential source regions of GEM at the four
ites in China were consistent during 2013–202 2,
ith relatively higher CWT values associated with
ir masses that originated from eastern (115–122°E,
5–35°N) and southwestern China (101–110°E,
5–35°N) (see Fig. S1 and Table S2) where ma-
or Hg anthropogenic sources are located [8 ]. A
omparison of CWT values between 2013 and
022 highlights the largest declines in eastern and
outhwestern China, with regional mean decline
f 0.18 and 0.13 ng m−3 yr−1 in the GEM CWT
alues, respectively. This spatial feature mirrors
he effectiveness of emission control measures for
nthropogenic Hg emissions [8 ,9 ]. Relatively lower
WT values were mainly detected in air masses
rom Northeast Asia, north of Southeast Asia, Cen-
ral Asia, the Tibetan plateau and Xinjiang Uyghur
utonomous Region in western China, where large
nthropogenic Hg emission sources are absent. 
The effects of anthropogenic emissions in China

n the variations in GEM concentrations were eval-
ated using the cumulative anthropogenic GEM
missions ( ƩGEM emissions) encountered by the
20-h backward air mass trajectories in 2013 (see
ext S3). ƩGEM emissions in China accounted
Page 5 of 11
for 96.9%, 88.6%, 54.0% and 97.3% of the total 
ƩGEM emissions in Asia at MWLG, MCB, MAL 

and MDM, respectively ( Fig. S2). GEM concentra- 
tions at MWLG, MCB, MAL and MDM in 2013 pos-
itively correlated with ƩGEM emissions in China 
( r2 = 0.59 to 0.76, P < 0.001 for all, Fig. 4 ), but
insignificantly correlated with ƩGEM emissions in 
the other Asian regions ( Fig. S3), indicating that the 
variations in GEM concentrations at the four Chi- 
nese sites were predominantly controlled by domes- 
tic anthropogenic GEM emissions. 

Long-term anthropogenic Hg emission invento- 
ries suggested that Hg emissions in China started 
to decrease during 2010–2013 after decades of in- 
creases and showed minimal temporal changes in the 
Hg emission speciation profiles over the past decade 
[8 ,9 ,27 ], mainly due to the co-benefits that resulted
from the implementation of air pollution control de- 
vices (APCDs) for reducing PM2.5 , SO2 and NOx 
emissions. As shown in Fig. 3 E and F, the GEM
trends in China during 2008–202 2 we re closely cor-
related with those of criteria air pollutants (PM2.5 , 
SO2 , NO2 and CO). Site-specific GEM trends signif- 
icantly correlated with the trends of PM2.5 and SO2 
emissions (except for one case between GEM and 
SO2 at MWLG). The GEM trends also correlated 
with trends of NO2 and CO at MDM and with trend 
of CO at MDM ( Figs S4 a nd S5). We concluded 
that the recent declines in GEM concentrations in 
China were mainly caused by the control measures 
that were originally aimed at reducing anthropogenic 
PM2.5 and SO2 emissions, consistently with the re- 
sults from earlier modeling work [8 ]. The declines in 
criteria air pollutants in recent years in China were 
primarily driven by the comprehensive implemen- 
tation of APCDs [28 ,29 ], which synchronously re- 
duced anthropogenic Hg emissions and led to lower 
GEM concentrations. 

There were other factors that could potentially 
have contributed to the declines in GEM concen- 
trations in China, although these factors were mi- 
nor contributors, as discussed below ( Table S3). 
(i) Changes in the large-scale and mesoscale atmo- 
spheric flow, which modulate the interannual varia- 
tions in mean ƩGEM emissions, can influence the 
source–receptor relationship of atmospheric GEM. 
Yearly mean ƩGEM emissions at the four Chinese 
sites varied slightly from 2013 to 2022 (mean ratio 
relative 2013: 93.1%–113.9%) but did not show a sim- 
ilar consistent decline to that of GEM concentra- 
tions ( Fig. S6), suggesting that the interannual vari- 
ations in meteorology played a minor role in the 
long-term trends of GEM concentrations in China. 
(ii) A modeling study on atmospheric Hg mass bal- 
ance suggested that Hg transport from other re- 
gions in the northern hemisphere contributed ∼51% 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
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percentile. The orange solid line and shaded area represent the exponential regression line and the 95% confidence area of 
the regression, respectively. The green dashed lines are the mean GEM concentrations at the sampling sites in 2013. 
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f the GEM budget in East Asia [30 ]. Given the
ean GEM decline of 0.16 ± 0.04 ng m−3 in Eu-
ope, North America, the Pacific Ocean and Polar
egions from 2013 to 2022 (Fig. 2 ), the GEM de-
lines in these regions would have contributed to a
ecline of only 0.08 ng m−3 in GEM concentrations
n East Asia, which is < 10% of the observed total de-
lines in China from 2013 to 2022 (four-site mean of
.01 ng m−3 ). (iii) Vegetation uptake of GEM plays
 role in the long-term changes in GEM on a global
cale [31 ]. The mean normalized difference vegeta-
ion index (NDVI) in the study areas continuously
ncreased by 0.7% y r−1 from 200 8 to 2022 ( Fig. S4).
iven the vegetation uptake of GEM of 100.4 tons
n 2013 and the 5.7% increase in NDVI from 2013
o 2022 in China [32 ], the vegetation uptake of
EM in China would have increased by 5.7 tons dur-
ng this period based on the assumption of the lin-
ar relationship between GEM uptake and NDVI.
he increased vegetation uptake represents ∼2% of
he total GEM deposition in China (250–280 tons
r−1 , including direct uptake and atmospheric oxida-
ion followed by wet and dry deposition of Hg(II))
8 ,33 ], which is not likely to have caused a signifi-
ant GEM concentration decline. (iv) Reemissions
Page 6 of 11
of previously deposited Hg are expected to decrease 
immediately and proportionally to anthropogenic 
emissions reduction [34 ,35 ] and could contribute to 
the long-term GEM trend [22 ,24 ]. Stable Hg isotope 
studies revealed that the reemissions of deposited 
Hg occurred immediately after deposition and de- 
creased to nearly zero within 1–2 months, with an 
annual mean reemission quantity at 6%–14% of the 
deposited Hg (mean: 10% ± 2%, n = 8) [36 –38 ].
From 2013 to 2017, the reduction in anthropogenic 
Hg emissions decreased atmospheric Hg deposition 
in China by ∼53 tons [8 ]. Using the reported ree-
mission/deposition ratios, GEM reemissions from 

land surfaces in China were estimated to decrease by 
5.3 ± 1.0 tons during 2013–2017, which is equiva- 
lent to 8% of the anthropogenic GEM emission re- 
duction [8 ]. (v) Biomass burning in East Asia and 
Southeast Asia were of minor importance and did 
not show clear declines since 2013 [39 ]. (vi) The 
concentrations of OH and Br, which are the primary 
atmospheric GEM oxidants, also remained relatively 
constant in the global atmosphere during 2013–2022 
[40 ,41 ]. These last two factors are therefore unlikely 
to have been responsible for the observed GEM de- 
clines in China. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
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Figure 5. Temporal and spatial changes in China’s anthropogenic GEM emissions during the past decade. (A) Temporal trends 
in China’s anthropogenic GEM emissions during 2013–2022 derived from the CNN and empirical relationship model. Data are 
normalized by dividing the emissions in each year by the emissions in 2013. Light-orange dots are the optimal simulations 
selected by the two criteria in the CNN model ( n = 90). Light-blue dots are the ratios estimated for the 100 groups in the 
empirical relationship model. (B) Spatial distribution of the 2022–2013 changes in China’s anthropogenic GEM emissions 
simulated by using the CNN model. 
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stimates of the trends in China’s 
nthropogenic GEM emissions 
revious estimates of the trends in China’s an-
hropogenic Hg emissions based on bottom-up
nventories varied significantly ( Fig. S7) [8 ,9 ],
argely because of the different methodology and
arying removal efficiency application rates of the
PCDs applied in these studies. Here we combined
he GEM observations, air mass backward trajec-
ories and gridded anthropogenic GEM emissions
n 2013 from Liu et al. [8 ] to estimate the trends
n China’s anthropogenic GEM emissions during
013–2022 using a machine-learning model (Con-
olutional Neural Network model, CNN) and an
mpirical relationship model (see Text S4 and S5). 
Results from the CNN and the empirical model

how 38% and 50% declines, respectively, in an-
hropogenic GEM emissions in China from 2013
303 tons) to 2022 (187 and 152 tons) (Fig. 5 A and
ables S4 and S5). Note that this analysis did not
eparate the contributions of the other factors to the
bserved GEM declines (i.e. reemissions, regional
ransport of background air mass and vegetation up-
ake in the empirical relationship model; and reemis-
ions and regional transport of background air mass
n the CNN model). However, these factors should
ave only played a minor role, as discussed above.
ur estimates of the declines in China’s anthro-
ogenic GEM emissions during 2013–2022 (4.2%–
.5% yr−1 ) are overall consistent with those pre-
icted by bottom-up inventories (3.4%–5.6% yr−1 )
8 ,9 ]. 
The CNN model-inferred spatial distribution

atterns of China’s anthropogenic GEM emission
Page 7 of 11
sources during 2014–202 2 a re simila r to those in
2013, with the dominant source regions located in 
northern and eastern China ( Fig. S8). Large reduc- 
tions in China’s anthropogenic GEM emissions from 

2013 to 2022 were mainly identified in northern 
(110–118°E, 32–41°N, 39 tons), eastern (118–122°E, 
28–34°N, 13 tons) and southwestern China (100–
110°E, 23–33°N, 36 tons) (Fig. 5 B)—a finding that 
is closely aligned with previous inventory estimates 
[8 ,9 ]. Results from the CNN and empirical rela-
tionship model showed that the decreasing rates of 
anthropogenic GEM emissions were higher from 

2013 to 2019 (by 4.7% and 7.6% yr−1 , respectively) 
and then became lower from 2019 to 2022 (by 
1.3% and 3.4% yr−1 , respectively) (Fig. 5 A). Such a
trend is consistent with those of surface-level PM2.5 
and SO2 concentrations in China, with a decline of 
6.9% yr−1 and 8.7% yr−1 , respectively, during 2013–
2019 and by 2.6% yr−1 and 1.5% yr−1 , respectively, 
during 2019–2022 (Fig. 3 F). The lower declines 
after 2019 could have been a result of the limited
potential for further implementation of emission 
control measures [8 ] and the increased industrial 
activities ( Fig. S9). 

CONCLUSIONS AND ENVIRONMENTAL 
IMPLICATIONS 

This study reports significant declines in GEM con- 
centrations in Chinese rural areas since the early 
2010s, reflecting the effectiveness of China’s Clean 
Air Action on reducing domestic anthropogenic Hg 
emissions. We estimate that anthropogenic GEM 

emissions were reduced by 116–151 tons from 2013 
to 2022. Given the global anthropogenic GEM 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
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missions of 1527–1725 tons during 2010–2015 [1 ],
he reductions in China represent a 7%–10% drop
n the global GEM emissions. Because of the highly
levated background GEM concentrations in East
sia, long-range transport of GEM from this region
mainly China) has been regarded as an important
ource of atmospheric GEM and Hg deposition in
he other regions of the northern hemisphere, e.g.
ontributing 10%–37% (0.16–0.80 ng m−3 ) of atmo-
pheric GEM concentrations and 15%–33% (3.0–
.4 μg m−2 yr−1 ) of the Hg depositions in Europe,
orth America and Polar regions [30 ,42 –44 ]. We
stimate that the 38.6% decline in ground-level GEM
oncentrations in China contributes to a 4%–14%
ecline in GEM concentrations and 6%–13% de-
line in Hg deposition in Europe, North America and
olar regions, which could partially explain the ob-
erved declines in GEM concentrations in these re-
ions during 2013–202 2. 
Our results also indicate that abatement of an-

hropogenic emissions could reduce ground-level
EM concentrations more effectively than previous
odel-predicted results showed. For example, Liu
t al. predicted that a 22% reduction in national an-
hropogenic emissions resulted in a 11% decline in
EM concentrations in China from 2013 to 2017
8 ], which was lower than the result ( ∼19%) ob-
ained in the present study ( Fig. S10). In addition,
 previous global modeling study showed that a
0%–35% decline in GEM concentrations in Europe
nd North America from 1990 to 2010 required a
3%–85% reduction in anthropogenic GEM emis-
ions in these regions (reduced from 399–410 to 61–
09 tons) [16 ], whereas a similar magnitude of GEM
ecline in China required a 35%–41% reduction
n anthropogenic GEM emissions ( Fig. S10). We
herefore suggest that anthropogenic emissions play
 more important role in the regional atmospheric
EM budget than traditionally thought, likely be-
ause the natural emissions and inflows of GEM
rom other regions in the northern hemisphere are
verestimated. Alternatively, the decreasing trends in
hinese anthropogenic GEM emissions estimated
n this and the previous studies are underestimated.
uture modeling studies should incorporate long-
erm continuous observations worldwide to better
valuate the effectiveness of the Minamata Conven-
ion and understand the cycling of atmospheric Hg
t the global scale. 

ATERIALS AND METHODS 

ites description 

our sites representing different geographical re-
ions across China were selected for investigat-
ng the temporal trends in GEM concentrations in
hina (Fig. 1 ). Mt. Waliguan (MWLG, 100.898°E,
Page 8 of 11
36.287°N, 3816 m a.s.l.) is located in the northeast 
of the Tibetan Plateau in northwestern China. Mt. 
Changbai (MCB, 128.112°E, 42.402°N, 741 m a.s.l.) 
is in a temperate forest in northeastern China. Mt. 
Ai lao (M AL, 101.020°E, 24.533°N, 2450 m a.s.l.) 
is located in a subtropical forest in southwestern 
China. Mt. Damei (MDM, 121.565°E, 29.632°N, 
550 m a.s.l.) is in eastern China, close to the East
China Sea. These sites are isolated from local an- 
thropogenic emissions and receive air masses that 
pass over nearly all the geographical regions of China 
(also including the major anthropogenic Hg source 
regions in China, Fig. 1 ). Therefore, monitoring data 
at these sites were analysed to study the trends in 
atmospheric GEM concentrations and estimate the 
changes in anthropogenic Hg emissions in China. 

Measurements of GEM concentrations 
GEM concentrations at MWLG, MCB, MAL and 
MDM were continuously measured using Tekran 
2537 A/B/X automated Hg analysers since Septem- 
ber 2007, October 2008, June 2011 and April 2011, 
respectively. MWLG, MCB and MAL were part of 
the monitoring network of the Global Mercury Ob- 
servation System (GMOS). The GMOS Standard 
Operating procedures were followed for the GEM 

measurements at all four sites [45 ]. Tekran analysers 
were operated at a mass flow rate (referenced to 0°C 

and 760 mmHg of pressure) of 0.5–0.75 L min−1 

and a sampling interval of 10 min at MWLG, 0.9–
1 .0 L min−1 and 5 min at MCB, 0.75 L min−1 and 
5 min at MAL and 1.0 L min−1 and 5 min at MDM.
Tekran analysers were routinely and automatically 
calibrated using the internal permeation sources at 
intervals of 47–71 h and the permeation rates of in- 
ternal sources were periodically validated by injec- 
tions of known amounts of Hg0 vapor every several 
months. Co-located measurements of GEM concen- 
trations using the Tekran analysers at the four Chi- 
nese sites showed mean deviations in the range of 
1%–4% ( n = 3). Concentrations of Hg measured by 
using the Tekran analysers only contained small frac- 
tions (0.1%–0.4%) of gaseous oxidized mercury at 
our sampling sites [46 ] and therefore the measured 
Hg was designated as GEM. 

Long-term GEM data outside China and 

criteria air pollutants and NDVI data in 

China 

GEM concentrations at 6 sites in Europe, 11 sites in 
North America, 4 sites in the Polar regions and 1 site
in the free troposphere of the Pacific Ocean during 
2008–2022 (Fig. 1 and Table S6) were obtained 
from the European Monitoring and Evaluation Pro- 
gramme (EMEP) database ( https://ebas.nilu.no/) 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae264#supplementary-data
https://ebas.nilu.no/
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47 ], Atmospheric Mercury Network (AMNet,
ttps://nadp.slh.wisc.edu/networks/atmospheric- 
ercury-network/) [48 ] and Canadian Air and
recipitation Monitoring Network (CAPMoN,
ttps://open.canada.ca/en). Ground -level con-
entrations of criteria air pollutants at 3° × 3°
esolution at the four sampling sites in China were
btained from the Satellite Data to Freshman
SDTF, https://weijing-rs.github.io/product.html)
29 ,49 ]. NDVI at 3° × 3° resolution at the four
ampling sites in China during 2008–2022 are
rom the NASA Earth Observations platform
 https://neo.gsfc.nasa.gov/). 

dditional methods 
dditional methods for backward air mass trajec-
ory, CWTs receptor model, trend reversals detec-
ion and exposure of air masses to anthropogenic
g emissions ( ƩGEM emissions) are presented in
he Supplementary Data. A CNN machine-learning
odel and an empirical relationship model were
pplied to estimate the changes in anthropogenic
EM emissions in China over the past decade. The
NN machine-learning model established a source–
eceptor relationship matrix between gridded GEM
WTs values and anthropogenic emissions, natu-
al surface emissions (or sinks) and the transport
f background GEM in 2013, which allowed pre-
iction of the spatial distributions of anthropogenic
EM emissions in China during 2014–2022. The
mpirical relationship model used the exponential
egression between ƩGEM emissions in China and
easured GEM concentrations established in 2013
o estimate the reduction rates of Chinese anthro-
ogenic GEM emissions during 2014–2022 relative
o 2013. Results from the CNN machine-learning
odel were corroborated by the empirical relation-
hip model to constrain the trends in Chinese an-
hropogenic GEM emissions over the past decade.
ore information on the CNN machine-learning
nd empirical relationship model is presented in the
upplementary Data. 

ATA AVAILABILITY 

ll data are available in the main text, Supplementary
ata and Supplementary Data Tables. GEM concen-
rations data at the four investigated sites in China
uring the whole study periods are available from the
orresponding author upon request. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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