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• An integrated investigation on HMs in 
agricultural soils of Henan province was 
reported firstly.

• Multivariate statistics, geo-statistical 
methods, receptor model, and random 
forest were employed.

• Cd was identified as the priority 
pollutant in agricultural soils of Henan 
province.

• Sensitivity analyses of exposure factors 
to TCR and NCR were performed.

• Traffic source is the dominant source of 
HMs in agricultural soils in Henan 
province.
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A B S T R A C T

Heavy metal(loid)s (HMs) in agricultural soils not only affect soil function and crop security, but also pose health 
risks to residents. However, previous concerns have typically focused on only one aspect, neglecting the other. 
This lack of a comprehensive approach challenges the identification of hotspots and the prioritization of factors 
for effective management. To address this gap, a novel method incorporating spatial bivariate analysis with 
random forest was proposed to identify high-risk hotspots and the key influencing factors. A large-scale dataset 
containing 2995 soil samples and soil HMs (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Zn) was obtained from across 
Henan province, central China. Spatial bivariate analysis of both health risk and ecological risks revealed risk 
hotspots. Positive matrix factorization model was initially used to investigate potential sources. Twenty-two 
environmental variables were selected and input into random forest to further identify the key influencing 
factors impacting soil accumulation. Results of local Moran’s I index indicated high-high HM clusters at the 
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western and northern margins of the province. Hotspots of high ecological and health risk were primarily 
observed in Xuchang and Nanyang due to the widespread township enterprises with outdated pollution control 
measures. As concentration and exposure frequency dominated the non-carcinogenic and carcinogenic risks. 
Anthropogenic activities, particularly vehicular traffic (contributing ~37.8 % of the total heavy metals accu-
mulation), were the dominant sources of HMs in agricultural soils. Random forest modeling indicated that soil 
type and PM2.5 concentrations were the most influencing natural and anthropogenic variables, respectively. 
Based on the above findings, control measures on traffic source should be formulated and implemented pro-
vincially; in Xuchang and Nanyang, scattered township enterprises with outdated pollution control measures 
should be integrated and upgraded to avoid further pollution from these sources.

1. Introduction

Soil acts as a key sink of pollutants from many sources and may be 
adversely affected by them, particularly heavy metal(loid)s (HMs). Soil 
HM contamination may directly affect soil function, with potential 
threats to human health arising through direct exposure and food con-
sumption (Rinklebe et al., 2020; Tokatlı et al., 2023). Heavy metal 
contamination in soil can deplete nutrients and degrade soil structure 
and functionality (Jiang et al., 2020a). Long-term exposure to low 
concentrations of heavy metals poses significant health risks, potentially 
causing cancer, reproductive disorders, skin lesions, lung diseases, and 
gastrointestinal issues (Wang et al., 2022), and in severe cases, fatalities 
through skin contact, inhalation, or ingestion (Huang et al., 2022; Liu 
et al., 2021a). Generally, HMs in soils primarily originate from weath-
ering of parent materials but can also accumulate from industrial and 
agricultural activities (Hu and Cheng, 2013). Soil HM contamination 
levels have increased globally due to accelerated industrialization and 
urbanization in recent decades (Akopyan et al., 2018; Kulikova et al., 
2019; Liu et al., 2021b).

The management of soil HM contamination requires a thorough 
understanding of the spatial characteristics, sources, and influencing 
factors. Multivariate statistical analysis (Zeng et al., 2024b), geo-
statistical analysis (Baltas et al., 2020), quantitative receptor models (Hu 
et al., 2020), and stable-isotope fingerprints are currently applied in 
identifying HM sources (Wang et al., 2021), while multivariate statis-
tical methods, such as correlation analysis (CA) and principal compo-
nent analysis can qualitatively identify sources based on dimensionality 
reduction (Han et al., 2022; Liang et al., 2023). Receptor models such as 
positive matrix factor (PMF) analysis, absolute principal component 
score-multiple linear regression (APCS–MLR), and UNMIX could quan-
titatively apportion the sources of HM in soil (Guan et al., 2019; Han 
et al., 2022). Stable-isotope techniques may accurately identify sources 
on the basis of isotopic ratio variations among different emission sources 
(Liu et al., 2022; Wang et al., 2021), but are not suitable for large scale 
application due to the complexity and expense of analyses. Compared 
with other receptor models, the PMF model assumes that the observed 
data are a linear combination of contributions from multiple sources, 
with both source contributions and source profiles being non-negative. 
PMF analysis provides an “uncertainty weighting that is useful in” 
assessing the final results (Sun et al., 2020), with factor loadings being 
statistically scaled in terms of their relative contributions, thereby 
improving the reliability of the analysis. Though the primary potential 
types of contamination sources can be distinguished by receptor models, 
discerning the direct and indirect factors governing HM accumulation in 
soils is essential for crafting targeted control measures. Increasingly, 
previous researches have emphasized the synergistic influences of soil 
properties and climate on soil HM contamination (Wu et al., 2021; 
Zhong et al., 2020). The involvement of various contamination sources, 
along with numerous environmental variables, complicates the source- 
sink relationships (Yang et al., 2021). Most receptor models identify 
sources through linear relationships, however, the source–sink rela-
tionship of HMs in soil not always linear, which may bias the results. The 
random forest (RF) method is adept at handling the non-linear re-
lationships between driving factors behind environmental pollutants. It 

utilizes multiple independent decision trees, full–size trees without 
pruning, bootstrap sampling, random split selection, an unbiased mea-
sure of error rate, and covariate importance analysis (Zhao et al., 2023). 
Thus, combining the RF and PMF models can provide a comprehensive 
approach to identifying potential driving sources of pollutants.

Accurate assessment of ecological and human health risks posed by 
soil HMs is crucial for developing refined control measures and reducing 
costs in soil HM management. While previous studies have commonly 
utilized global Moran’s I and local Moran’s I (LMI) to identify soil hot-
spots, these methods primarily focus on single-variable spatial re-
lationships. In contrast, bivariate LMI spatial association analysis offers 
a novel approach by coupling HM risks based on spatial interactions 
between different risks. This innovative method allows for a more 
comprehensive understanding of the interplay between multiple con-
taminants, thereby providing deeper insights into the complex spatial 
patterns of soil contamination (Abokifa et al., 2020), describing the 
spatial clustering characteristics of ‘hotspots’, and aiding in under-
standing of combined large-scale contamination risks.

Henan Province in central China is an important grain-producing 
areas with an annual grain yield of ~6.8 million tonnes, accounting 
for ~10 % of national production (HSB, 2023). The province is also rich 
in mineral resources such as coal and polymetallic minerals (HSB, 
2023). Soil HMs contamination events have occurred frequently in 
recent years (Zhang et al., 2015), challenging food security (Xing et al., 
2016; Xu et al., 2022b; Yang et al., 2022). Concern has focused on HM 
contamination around typical sources such as battery factory in Xin-
xiang (Jiang et al., 2020c), molybdenum–polymetallic and tungsten 
mining in Luoyang (Chen et al., 2023; Hui et al., 2021), coal mining 
areas (Li et al., 2018), a lead smelting plant in Jiyuan (Wu et al., 2020; 
Xing et al., 2019b), and soil HM levels at the county (Tanghe and 
Yongcheng county) and city (Zhengzhou) scales (Liu et al., 2022c; Meng 
et al., 2021b; Zhang and Zhang, 2021; Zhang and Li, 2021). In studies 
conducted in Henan, Cd, Pb, Cu, Zn, Cr, and As were highlighted as the 
primary HM exceeding the limits set by Chinese Government. However, 
no study have examined soil HM levels on a provincial scale, limiting the 
understanding of pollution patterns and hindering policy-making for 
contamination prevention and control in Henan Province. Ensuring soil 
quality in Henan Province is important to food security in China.

This study aimed to fill these knowledge gaps by collecting agricul-
tural soil samples from across the province in 2018, with the objectives: 
(1) to assess the concentration and distribution of HMs in agricultural 
soils; (2) to investigate the spatial variability of soil HMs; (3) to describe 
the spatial distribution of associated ecological and human-health risks; 
and (4) to identify the main contributing sources and clarify the primary 
factors influencing soil HM levels and their corresponding risks. The 
results of this study should enhance the understanding of HM contam-
ination of agricultural soils across the province, thereby guiding soil 
contamination management.

2. Methods

2.1. Study area and soil sampling

Henan Province is located in central China (31◦23′–36◦22′N, 
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110◦21′–116◦39′E) and has an area of 165,700 km2. Henan province has 
a transitional climate from subtropical to warm temperate zones, with 
an annual temperature of 15.8 ◦C and annual precipitation of 513–1129 
mm. Landforms include a plain basin, mountain, hill that respectively 
account for 55.7 %, 26.6 %, and 17.7 % of the total area. Some 144 
mineral types have been found in the province and 93 mined, predom-
inantly for molybdenum, gold, aluminum, silver, trona, salt, refractory 
clay, fluorite, perlite, cement limestone, and graphite. The population in 
Henan Province is 98.72 million, and the gross domestic product is RMB 
6135 billion (USD 912 billion) (HSB, 2023).

Surface soil samples (2995 samples of 0–20 cm depth) were collected 
from agricultural land across the province (Fig. 1). The soil samplings, 
including sites selection and sampling procedures, were conducted ac-
cording to the Technical Rules for Monitoring Environmental Quality of 
Farmland Soil (MARAPRC, 2012). Samples were collected from areas 
distant from obvious sources of pollution. Five subsamples were 
collected within a 50 m radius at each site, mixed, and stored as a single 
sample in a zip-lock polyethylene bag. During sampling, a plastic shovel 
was used to remove gravel, grass roots and other decries. A handheld 
GPS device was used to capture the latitude and longitude coordinates 
for each sample. After air-drying at room temperature, stones, roots, and 
litter were removed and samples ground in an agate mortar to 200 mesh 
(Xu et al., 2017).

2.2. Chemical analysis

For HM analysis, 0.05 g of soil was weighed into a Teflon tube and 
digested with HNO3 + HF at 185 ◦C for 48 h. After cooling to room 
temperature, H2O2 was added and the mixture evaporated to near dry-
ness at 110 ◦C. Ultrapure water and HNO3 were added and kept at 
185 ◦C for 16 h. HM concentrations in the residual solution were 
determined by inductively coupled plasma–mass spectrometry (ICP–MS, 
NexIONTM 300×, Perkin Elmer, USA) (Han et al., 2022).

An accuracy was based on analysis of internal standards, a National 
Soil Reference Material (GBW07405), duplicates, and reagent blanks. 
Recoveries of reference material was between 94 %–109 %.

2.3. Geo-accumulation index

The geo-accumulation index (Igeo) indicates the variations in the 
natural distribution of HMs in soil, reflecting the historical accumulation 
of contaminants, calculated as follows: 

Igeo = log2
Ci

KBi
(1) 

where Ci (mg kg− 1) represents the measured concentration of element i; 
Bi (mg kg− 1) is the background concentration of element I in Henan 
Province, and K is the correction coefficient of Bi, which is a constant 
value of 1.5.

2.4. Spatial autocorrelation

Spatial autocorrelation is commonly denoted by Moran’s I, including 
global and local Moran’s indices (Zhang et al., 2019). The global Mor-
an’s I may cover the whole range of Moran’s I from − 1 to +1, denoting a 
perfect negative or perfect positive spatial autocorrelation, respectively 
(Eq. (2)). Values of Moran’s I near 0 indicate no spatial autocorrelation 
near the mean. The LMI indicates the degree of spatial clustering of 
regional units, identifies hotspots (Eq. (3)) (Yuan et al., 2018). 

Global Moranʹs I =

∑n

i=1

∑n

j=1
(xi − x)

(
xj − x

)

S2
∑n

i=1

∑n

j=1
wij

(2) 

Local Moranʹs I =
(xi − x)

S2

∑n

j=1
wij

(
xj − x

)
(3) 

where n is the sample size; xi and xj are observed concentration (mg 
kg− 1) at sampling sites i and j, respectively; x is the mean value of x; S2 is 
the variance of samples; and wij indicates the distances between sites i 
and j.

Based on the Moran’s I index, the bivariate LMI is a method of 
characterizing spatial correlation between different variables (Wu et al., 

Fig. 1. Locations of sampling sites in agricultural lands across Henan Province.
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2019). Bivariate LMI was applied in characterizing the spatial associa-
tion of ecological, non-carcinogenic, and carcinogenic risks to probe the 
points with high risks: 

Iab
i = Xa

i

∑n

j=1,j∕=i
wijXb

j (4) 

where Xa
i and Xb

j denote values variables a and b on the grid i and j, 
respectively; Iab

i represents the bivariate LMI at location i, and wij is the 
spatial weight matrix based on the distance weighting between locations 
i and j. If Iab

i is significantly positive or negative, variable a at grid point I 
is strongly correlated with variable b in the adjacent area (otherwise 
there is no evident correlation) (Shi et al., 2023).

2.5. Human health risk

Human exposure to soil HMs may occur through three main path-
ways: ingestion, inhalation, and dermal contact. The average daily 
exposure dose (ADD) of each pathway and its corresponding health ef-
fects were evaluated as follows, with both non-carcinogenic and carci-
nogenic risks considered. 

ADDi
Ing =

Ci × IRS × EF × ED
BW × AT

×10− 6 (5) 

ADDi
derm =

Ci × SA × SL × ABF × EF × ED
BW × AT

×10− 6 (6) 

ADDi
inh =

Ci × IRa × EF × ED
BW × AT × PEF

× 10− 6 (7) 

HI =
∑

HQi
j =

∑ADDij

RfDij
(8) 

TCR =
∑

CR =
∑

ADDij × SFij (9) 

where HQi
j is the average hazard quotient (HQ) of exposure pathway j 

for element i, and Ci is the soil concentration (mg kg− 1) of element i; 
other parameters are described in Table S1–2. The hazard index (HI) is 
the sum of all HQ. HI and HQ values of >1 indicate a potential adverse 
health risk (MohseniBandpi et al., 2018). CR represents carcinogenic 
risk, and TCR is the total carcinogenic risk. Values of CR or TCR of 
>1E–4 indicate a potential carcinogenic risk; values of <1E-4 indicate 
no significant carcinogenic risk; and values of <1E-6, indicate a negli-
gible risk (USEPA, 2009).

2.6. Ecological risk

The potential ecological risk of HMs to ecosystems was evaluated as 
follows (Arfaeinia et al., 2019). 

Ei
r = Ti

rCi
/
Ci

b (10) 

where Ei
r indicates the monomial ecological risk index of an element, 

and Ti
r the toxic response coefficient of an HM. Values of Ti

r for As, Cd, 
Cr, Cu, Mn, Ni, Pb, Sb, and Zn were 10, 30, 2, 5, 1, 5, 5, 40, and 1, 
respectively (Hakanson, 1980; Jiang et al., 2020b). The sum of Ei

r values 
of all studied HMs represent the ecological risk index (RI).

2.7. PMF model

The PMF model provides a mathematical approach to quantifying 
the contribution of sources based on the composition (‘fingerprint’) of 
sources. PMF 5.0 could resolve the concentration matrix into two 
matrices: factor contributions and factor profiles. Each factor was then 
analyzed further (Guan et al., 2019). The specific number of factors is 

not usually given directly, and much debugging may be necessary. 

xij =
∑p

k=1

gikfkj + eij (11) 

where xij denotes the HM concentration; i represents the sample 
number; j is the chemical species; p is the source number; e is the error of 
each sample; and u is the uncertainty calculated as follows: 

For xij ≤ MDL,uij =
5
6
×MDL (12) 

For xij > MDL,uij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σ × xij

)2
+ (0.5 × MDL)2

√

(13) 

where MDL is the method detection limit of each element, and σ is 
relative standard deviation. The contribution and profile of each sources 
were obtained by minimizing the sum of an ‘object function’ Q as follows 
(Zhang et al., 2020). 

Q =
∑n

i=1

∑m

j=1

(
eij

uij

)2

(14) 

2.8. Random Forest method

The RF model is an integration algorithm or decision tree classifier 
(Bremian, 2001), which first employs self-help sampling for training 
data to form samples before, a regression tree model for each sample is 
developed. The predictive value of the dependent variable is determined 
by the average of results of n regression tree models. A random data split 
technique was employed to partition the dataset into a training dataset 
(comprising 75 % for calibration) and a test dataset (with 25 % allocated 
for validation). The training dataset was utilized to calibrate the 
regression models, whereas the test dataset was employed to evaluate 
their final outcomes (Agyeman et al., 2022).

In 2019, 22 selected variables were used as contributing factors, 
selected for quantitative contribution evaluation. The factors were 
classified into two main categories: ‘natural’ factors including temper-
ature, elevation, fine sand, soil type, precipitation, clay particles, total 
nitrogen, silty sand, organic matter, coarse sand, pH, total phosphorus, 
and total potassium; and anthropogenic factors including population, 
railway, chemical fertilizers, PM2.5, residential zones, factories and 
mines, pesticides, river related to anthropogenic activities. Relevant 
data were all downloaded from the Chinese Resource and Environ-
mental Science and Data Center (https: www.resdc.cn).

String environmental variables were digitized into numeric variables 
based on sampling sites. The importance score of each variable was 
determined using RF model (Huang et al., 2022).

2.9. Statistical analysis

Raw data was processed using Microsoft Excel 2016, and all the 
figures produced with Origin 2023 (©OriginLab Corporation). Outliers 
of raw data were screened using a threshold of more or less than three 
times the standard deviation away from the mean, and the outliers were 
replaced with the left highest or lowest values for further analysis (Yang 
et al., 2019). Assessing spatial autocorrelation for each variable is 
essential to determine the optimal interpolation algorithm for map 
generation. HMs exhibiting spatial autocorrelation and conforming to a 
normal distribution are suitable for interpolation using kriging inter-
polation method in ArcGIS 10.8 (ESRI, Redlands, USA). This involves 
computing the corresponding semivariogram, leading to maps of the 
variables accompanied by information regarding estimated value un-
certainty. Conversely, HMs lacking spatial autocorrelation are interpo-
lated with inverse distance weight (IDW) (Swidwa-Urbanska and Batlle- 
Sales, 2021). Spatial autocorrelations were obtained as global Moran’s I, 
LMI, and bivariate LMI with GeoDa. To assess the impact of data 
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transformation on the results of spatial cluster and outlier identification, 
while also accounting for the compositional nature of environmental 
data, three data transformation methods were chosen: log (10) trans-
formation, centered log-ratio transformation, and normal score trans-
formation. The Shapiro-Wilk test was used to examine the normality of 
both raw and transformed datasets. RF modeling were conducted in 
Rstudio (https://www.rstudio.com). Exposure health risks were esti-
mated by Monte Carlo simulation (MCS) with Crystall Ball softwere 
(©Oracle, Redwood City, CA, USA). All the raster-based variables were 
available at 1 km resolution, and these raster data were resampled to all 
the individual soil sampling points in ArcGIS 10.8. The shortest dis-
tances of soil sampling points to industrial enterprises, river, and railway 
were obtained with ‘Near’ in analysis tools in ArcGIS software.

3. Results and discussion

3.1. HM characteristics

Concentrations of Cd, Ni, Sb, and Zn in soils generally followed a 
lognormal distribution, and other HMs a skewed distribution (Table 1). 
Mean concentrations of Cd, Ni, Sb, and Zn are therefore expressed as 
geometric mean values, and those of all other HMs as median values. 
Geometric mean values of Cd, Ni, Sb, and Zn were 0.26, 27.6, 1.40, and 
70.0 mg kg− 1, respectively, and the median concentrations of As, Cr, Cu, 
Mn, and Pb were 13.6, 66.0, 21.6, 537, and 24.3 mg kg− 1, respectively.

The highest mean concentrations of As were observed in Xuchang 
(Fig. 2); those of Cd, Pb, and Sb were observed in Jiyuan; and those of Cr, 
Cu, Mn, and Ni in Nanyang. For Zn, both the arithmetic mean (5040 mg 
kg− 1) and geometric mean (525 mg kg− 1) concentrations in Pingding-
shan were much higher than those in other cities, possibly due to the 
presence of coal, non-ferrous metal mining, and related processing in-
dustries (Jiang et al., 2019). Relative to previous studies in Henan 
Province, concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were consis-
tent or slightly higher (Chen et al., 2015).

While geometric mean Cd concentrations were higher than those in 
Zhejiang (0.23 mg kg− 1) and Jiangsu Province (0.18 mg kg− 1) areas 
(Yang et al., 2020a; Yang et al., 2020b), they were lower than those 
reported in Guizhou Province (0.577 mg kg− 1) (Zhang et al., 2022). 
Concentrations of Cd, Cu, Mn, Ni, Pb, Sb, and Zn were lower than those 
adopted in recently developed soil-quality criteria, but slightly higher 
than recommended safe values (Zhang et al., 2023).

Coefficients of variation (C.V.) followed the order of Cd (68.2 %) >
Sb (53.1 %) > Zn (52.5 %) > As (38.3 %) > Pb (36.2 %) > Mn (34.7 %) 

> Cu (29.2 %) > Ni (24.7 %) > Cr (16.9 %). Hence, the HM concen-
trations in agricultural soils exhibit significant degrees of variation and 
extensive ranges. Moreover, the HM concentrations of the agricultural 
soil is determined by not only parental materials but also external fac-
tors. The higher C.V. values indicated the higher impact of anthropo-
genic activities, while the lower C.V. values demonstrated the higher 
impact of natural factors (Baltas et al., 2020). Generally, the C.V. values 
of Cd, Sb, and Zn were > 50 %, which was more likely to be affected by 
human activities. The application of chemical fertilizers, pesticides, 
polluted irrigation and dry deposition from traffic sources and industrial 
factories (Han et al., 2022).

All HM geometric mean and median soil concentrations, except for 
Mn, were higher than their corresponding background values, but lower 
than risk screening values for contamination of agricultural land 
(GB15618–2018; Table 1). However, several points had concentrations 
above the risk intervention values due to the impacts of point source 
(Zhang et al., 2022).

Single-pollutant indices indicated that most of the HMs could be 
categorized into uncontaminated or low-contamination zones, with 
values of <2. However, high proportions of the Cd (67.3 %), Pb (33.2 
%), Sb (27.4 %), and Zn (18.1 %) data points were classed as being at 
heavily contaminated levels (Fig. S1; Table S3). Geo-accumulation 
indices indicated that >67 % of the Cd data points could be classed as 
moderately–heavily to extremely polluted levels (Table S4). Several Pb, 
Sb, and Zn samples had concentrations in the heavy to extreme polluted 
levels, requiring further attention.

Geo-accumulation indices also indicated that most HM concentra-
tions correspond to unpolluted levels, although many samples had Cd 
concentrations in the unpolluted–moderately polluted or were moder-
ately polluted (Fig. 3). Therefore, Cd should be regarded as a priority- 
control HM in Henan Province. The fact that 39.5 % of the samples 
from Pingdingshan city have Zn concentrations at extremely polluted 
levels indicates that extreme emission sources should not be ignored.

3.2. Spatial distribution of HM

The spatial distribution of soil HMs is illustrated in Fig. 4. Barring Cd, 
Sb and Zn, the other studied HMs have variable spatial distributions, 
with most of the higher concentrations being observed in the western, 
southern, and northern margins of Henan Province. HM hotspots are 
mainly in mountainous areas, including Taihang Mountain (northern 
margin of the province), Funiu Mountain (western margin), and Dabie 
Mountain (southern margin). Specifically, these hotspots were 

Table 1 
Concentrations of soil HMs’ in agricultural lands in Henan Province.

Categories Concentrations (mg kg− 1)

As Cd Cr Cu Mn Ni Pb Sb Zn

Arithmetic mean 14.2 0.292 67.1 22.7 551 28.5 26.5 1.49 74.6
Geometric mean 13.1 0.26 66.2 21.8 460 27.6 25.2 1.40 70.0
Median 13.6 0.257 66.0 21.6 537 27.6 24.3 1.42 67.6
Standard deviation 5.43 0.199 11.4 6.64 191 7.02 9.59 0.793 39.2
Variation coefficient (%) 38.3 

%
68.2 % 16.9 

%
29.2 
%

34.7 % 24.7 % 36.2 
%

53.1 % 52.5 %

Skewness 1.26 6.28 0.707 1.156 − 0.069 0.749 3.58 10.5 8.11
Kurtosis 5.87 59.3 2.06 2.02 2.03 1.18 20.4 160 104
Range 61.4 3.58 87.9 51.9 1219 52.0 101 18.5 814
Minimum 0.624 0.001 2.44 0.898 2.82 1.04 0.883 0.083 2.48
Maximum 62.1 3.6 112 52.8 1222 56.2 102 18.6 814
Henan geochemical baselines 11.4 0.074 63.8 19.7 579 26.7 19.6 1.37 60.1
The mean China geochemical baselines 9 0.137 53 20 569 24 22 0.73 66
Risk screening values for soil contaminated of 

agricultural land (GB15618–2018)
pH ≤5.5 40 0.3 150 50 / 60 70 / 200
5.5<pH 
≤6.5

40 0.3 150 50 / 70 90 / 200

6.5<pH 
≤7.5

30 0.3 200 100 / 100 120 / 250

pH > 7.5 25 0.6 200 100 / 100 170 / 300
Distribution Skew Lognormal Skew Skew Skew Lognormal Skew Lognormal Lognormal
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distributed in the Luoyang, Sanmenxia, Jiyuan, Jiaozuo, Xinxiang, 
Anyang, and Nanyang cities.

The HMs As, Cr, Cu, Mn, Ni, Pb, and Sb were primarily distributed in 
mountain areas, which may be due to the high background values in 
mountainous areas (Zhu et al., 2023). Moreover, the corresponding non- 
ferrous-metal mining (Cheng et al., 2023) and processing industries are 
located in western Henan (Lai et al., 2021; Xing et al., 2018). In spite of 
the implementation of strict environmental management policies, long 
term mining and processing produced large amounts of HM-bearing 
waste and slag dumps, releasing HMs to surrounding soil continuously 
(Xu et al., 2019). The high soil concentrations of Zn in Pingdingshan 
mean that hotspots are likely to occur in this area, which is known for its 
coal mining and Pb–Zn smelting industries (Zhu et al., 2023). Nanyang 
basin, in southwest Henan Province, also has elevated soil HM levels, 
likely due to the accumulation of air pollution in the topographically low 
area, also to runoff from surrounding higher-elevation areas (Li et al., 
2022).

As, Cd, Pb, and Sb concentrations are variable over the eastern plain 
of Henan Province especially in the Xuchang area, possibly due to local 
industries that produce rubber and tires, fibers and textiles, and building 
materials with associated solid wastes, dust deposition, and drainage 
from nearby higher-elevation agricultural land (Liu et al., 2023; Wang, 
2014; XCSY, 2017). Peak concentrations of As, Cd, Sb and Zn occur in 
eastern cities, possibly due to local point sources (Xu et al., 2017). Thus, 
point sources in plain areas should be considered, although the plain 
areas where most crops are grown have lower HM concentrations in soil 
(Zhou et al., 2014).

Global Moran’s I analysis indicated that the studied HMs are cate-
gorized as random zones (Fig. S2), reflecting the diverse industrial 
characteristics of the different cities. The LMI provide a clearer repre-
sentation of spatial patterns (Fig. 5) that is similar to those of soil HMs 
(Fig. 4). It I important to acknowledge that LMI is sensitive to the out-
liers (Yuan et al., 2018). LMI results are classed into five categories: 
high-high (HH), low-low (LL), high-low (HL), low-high (LH), and ‘not 

Fig. 2. Box plots for the HMs’ concentrations in different cities in the agricultural soils of Henan Province.
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significant’ (Han et al., 2022). HH clusters are regarded as contamina-
tion hotspots, and HL outliers individual hotspots. Similar spatial pat-
terns were observed for As and Cd, with HH clusters mainly in northern 
and western Henan Province, including Sanmenxia, Luoyang, Jiaozuo, 
Jiyuan, and Anyang cities. For Cr, Cu, Mn, Ni, Pb, and Sb, HH clusters 
occur mainly in western Henan Province, including Samenxia, Luoyang, 
and Nanyang cities. For Zn, HH clusters occur mainly in Pingdingshan 
city. Similar HH distribution patterns of Cr, Cu, Mn, and Ni, together 
with the comparable or slightly higher levels than Henan geochemical 
baselines, it can be inferred that these HH clusters were governed by 
natural sources (Zhou et al., 2014). HL outliers occur near or in LL 
clusters, while LH outliers occur mainly near HH clusters, indicating the 
impact from anthropogenic activities (Jin et al., 2021). LL clusters of 
most HMs, particularly Cd, Pb, and Zn, occur mainly in the eastern 
plains, which is the main cropping area and is remote from intensive 
industrial activities.

3.3. Ecological and human health risks

3.3.1. Ecological risk
The potential ecological risk of single elements (Ei) followed the 

order Cd (131) > Sb (53.2) > As (13.1) > Pb (7.17) > Zn (6.33) > Cu 
(6.00) > Ni (5.43) > Cr (2.14) > Mn (0.975) (Table S5). Overall, the 
ecological risk values of individual elements were categorized into low 
risk (As, Pb, Zn, Cu, Ni, Cr, and Mn) to moderate risk level (Sb), based on 
the classification criteria of pollution assessment methods. However, the 
mean potential ecological risks of Cd and Sb were notably higher than 
those of other HMs, due to the high percentage of Cd Ei in considerable 
risks (67.2 %) and the notable Sb Ei proportion within the moderate risk 
level (53.6 %). This may be due to their high toxicity response factors of 
30 and 50, respectively. Some values were even >320 for As, Cd, Sb, and 
Zn, indicating extremely high risk. Overall, the RI values ranged from 
6.95 to 23,324, with a mean of 226 (Table S5). And 74.5 % and 5.58 % of 
RI values categorized as moderate and considerable risk.

The IDW interpolation method was applied in characterizing the 
spatial distribution of ecological risk (Fig. 6). From provincial scale, 
most of peak RI values were observed in the western Henan and Taihang 

Fig. 3. Distribution of HMs’ geo-accumulation indexes in different cities in Henan Province.
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mountain areas, and from city scale peak RI values were primarily in 
Luoyang, Samenxia, Jiyuan, Jiaozuo, and Anyang cities. The scatter 
peak levels in southwest (Nanyang), central (Xuchang), and northeast 
(Puyang) Henan Province are consistent with the spatial distribution of 
As and Cd in soils, likely due to the higher toxicity response factors of As 
(10) and Cd (30) (Liang et al., 2023). Zhu et al. (2023) observed 
ecological risks in cities in northern Taihang Mountain areas, such as 
Anyang, Xinxiang, Jiaozuo, Jiyuan, and Luoyang, which may be due to 
the superposition of geological background and industrial activities 
(Han et al., 2023). Moreover, a previous study also highlighted the 
dominant role of Cd in ecological risks in grain producing areas in 
Nanyang city (Zhang and Zhang, 2021). Ecological risks posed by soil 
HMs were thus notably high in Henan Province, highlighting the need 
for effective pollution control, at least at peak value sites.

3.3.2. Health risk
The mean health-risk values for children, and adult female and male 

were 2.64E–1, 4.04E–1, and 3.6E–1, respectively. These values are less 
than the USEPA threshold value of 1, and indicate that although soil HM 
exposure is higher for children than adults, there is no potential NCR risk 
of soil HM in Henan Province. Regarding the contribution of different 
exposure pathways, ingestion is dominant for both NCR (>90 %) and 
TCR (>80 %) (Fig. S3), followed by inhalation and dermal contact (Liu 
et al., 2022b). The contribution of the different HMs to NCR followed the 
order As > Cr > Mn > Pb > Sb > Ni > Cu > Zn > Cd (Fig. S4). Most TCR 

values were at acceptable levels, with a contribution order of As > Cd >
Cr > Ni > Pb (Fig. S5).

Sensitivity analysis identified key factors influencing health risks, 
revealing that As concentration, ingestion rate, and exposure frequency 
significantly affect both non-carcinogenic and carcinogenic risks across 
all population groups (Fig. 7). For children, soil As concentration had the 
highest impact on HI values (0.670), followed by ingestion (0.523) and 
exposure frequency (0.416). In adult females and males, ingestion was 
the most significant factor for non-carcinogenic risk (0.727 and 0.720), 
followed by As concentration (0.488 and 0.467) and exposure frequency 
(0.336 and 0.358). As concentration had the greatest effect on TCR 
values (>0.6) for all groups, followed by ingestion and exposure fre-
quency. Although both TCR and NCR were at acceptable levels, key 
factors like As emissions, exposure frequency, and ingestion should be 
controlled to prevent further risk (Zhu et al., 2023). Additionally, 
considering the bioavailability of HMs can improve the accuracy of 
health-risk evaluations (Liang et al., 2023). Individuals in occupations 
such as agriculture or construction, as well as children who frequently 
play outdoors, may have elevated soil ingestion rates due to their ac-
tivities (Hubbard et al., 2022). Hence, more attentions and measures 
should be made to prevent these population from HM exposure.

3.3.3. Risk identifications
An understanding of the spatial distribution of risk is helpful in 

contamination prevention and control. For ecological risk and human- 

Fig. 4. Spatial distribution of HMs’ concentrations in agricultural soils of the Henan Province. (a) As; (b) Cd; (c) Cr; (d) Cu; (e) Mn; (f) Ni; (g) Pb; (h) Sb; (i) Zn.
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exposure risk (both TCR and NCR) evaluation, it is necessary to elucidate 
the spatial clustering of combinations of these risks, with high-risk areas 
then being prioritizes. IDW spatial interpolation was applied in inves-
tigating risk hotspots in Henan Province. IDW is suitable for simpler 
applications, especially when the data is sparse or the spatial correlation 
is unclear (Xu et al., 2022a). Bivariate LMI analysis has proved effective 
in apportioning spatial clustering patterns of soil HMs (Shi et al., 2023; 
Yang et al., 2021).

Points with considerable risk RI values (300 ≤ RI < 600) are scat-
tered over different areas of Henan Province, with two main peak areas 
in Nanyang and Puyang cities (Fig. 6), reflecting the high soil As and Cd 
concentrations and their high toxic-response coefficients. Regarding HI 
values, there was a belt of peak values across the central and western 
parts of Henan Province, while for TCR values there were peak areas in 
central, mid-east, and southeast Henan Province and a high-value belt 
from Jiyuan to western Nanyang. For LMI, RI had several HH clusters in 
central and western Henan Province (Xuchang, Pingdingshan, and 
Luoyang), similar to those with high RI values. LL clusters of RI, HI, and 
TCR values were located mainly in the southeast the Henan Province.

Previous studies usually use the bivariate LMI to characterize the 
spatial correlation between two concentration categories (Wu et al., 
2019). Here, two risk categories, calculated by Monte Carlo simulations, 
were considered, and high risks hotspots were identified. HH clusters of 
RI-HI, RI-TCR, and HI-TCR are distributed mainly in central and western 

Henan Province, indicating a need for further management and control 
measures. HH clusters of RI-HI occur mainly in Xuchang, Pingdingshan, 
Luoyang, and western Nanyang, which are areas of ferrous and non- 
ferrous metal smelting, coal mining, and cement production. It follows 
that reduction in soil HM risks are needed in Xuchang, Pingdingshan, 
Luoyang, Nanyang, and Sanmenxia. Some cities that are characterized 
by intensive industries would require greater monitoring and manage-
ment (He et al., 2022; Zhu et al., 2023). Regarding other scattered RI-HI 
HH clusters in different cities, most occur in or adjacent to industrial or 
mineral mining areas. RI-HI HH clusters of have a spatial distribution 
similar to that of RI-TCR, although fewer RI-TCR HH clusters were 
observed due to fewer slope factors being available for HM carcinogenic 
risks (Han et al., 2022). Overall, however, bivariate LMI results for HI- 
TCR indicate more HH clusters than for other patterns, likely due to 
having similar key influencing factors-soil As, ingestion rate, exposure 
frequency in the assessment of exposure risks (Han et al., 2022).

LMI results indicate that HH clusters also occur in central and 
western Henan Province, with most in Xuchang and Nanyang, where 
high–high values are observed. Low-Low TCR values are clustered in 
Zhumadian and Xinyang cities.

3.4. HM source apportionment

Spearman correlation analysis was initially used to probe their 

Fig. 5. Local Moran’s I mapping of studied HMs in Henan Province.
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relationships of HMs in agricultural soils to lend additional support to 
source attributions. A general correlationship can be observed due to the 
similarity in spatial distribution characteristics mentioned above. Spe-
cifically, Ni had the highest correlation with Cr (r = 0.838, p < 0.01) and 
Cu (r = 0.808, p < 0.01). Since Cr and Ni were considered as indicators 
of natural sources, thus, they may share the same natural sources (Han 
et al., 2022). Moreover, Cu is significantly correlated with Pb (r = 0.702, 
p < 0.01), followed by Zn (r = 0.688, p < 0.01), implying they may 
originate from same sources. Cd had the highest correlation with Pb (r =
0.506, p < 0.01), which is similar to the results obtained in PMF model 
(Fig. 8a). To verify source identifications, PMF factor contributions were 
obtained and correlated with the Pearson correlation coefficients (Zeng 
et al., 2024a). Four factors were apportioned, as follows.

Factor 1 contributed 23.3 % of HMs in agricultural soils in Henan 
Province, and is dominated by Mn (92.3 %), Ni (33.0 %), and Cr (31.0 
%) (Fig. 8). In Henan Province, Mn concentrations averaged 539 mg 
kg− 1, lower than the Henan geochemical baselines (579 mg kg− 1) and 
mean Chinese geochemical baseline (569 mg kg− 1), indicating a lower 
impact of anthropogenic activities. Mn is a lithogenic element that oc-
curs at relatively high concentrations in Earth’s crust, and the soil Mn is 
not substantially affected by anthropogenic input (Hu and Cheng, 2016). 
Ni and Cr in soil originate from the weathering of parental materials 
(Zhu et al., 2023). Hence, Factor 1 could be interpreted as natural 
sources.

Factor 2 is weighted mainly by Sb (100 %), Cr (54.3 %), Ni (49.1 %), 

Pb (48.6 %), and Zn (38.9 %), explaining 37.8 % of total contribution. 
With the increasing use of motor vehicles that have Sb in brake linings, 
the environmental contribution of Sb from vehicular traffic activities is 
substantial (Harrison et al., 2012). Vehicle brakes and clutch systems are 
also Pb sources (Jeong et al., 2022). Although China has promoted un-
leaded gasoline since 2000, some soil Pb may still be sourced from 
gasoline use, given its environmental persistence, thus, Pb is the signa-
ture element of a traffic source (Zhou et al., 2023). Zn serves as an 
antioxidant and detergent in lubricants, or as a vital constituent of 
vehicle tires (Wang et al., 2019). Previous studies have confirmed Pb, Cr, 
and Zn as being derived from traffic sources (Zhou and Wang, 2019). 
Simultaneously, in Henan Province, there are many vehicles (26.23 
million vehicles, ranking 3rd in China) with 0.27 million km of high-
ways (5th in China) and 3.52 billion passenger movements per year (1st 
in China) (NBS, 2023). Therefore, Factor 2 represents traffic sources.

Factor 3 is characterized by As (90.2 %), explaining 18.4 % of the 
total variance. Elevated soil As levels may be related to deposition from 
coal combustion and industrial activity (Bhuiyan et al., 2015). Henan 
Province is rich in coal deposits (total reserves 1.01 billion tonnes), with 
622 operational coal mines (HSB, 2023). Sites of elevated As concen-
trations are located mainly in central and western Henan Province 
(Fig. 4), where intensive industries activity occurs. In particular, small- 
papermaking, tanning, printing, dyeing, smelting, refining, and elec-
troplating related to As emissions were reported in these areas (Gong 
et al., 2020). Moreover, in these areas, coal’s coking process (Yang and 

Fig. 6. Spatial distribution, univariate Local Moran’s I and bivariate Local Moran’s I of HMs in Henan Province.
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Liu, 2022) and leather-making can also contribute to elevated As in 
surrounding agricultural soils (Hua et al., 2019). Factor 3 is therefore 
assigned to industrial sources.

Factor 4 is dominated by Cd (100 %) and Pb (31.9 %), which together 
explain 20.5 % of the total variance. Soil Cd concentrations are higher 
than Henan background levels, indicating the impact of anthropogenic 
sources. The spatial distribution of Cd differs from that of other HMs, 
implying a different set of sources. Chemical fertilizers and pesticides 

are major sources of Cd and Pb (Meng et al., 2021a), and the annual 
application amounts were 6.67 million tonnes and 0.107 million tonnes 
in Henan Province, respectively (HSB, 2023). Moreover, additives con-
taining HMs are often fed to livestock, so HMs are expected in livestock 
manure (Wang et al., 2013). The application of livestock manure results 
in enhanced levels of HM in soil (Liu et al., 2020). Cd concentrations 
show little variation over Henan Province (Fig. 6). Hence, Factor 4 was 
assigned to agricultural activities.

Fig. 7. The probability distribution for non-carcinogenic risk (a) and carcinogenic risk (b), sensitivity analyses of exposure parameters to non-carcinogenic risk (c) 
and carcinogenic risk (d).

Fig. 8. Source apportionment of soil HMs (a) PMF factor profiles of HMs; (b) percentage contributions of each PMF factor; (c) Spearman correlationship among HMs 
and between HMs and PMF factors.
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Vehicular traffic is generally the dominant source of HMs in agri-
cultural soils in Henan Province (contributing 37.8 %), followed by 
natural (23.3 %) and industrial sources (20.5 %). Generally, the findings 
are consistent with some prior researches highlighting traffic as a pri-
mary contributor to soil contamination in Zhengzhou (Liu et al., 2022c) 
and Shangqiu city (Shi et al., 2022) in Henan Province. It’s worth noting 
that the relative contributions of different pollution sources can vary 
depending on local factors such as land use patterns, industrial activ-
ities, and transportation infrastructure.

3.5. Factors influencing HM

Although the main potential sources of HM have been identified, it is 
necessary to identify priority environmental variables for pollution 
management, which will affect soil HM accumulation directly or 

indirectly. Factors affecting soil HM concentrations at a province scale 
were identified using RF models, and ranked by their quantitative 
contributions (Fig. 9). The 22 selected environmental variables were 
categorized into two main groups: (1) natural factors including tem-
perature, elevation, fine sand, soil type, precipitation, clay particles, 
total nitrogen, silty sand, organic matter, coarse sand, pH, total phos-
phorus, and total potassium; and (2) anthropogenic factors including 
population, railways, chemical fertilizers, PM2.5, residential zones, fac-
tories, pesticides, river, and GDP. Since HMs from industrial effluents 
and sewage can contaminate farmland soils via river irrigation, rivers 
are deemed an anthropogenic factor.

Overall, RF modeling confirmed that most of the studied HMs orig-
inated from both natural and anthropogenic sources, albeit with con-
tributions of different variables varying considerably (Fig. 9). Soil type 
ranked in the top ten driving factors for all HMs; PM2.5, GDP, 

Fig. 9. HM specific relative importance of each environmental variable in Henan Province.
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temperature, and elevation contributed to most HMs except Ni; chemical 
fertilizers and pesticides contributed to seven HMs; and precipitation to 
six HMs, with these being the dominant factors. Elevation was the pre-
dominant factor influencing Cr and Cu concentrations, and precipitation 
for Cd and Mn. For most of the studied HMs (excluding Pb and Zn), 
natural factors ranked above anthropogenic variables. All of the various 
anthropogenic variables were related to different HMs, indicating their 
role in HM accumulation. In this study, 48 soil types were observed 
(Fig. S6). For the dominant risk contributing elements, the highest mean 
As (25.0 ± 26.8 mg kg− 1) and Pb (42.5 ± 28.5 mg kg− 1) were both 
observed in gray tide soil; and Cd (0.897 ± 6.05 mg kg− 1) in sticky plate 
yellow brown soil. The standard deviations of As and Cd were even 
higher than the mean values, suggesting the high variation in soil types.

Anthropogenic sources of As, Cd, Cu, Pb, Sb, and Pb require special 
attention in controlling HM contamination. Population, railway, GDP, 
chemical fertilizers, and PM2.5 were the main anthropogenic variables 
affecting As levels; PM2.5, pesticides, chemical fertilizers, factories, and 
GDP affected Cd levels; GDP, chemical fertilizers, PM2.5, pesticides, and 
population had the highest impact on Cu concentrations; factories, 
pesticides, population, GDP, and chemical fertilizers on Pb; PM2.5, 
population, GDP, pesticides, and factories on Sb; and chemical fertil-
izers, pesticides, PM2.5, GDP, and population on Zn concentrations, with 
contributions from both agricultural and industrial sources (Fig. S7- 
S27).

GDP and population were not direct pollution sources, but could 
indicate the influence of anthropogenic activities (Hu and Cheng, 2013). 
Of all anthropogenic variables, PM2.5 had the highest contribution to all 
studied HMs. In Henan Province, As in PM2.5 is derived mainly from 
domestic and industrial fossil-fuel combustion. Considering the high 
proportion of industrial energy consumption (55.8 % of the total energy) 
industries likely contribute most of the PM2.5 (Wang et al., 2016; Xing 
et al., 2019a). The high contributions of railway and chemical fertilizers 
indicate that traffic and agricultural sources are major contributors to As 
contamination (Baltas et al., 2020; Liu et al., 2022c). The predominant 
anthropogenic sources are agricultural and industrial.

RF analysis indicated non-linear relationships between the different 
above factors, highlighting the importance of environmental variables. 
The lack of emission data for the selected variables means that the re-
sults in this study may only serve as a reference to guide pollution 
control. Future studies should develop detailed emission inventories to 
allow accurate evaluation of soil HM source. It should be noted that 
historical pollution was not considered here. Such shortcomings would 
have introduced bias to the results in this study. However, since Henan is 
a traditional farming province, and few legacies polluted sites (Peng 
et al., 2022), thus, the bias, arisen by historical pollution sites, on the key 
findings is limited. Due to the diversity of industries structure in 
different cities, high resolution covariates are required to predict soil 
HM concentrations and evaluate contributing factors.

4. Conclusion

Agricultural soils in Henan Province generally present low risks from 
HMs, with Cd being the primary concern, followed by As and Pb. The 
highest HM concentrations are located in the western mountainous re-
gions, with notable peaks in Xuchang and Nanyang, and elevated Zn 
levels in Pingdingshan. The main ecological risks stem from Cd and Sb. 
Both carcinogenic and non-carcinogenic risks are within safe limits. 
Areas with significant combined risks to both ecology and human health 
have been identified in Xuchang and Nanyang. Vehicular traffic is the 
main source of HMs in agricultural soils (37.8 %), followed by natural 
and industrial sources. Soil type and PM2.5 contribute as natural and 
anthropogenic factors, respectively. Since Cd mainly originates from 
agricultural activities, it is essential to promote the proper disposal of 
agricultural wastes like pesticides, herbicides, and fertilizers.
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