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Abstract 

Pesticide misuse and overuse severely pollute agricultural soils, water, and crop yields, harming people and animals. 
This situation raises serious concerns about environmental pollution on a global scale. As an eco-friendly material 
for soil remediation, biochar can efficiently immobilize pesticides in the soil. Several studies have focused on the feasi-
bility of biochar in remediating polluted soil. However, its influences during the remediation of pesticide-polluted soils 
remain indistinct. The present review illuminates the positive and negative influences of biochar on the dissemination 
of pesticides, the underlying mechanisms, the regulating factors, and critical considerations in the ongoing develop-
ment of biochar for pesticide use. It also delineates the positive and negative impacts of biochar on pesticides in the 
soil, evaluates potential pitfalls based on recent research, and offers suggestions for prospective biochar applications 
crucial for remediating contaminated soil. This review reveals that the fate and types of pesticides, along with the 
physicochemical properties of soil and biochar types, can significantly influence the remediation of pesticide-polluted 
soil using biochar. Biochar has the potential to enhance the abundance of certain bacteria and the colonization 
of arbuscular mycorrhizal fungi, both of which play crucial roles in soil remediation. Biochar can also modify soil mois-
ture, microbial communities, and other factors that impact the rate of pesticide degradation while simultaneously 
reducing other types of arbuscular mycorrhizal fungi. This review underscores the importance of thoroughly under-
standing the properties of biochar before its application to polluted soils. This review can serve as a basis for subse-
quent studies on the biochar-mediated remediation of contaminated soils.

Highlights 

• Biochar can significantly reduce the leaching and decomposition of pesticides in the soil.
• The efficacy of biochar in the soil depends on its biological, physical, and chemical features.
• The aging of biochar diminishes its adsorption capacity for pesticides in the soil environment.
• Modification of biochar could enhance its capacity to remediate soil polluted by pesticides.
• Biochar alters the structure and function of microbial communities that regulate pesticides.
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1 Introduction
Although the rise of pesticides use in modern agri-
culture enhances crop yields, uncontrolled use of pes-
ticides  associated with its geogenic sources poses a 
significant challenge to environmental and human 
health. Typically, pesticides could alter the physico-
chemical properties of agricultural soils (Diez et  al. 
2013; Safaei Khorram et  al. 2016) and adversely affect 
microbiological and enzymatic activities (Arora et  al. 
2019; Wołejko et  al. 2020; Borowik et  al. 2023), which 
are essential for decomposing soil organic matter. On 
the other hand, pesticides can trigger and exacerbate 
health issues, including liver, colon, lung, and prostate 
cancers, in individuals exposed to them (Al-Ahmadi 
2019; Cheng et  al. 2022). Agricultural farm employ-
ees, including farmers, mixers, sprayers, formulators, 
transporters, and production workers, are considered 
high-risk groups due to repeated exposure to pesticides 
(Abdollahdokht et al. 2022; Tudi et al. 2022). However, 
the production and formulation entail substantial risks 
(Abdollahdokht et  al. 2022). According to surveys, 1 
in 5000 people working in agriculture gets poisoned 
yearly, and approximately 200,000 die due to severe 

exposure (Faber 2020). Therefore, remediating soil pol-
luted with pesticides is highly urgent.

Typically, soil vapor extraction, washing, flushing, phy-
toremediation, chemical oxidation, and bioremediation 
are standard pesticide remediation methods. Neverthe-
less, some of these approaches are frequently impracti-
cal in the field due to their inherent deficiencies or the 
emergence of additional problems after implementation, 
such as fertility loss, soil erosion, high maintenance costs, 
and nutrient leaching (Zhang et  al. 2020b; Kumar et  al. 
2022b). It is well known that some pesticides are manu-
factured to be persistent in the soil to ensure their effec-
tiveness over time. This persistence makes them difficult 
to be broken down or removed from the soil. Other pes-
ticides may penetrate deep into the soil, reaching levels 
that are hard to access with conventional remediation 
techniques. This type of contamination necessitates more 
intensive and costly methods for effective remediation. 
Due to this, studies on remediating soil polluted with 
pesticides are still being conducted to assess reliable and 
applicable methods (Mayakaduwa et al. 2017; Rajmohan 
et al. 2020). Therefore, an in-situ, eco-friendly, and cost-
effective approach like bioremediation is being valued.

Graphical Abstract



Page 3 of 25Twagirayezu et al. Biochar             (2024) 6:9  

In bioremediation, biochar which is produced by the 
pyrolysis of organic materials, such as agricultural resi-
dues, wood, or other biomass, is a prodigious material 
that is used to remediate and rehabilitate pesticide-pol-
luted soil environment. Biochar has garnered significant 
interest in recent years  (Nie et  al. 2018; de Souza et  al. 
2019) due to its porous structure and the availability of 
functional groups, including carboxyl, phenolic, and 
hydroxyl groups (Sakhiya et  al. 2020; Twagirayezu et  al. 
2022). Numerous studies have demonstrated that biochar 
has the potential to immobilize organic and inorganic 
pollutants within the soil environment effectively (Sun 
et  al. 2021; Qiu et  al. 2022). For instance, the addition 
of biochar in soil near lakes or other watercourses could 
significantly reduce subsurface water pollution by lower-
ing the concentration of pesticides that could seep into 
groundwater (Cheng et al. 2022; Rasool et al. 2022).

Typically, there is information on the impacts of bio-
char and its interactions with various pesticides in soil. 
For instance, the addition of biochar to the soil reduces 
pesticide leaching from the soil and absorption in the 
plants, thereby reducing the risk of water pollution and 
ensuring the safety and purity of agricultural products 
due to their excellent absorption capacity (Cheng et  al. 
2022, 2023). However, information about the interactions 
between soil microbial community structure and pesti-
cides in the soil environment is limited. In addition, the 
influence of biochar on pesticides in the soil environment 
during remediation processes remains largely unclear. 
Therefore, understanding the intrinsic influencing fac-
tors and mechanism of biochar during the remediation 
of pesticide-polluted soil is highly desired  in order to 
reduce the risks of environmental pollution. This could 
be immensely advantageous for biochar users seeking to 
regulate the fate of pesticides in the soil environment.

Therefore, this review aims to consolidate the posi-
tive and negative influence of biochar on pesticides. It 
also delineates the mechanisms regarding how biochar 
behaves on the properties of the soil polluted with pesti-
cides. Moreover, it elucidates what needs to be done with 
biochar for future research on sustainably remediating 
pesticide-polluted soil.

2  Research methodology
The initial literature search was conducted in English, and 
relevant publications were either downloaded in open-
access cases or requested in full text from the respective 
authors. The inclusion of papers was based on the follow-
ing criteria: (1) accessibility of full text; (2) presence of 
information on biochar research; (3) documents offering 
sustainable applications of biochar for remediation; and 
(4) peer-reviewed scientific studies written in the Eng-
lish language. Conversely, publications failing to meet 

the following criteria were excluded from this review: (1) 
papers authored in languages other than English; (2) non 
reviewed preprint publications; (3) papers categorized as 
"grey literature," encompassing academic thesis, disserta-
tions, technical reports, news articles, and summaries of 
scientific events; among others.

The critical review followed the PRISMA 2020 report-
ing guidelines outlined by Page et al. (2021). The review 
process followed a series of sequential steps, as illustrated 
in Fig. 1. Each stage of the search and screening process 
encompassed the inclusion, exclusion, and extraction 
of pertinent studies. The relevant search articles were 
exported and stored in CSV format. During the review 
process, 2345 articles were identified from Web of Sci-
ence. Initially, 987 ineligible records were excluded from 
the initial reports. The 1358 remaining records under-
went screening based on the title and abstract level, fol-
lowed by a full-text assessment. After that, 674 articles 
were excluded because they did not cover biochar in 
areas such as remediation/degradation, health, adsorp-
tion/sorption, pesticides, waste and sludge. In total, 684 
articles were obtained for in-depth analysis of their full 
texts. Of these, 296 were excluded because they were 
either preprints, reports, or opinion articles. Addition-
ally, 203 articles were eliminated from the analysis due 
to their lack of focus on the review aim. Following the 
assessment of all exclusion and inclusion criteria, 185 
articles were identified as pertinent to the objectives of 
our review. The authors scrutinized the records to ensure 
the reliability of the retrieved sources. The present study 
employed a systematic search strategy involving search-
ing and screening. The search phase entailed the explor-
ing publications directly linked to the investigation of the 
application of biochar in the remediation of pesticide-soil 
contamination through the Web of Science. The search 
involved meticulously collecting a raw database of tar-
get review themes using articles published from 01-01-
2000 to 01-01-2024. In this context, the title, abstract, or 
keywords were used as the search criteria: biochar* and 
pesticides* and soil* or biochar* and wastes* or sludge*or 
water* with singular and plural. Scholarly articles, 
chapters from books, and brief communications were 
considered.

As represented in Fig. 2, the appropriately chosen key-
words were grouped into six topical clusters. The most 
significant cluster, cluster 1 (red), represents biochar 
addition, amendment, agriculture, animal manure, bacte-
rial community, additives, etc. Cluster 2 (green) contains 
absorption, agricultural residues, agricultural wastes, 
ash, biomass, biochar production, etc. Cluster 3 (blue) 
primarily focuses on activated biochar, activated car-
bons, adsorbents, adsorption behavior, adsorption capac-
ity, adsorption mechanism, adsorption performance, 



Page 4 of 25Twagirayezu et al. Biochar             (2024) 6:9 

adsorption removal, biochar, etc. Cluster 4 (yellow) 
includes soil, pesticides, atrazine, diuron, chlorpyrifos, 
accumulation, biodegradation, bioremediation, con-
taminants, contamination, degradation, desorption, etc. 
Cluster 5 (purple) contains activated sludge, bioconver-
sion, biofertilizer, crop residue, food waste, fungi, kitchen 
waste, etc. Cluster 6 (baby blue) represents biocarbon, 
dairy manure, fly ash, livestock, waste recycling, etc.

3  Pesticides and biochar in the environment
3.1  Concerns about pesticides in the environment
Typically, there are chemical pesticides and biopesticides, 
of which biopesticides are further subdivided into plant-
incorporated, biochemical, and microbial pesticides 
(Additional file 1: Fig. S1). Based on their mode of action, 
they may be categorized as destructive, repelling, or miti-
gating agents. Some of them are restricted, while others 
are unclassified. Restricted pesticides can harm people 
or the environment, while unclassified are all the remain-
ing types. Based on pesticide origin, they can be generally 

sorted into natural pesticides, synthetic pesticides, and 
biopesticides. Natural pesticides are those extracted 
from their natural habitats, like plants or microorganisms 
(Table  1). Synthetic pesticides are created by modifying 
minerals or chemical substances and are considered the 
most widely used worldwide. Biopesticides are derived 
from living organisms, including bacteria, fungi, viruses, 
and certain plants. This category is often considered a 
subset of natural pesticides. As detailed in Table 2, pesti-
cides are classified based on their target organisms.

As depicted in Fig. 3, although a considerable quantity 
of pesticides are sprayed into the environment, only a rel-
atively small number of them reach the intended target. 
The remnants of pesticides are subsequently released into 
different parts of the ecosystem, increasing the concen-
tration of potentially dangerous chemicals that affect the 
health of people and other life forms. A countrywide study 
conducted by the Environmental Protection Agency on 
127 different pesticides revealed that 10 and 4% of com-
munity and rural household wells, respectively, exhibited 

Fig. 1 Adapted PRISMA flow diagram, showing various phases in retrieving published articles from the comprehensive databases to analyze 
the influence of biochar on the fate and transport of pesticides in the soil environment



Page 5 of 25Twagirayezu et al. Biochar             (2024) 6:9  

detectable levels of at least one pesticide (Peshin 2014). 
Notably, pesticides are currently detected in various loca-
tions worldwide, including the soil, marine environments, 

drinking water, surface water, and groundwater. Pesticides 
have the potential to bring about severe health prob-
lems  for people (Cao et  al. 2023; Song et  al. 2023). As 

Fig. 2 Visualized network of 721 popular keywords of peer-reviewed publications from 01-01-2000 to 01-01-2024, with the minimum number 
of occurrences of a keyword is 6. The bibliographic data were retrieved from the “Web of Science Core Collection” with biochar* and pesticides* 
and soil* or biochar* and wastes* or sludge*or water* as keywords, with complete counting within keyword co-occurrence analysis performed 
using VOSviewer

Table 1 Targets of several naturally occurring pesticides

Source Name Target References

Streptomyces hygroscopicus Phosphinothricin Weed Duke et al. (2010)

Bottle-brush plant Leptospermone Weed Owens et al. (2013)

Saccharopolyspora spinosa Spinosads Insects Araujo et al. (2019)

Streptomyces sp Milbemycin and avermectin Insects Merola and Eubig (2012)

Neem leaf and seeds Azadirachta indica Insects, fungus Chaudhary (2017)

Lonchocarpus root Rotenone Insects Qi et al. (2014)

Sabadilla lily Sabadilla Insects Silver et al. (2014)

Aqueous tobacco extract Nicotine Insects Millar and Denholm (2007)

Capsicum peppers Capsain Insects and mammalian pests Salgado (2017)
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shown in Fig.  4, pesticides might cause several adverse 
effects to the health of people due to several exposures.

It is well known that today and future generations 
will primarily rely on the soil, which provides food for 
them. However, excessive use of pesticides leads to the 
accumulation of toxic chemicals in the soil, affecting 
soil quality. Pesticides can change the properties of the 
soil, affecting its structure and texture (Karpouzas et al. 
2016; Tripathi et  al. 2020). Typically, changes in soil 
structure can impede water infiltration, root growth, 
and nutrient movement, creating an unfavorable 

environment for plants to uptake nutrients effectively. 
Pesticides can negatively impact the populations and 
activities of beneficial soil microorganisms (Arora et al. 
2019; Satapute et  al. 2019). These microorganisms are 
crucial in nutrient cycling and making nutrients avail-
able to plants (Cheng et  al. 2022; Karimi et  al. 2022). 
This shows that excessive pesticides may directly affect 
plant roots, inhibiting their ability to absorb water and 
essential nutrients. They may also interfere with the 
normal physiological processes of plants, leading to 
stunted growth or even the death of the plants.

Table 2 Pesticide classification based on their target organisms

Pesticide Target organism  Example

Insecticides Insects and other arthropods Organochlorines, organophosphates, carbamates, pyrethroids

Herbicides Weeds and unwanted plants Glyphosate, atrazine, 2, 4-Dichlorophenoxyacetic acid (2, 4-D)

Fungicides Fungi and fungal spores Captan, mancozeb, triazole derivatives

Rodenticides Rodenticides Warfarin, bromadiolone

Bactericides Bacteria Copper sulfate, streptomycin

Nematicides Nematodes (roundworms) Fumigants, non-fumigants

Molluscicides Snails and slugs Metaldehyde, iron phosphate

Acaricides Mites and ticks Dicofol, abamectin

Fig. 3 The cycle of pesticides in the environment
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3.2  Concerns about biochar in the environment
As depicted in Fig. 5, the primary ingredients for biochar 
formation are sewage sludge, farming residues, animal 
manure, wood residues, and other waste, which are ubiq-
uitous worldwide. Farming waste has traditionally been 
employed in a restricted number of uses,  such as com-
posting for manure generation and animal feed. However, 
there are currently possibilities of being utilized to pro-
duce biochar. For instance, around 3.1 million tons (Mt) 
of biochar in Indonesia can be produced from approxi-
mately 10.7 Mt of agricultural biomass residues (Susila-
wati et  al. 2020; Awasthi et  al. 2021). Specifically, the 
primary source of these biomass residues is rice husk, 
accounting for 6.8 Mt per year and producing biochar at 
a rate of up to 1.77 Mt per year. This constitutes approxi-
mately 56.48% of the country’s biochar production capac-
ity (Susilawati et al. 2020).

As a soil conditioner, biochar is gaining popularity 
because it improves soil aggregation, contaminant reme-
diation, nutrient retention, carbon storage, promotion 
of soil microbes and mineralization of pesticides (Cheng 
et  al. 2023). Manure like cow dung, agricultural waste 
such as sugarcane, weeds, maize, etc., as well as biosolids 
are only some of the biomass that can be used to produce 
biochar under  oxygen-deprived and low-temperature 
pyrolysis (400–700  °C). Biochar and charcoal typically 
differ in their applications and purposes (Khiari et  al. 
2019). Biochar is primarily used for soil improvement 

and carbon sequestration, whereas charcoal is commonly 
used as a fuel source for cooking and heating. Biochar 
is produced from various materials such as wood, agri-
cultural residues, chicken manure, or sludge at different 
pyrolysis temperatures. This results in distinct chemical 
and physical characteristics for the biochar produced. 
The physicochemical characteristics of biochar vary con-
siderably due to the variety of feedstocks and pyrolysis 
procedures, exhibiting different specific surface areas, 
porosities, charges, and functional groups. These fea-
tures affect pH value, conductivity (CEC), and surface 
adsorption capability. The standard size of the feedstock 
particle is employed to assess the biochar particle size. 
However, the biochar itself is often considerably smaller 
than the feedstock when the pyrolysis process causes 
shrinkage and attrition. The increased pyrolysis tem-
perature enhances the tensile strength of the raw materi-
als, resulting in biochar particles that are smaller in size 
(Albalasmeh et  al. 2020; Ahmed et  al. 2021; Wani et  al. 
2022). The functional groups on the ionic charges, sur-
face, and porous structure of biochar aid in the detoxifi-
cation (Alrashidi et al. 2020), physical adsorption (Zhang 
et al. 2020a), complexation, mobilization-immobilization 
(Hu et al. 2020), and co-precipitation (Deng et al. 2019) 
of metal pollutants and support phytoremediation poten-
tial of the hyperaccumulator. The physical and chemical 
characteristics of biochar produced from several feed-
stocks are displayed in Table 3.

Fig. 4 Adverse effects of pesticides on human health: Pesticides can penetrate the human body during activities like mixing, application, 
or cleanup, either through skin contact (dermal exposure), inhalation into the lungs, or ingestion by mouth
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4  Positive and negative influences of biochar 
on pesticides in the soil

Biochar is often added to the soil to improve sorp-
tion, speed up biodegradation, and decrease pesticide 
leakage (Cheng et  al. 2022). The capacity of biochar to 
absorb pesticides depends on the biological, physical, 
and chemical features of the soil, influencing the move-
ment of pesticides through the soil and their subsequent 
reach to watercourses. However, the impact of biochar 
on the adsorption of pesticides in the soil is variable and 
depends on the kind of pesticide, soil features, and bio-
char characteristics. The pores within biochar act as a 
microbial habitat, minimizing the probability of interac-
tions between microbes and pesticides. This reduces the 
decomposition of pesticides in the soil.

As summarized in Table 4, biochar can positively and 
negatively impact the bio-physicochemical properties 
of the soil during remediation of pesticide-polluted soil. 
Biochar in the soil can change the microbial texture and 

activity. The impact of biochar on microbial abundance 
and population in the soil is studied using several tech-
niques, including culture and plate counting (Jiang et al. 
2017), respiration stimulated by the substrate (Kolb 
et  al. 2009), total genomic DNA extracted (Igalavithana 
et al. 2019), fumigation extraction (Yuan et al. 2019), and 
extraction of phospholipid fatty acid (Ali et al. 2019). Qiu 
et al. (2019) and Ge et al. (2019) have also shown that the 
addition of biochar to soil makes microbial populations 
multiply faster. Biochar can affect microbial populations 
and abundance differently based on the kind of micro-
organism (Huang et  al. 2020; Twagirayezu et  al. 2022) 
and biochar properties. For instance, Shukla et al. (2017) 
found that the addition of biochar derived from euca-
lyptus wood in the soil at a rate of 0.6–6 t.ha−1 resulted 
in a 20–40% increase in the colonization of arbuscu-
lar mycorrhizal fungi in the root of Triticum aestivum. 
Conversely, the addition of biochar to the soil increased 
the tip number and growth rate of ectomycorrhizal 

Fig. 5 General schemes for biochar production from various feedstocks and concurrent applications in different fields
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infection in the roots of larch seedlings (Larix in Latin) 
by 19–157% (Shukla et  al. 2017). In other studies, bio-
char reduced the relative proportion or quantity of soil 
microbes (Lehmann et al. 2011). Therefore, biochar in the 
soil can either boost or reduce the microbial population 
and abundance, altering pesticide decomposition in the 
soil environment.

Typically, inorganic carbon (SIC) and soil organic car-
bon (SOC) are the two main types of carbon in the soil 
(Dong et al. 2019). The behavior of organic and inorganic 
contaminants in soil is controlled by the SOC pool (Sha-
hid et al. 2012). SOC plays a crucial role in influencing the 
fate and transport of pesticides in the soil environment 
(Dong et al. 2019). The concentration and composition of 
SOC can impact pesticide desorption (release from soil 
particles) and sorption (binding to soil particles) through 
various mechanisms. The increased SOC may enhance 
the sequestration of pesticides, reducing their availability 
for desorption and potential movement in the soil. Thus, 
SOC may significantly affect pesticide sorption and des-
orption in soil by forming various complexes with these 
pesticides. Abelmann et al. (2005) found that the aroma-
ticity of SOC may affect the amount of pesticides that can 
be absorbed by the soil. However, the addition of biochar 
to the soil may not influence SOC in the soil, based on the 
study conducted by Cheng et  al. (2016), where biochar 
produced at the lowest temperature enhanced the miner-
alization of SOC. Contrary to this, after a 60-day experi-
ment, the mineralization of SOC was reduced relative to 

the control (without biochar). SIC or carbonate minerals, 
such as calcite and dolomite, can provide sorption sites 
for pesticides. The surface properties of these minerals 
and the specific interactions with pesticide molecules can 
influence sorption behavior. Biochar can alter the physi-
cal structure and properties of the soil matrix (Sun et al. 
2021; Wang et al. 2022). This may impact the distribution 
of inorganic carbon and create microenvironments that 
influence pesticide sorption and desorption.

For instance, Zheng et  al. (2019) demonstrated the 
adsorption of chlorpyrifos and chlorpyrifos-methyl onto 
biochar, as well as the influence of deashing and low 
molecular weight organic acid (LMWOA) aging as the 
temperature increased from 300 to 600  °C. The study 
results revealed that the adsorption capacity of biochar 
rose from 4.32 to 14.8 mg.  g−1 and from 15.0 to 50.5 mg.
g−1 for chlorpyrifos and chlorpyrifos-methyl, respec-
tively. This is due to the fact that biochar produced at 
higher temperatures contains more aromatic units and 
pores suitable for entrapping a greater variety of sorbates. 
The deashing and LMWOA aging treatments enhanced 
the porosity of biochar and exposed more carbon sur-
faces, both of which are beneficial to sorption. Relative 
to the LMWOA aging treatment, the deashing treatment 
evinced enhanced adsorption. In addition, Sun et  al. 
(2016) showed that the adsorption of sulfamethoxazole 
onto biochar increased by over fivefold as the concentra-
tion of low molecular weight organic acids (LMWOAs) 
rose from 0 to 100  mmol.L−1. This enhancement was 

Table 4 Positive and negative influences of biochar on pesticide-polluted soil

 Influence Remarks

Positive Sorption and sequestration Biochar has a high surface area and porous structure, which can enhance its ability to sorb 
and sequester pesticides, reducing their mobility in the soil and limiting their leaching

Reduced bioavailability Biochar can decrease the bioavailability of pesticides by binding to them, making them less acces-
sible to plants and reducing the risk of crop uptake

Microbial activity Biochar can positively influence soil microbial communities, promoting the growth of beneficial 
microorganisms that can contribute to the biodegradation of certain pesticides

Nutrient retention Biochar can enhance nutrient retention in the soil, promoting the availability of essential nutrients 
for plants. This can indirectly support the development of plants that can contribute to the break-
down of pesticides

Soil structure improvement Biochar can improve soil structure, leading to better water retention, aeration, and drainage. This can 
contribute to a healthier soil environment that may facilitate the degradation of pesticides

Negative Potential immobilization In some cases, biochar may immobilize certain pesticides, reducing their availability for microbial 
degradation. This can lead to a slower breakdown of pesticides in the soil

Impact on beneficial microorganisms Even if biochar can promote the growth of beneficial microorganisms, its impact on the abundance 
and activity of specific microbial species involved in pesticide degradation may vary

Variable effects on different pesticides The effectiveness of biochar in mitigating the impacts of pesticide pollution can depend on the spe-
cific characteristics of the pesticide, including its chemical structure and properties

Biochar properties The properties of the biochar itself, such as feedstock, production temperature, and residence time 
during pyrolysis, can influence its interactions with pesticides. Not all biochars may have the same 
impact on pesticide behavior

Site-specific factors The effectiveness of biochar in pesticide-polluted soil can be influenced by site-specific factors, 
including soil type, climate, and the specific pesticides present
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primarily linked to the heightened microporosity of bio-
char after the treatment with LMWOAs (citric acid or 
malic acid).

Soil pH is essential for the fertility of the soil and the 
biogeochemistry of many inorganic and organic con-
taminants in soil. Soil pH can significantly change due 
to the addition of biochar (He et al. 2019). Earlier studies 
have shown that biochar pH values can be obtained < 4 
and > 12 (Li et al. 2017). This variation in pH value relies 
on oxidation level (Cybulak et  al. 2019), pyrolysis tem-
perature, and feedstock kind (Xu et al. 2019; Kwak et al. 
2019). Typically, the acid neutralization potential of bio-
char is contingent upon the feedstock. Any soil pH alter-
ation may substantially affect pesticide desorption and 
sorption. Biochar effects on the pesticide sorption via 
changes in pH also depend on the kind of pesticide (Liu 
et al. 2018; Ogura et al. 2021). After addition of biochar to 
the soil, the sorption of some pesticides does not change 
according to the pH of the soil. Although the simazine 
content in the soil amended with biochar depends on 
the pyrolysis temperature, feedstock, and holding time 
(Cheng et al. 2018; Itoh et al. 2020; Pariyar et al. 2020)  , 
several studies have confirmed that application of biochar  
to soil can regulate pesticide behaviors (Ali et al. 2019).

5  Mechanisms of biochar for influencing the fate 
of pesticides in the soil environment

The mechanisms by which biochar influences the fate 
of pesticides can be divided into two parts: the first part 
involves direct influence, where the adsorption and sorp-
tion of biochar depend on its various properties, leading 
to diverse influences. The second part encompasses indi-
rect influence, wherein biochar regulates soil character-
istics, microbial structure, and abundance, resulting in 
either positive or negative influences.

5.1  Direct influences of biochar on adsorption 
and sorption of pesticides

The strategic application of pesticides in cultivating high-
value crops, like vegetables and fruits, is crucial for the 
agricultural industry. Nevertheless, inadequate man-
agement of pesticides not only diminishes their agri-
cultural benefits but also poses serious hazards to the 
environment and human health (Yang et  al. 2023). This 
has resulted in the banning certain pesticides, includ-
ing dichlorodiphenyltrichloroethane (DDT), paraquat, 
endosulfan, aldrin, and dieldrin  due to the acknowledge 
of their harmful effects on human health. Meanwhile, 
discussions persist regarding the potential ban of others, 
such as Glyphosate, alachlor, and atrazine   due to con-
cerns about their impact on human health. Therefore, 
there is an urgent need to create processes for mopping 
them up from contaminated sites (Cheng et al. 2022) to 

protect public health and the environment, and to 
enhance crop yield. For instance, soils containing exces-
sive pesticides could adversely impact plant health and 
growth, ultimately reducing agricultural yield. There-
fore, numerous studies are being conducted to address 
the usefulness of biochar in improving plant develop-
ment and remediating polluted soil (Younis et al. 2016). 
Typically, the large surface area of biochar promotes an 
adsorptive activity. Several scanning electron microscopy 
studies have confirmed that biochar adsorbs contami-
nants on its surface area (Cederlund et al. 2016; Bai et al. 
2023).

The influence of biochar on the desorption, adsorp-
tion, leaching, and degradation of pesticides in the soil 
environment has been revealed by several studies (Ced-
erlund et al. 2017). Wang et al. (2015) showed that wheat 
straw biochar generated at 750  °C in the aqueous phase 
displayed a high affinity for immobilizing pesticides like 
chlorpyrifos. It well evinced that the sorption of organic 
molecules onto biochar changes based on the charac-
teristics of biochar (Pignatello et al. 2017). The pyrolysis 
temperature is a critically important characteristic (Zhao 
et  al. 2013). The aging process and the co-existence of 
organic acids with varying molecular weights in a rhizos-
phere environment may impact the interactions between 
contaminants and biochar. The increasing amounts of 
two low molecular weight organic acids (malic and cit-
ric acid) ranging from 0 to 100 mmol.  L−1 increased the 
sorption of ionizable sulfamethoxazole onto straw bio-
char (Sun et al. 2016).

Nonetheless, mechanisms on how biochar influences 
the adsorption of hydrophobic pesticides (such as chlor-
pyrifos and chlorpyrifos-methyl) are well displayed in 
Fig.  6. Biochar in the soil contains hydrophobic sites, 
pores, and several minerals, sustaining the soil properties 
and microorganisms, etc. On the other hand, pesticides 
in the soil are characterized by solubility, mobility vola-
tility, degradation, bioaccumulation and environmen-
tal fate, etc. Soil can interact with soil components and 
other substances applied to the soil, particularly pesti-
cides, leading to positive and negative impacts on the soil 
environment. The different types of biochar (unmodified, 
modified, and aged) act differently in the soil depending 
on pyrolysis temperature, feedstock, etc. Ultimately, bio-
char characteristics can improve the adsorption capacity 
of pesticides due to the enhancement of microporosity. 
Adsorption disparity may be attributed to distinct chemi-
cal and physicochemical characteristics and the kind of 
the pollutants along with the characteristics of biochar. 
For instance, when citric acid is not present,  Ca2+ can 
fill biochar sorption sites via  Ca2+–π interaction (Fron-
tera et  al. 2011) and surface complexation or electro-
static interaction between oxygen and  Ca2+-containing 
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functional groups such as −OH and COO− (Uchimiya 
2014). Ultimately, the mechanism of pesticide adsorp-
tion by biochar in the soil is principally due to ligand 
exchange, followed by average pore diameter and the bio-
char surface.

Sorption marks the initial phase in the soil following 
the addition of pesticides (Safaei Khorram et  al. 2016; 
Cheng et  al. 2022). Higher sorption rates of pesticides 
are achieved by a combination of factors, including large 
porous structures, surface area, and high OC concentra-
tion in biochar or feedstock (Zheng et  al. 2010; Ogura 
et  al. 2021). For instance, there was an increase in the 
Freundlich sorption coefficient (Kf) of atrazine when 
biochar produced from the chicken litter was added to 
the soil at a dosage of 10 t  ha−1 (Tatarková et al. 2013). 
According to the study of Tatarková et  al. (2013), the 
sorption of 4-chloro-2-methylphenoxyacetic acid in the 
soil with biochar (1.0% M/M) was  82 and 2.53 times 
higher than that of the soil without biochar, respectively. 
Previous research has revealed that the addition of wheat 

biochar (1%) to sandy soil increased the Kf value of atra-
zine by 5 while adding it to clay soil increased it by 4.3 
times (Loganathan et al. 2009).

The addition of rice straw biochar at concentrations of 
0.1% and 0.5% resulted in a 1.5-fold and threefold increase 
in both the sorption capacity and the sorption coefficient 
(Kf values) of the soil (Xu et al. 2008). The temperature of 
the pyrolysis procedures alters the properties of the bio-
char, which in turn changes the interaction between bio-
char and herbicide retention. Sawdust biochar paralyzed 
at 300 °C (5% M/M) evinced a high sorption capacity for 
acetochlor and atrazine in the sand soil (Spokas et  al. 
2009). This was due to high OC content (69%) and spe-
cific surface area (1.6  m2  g−1) of biochar. According to the 
findings of the glyphosate study (Hall et al. 2018), higher 
values of pesticide sorption were obtained in proportion 
to an increased pyrolysis temperature, with the highest 
retention revealed for biochar generated at 900  °C. The 
influences of biochar on the sorption of pesticides are 
shown in Table 5. Ultimately, biochar amendments to the 

Fig. 6 Adsorption characteristics and mechanisms of pesticide by the biochar
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soil stabilize pesticides through sorption, reducing their 
bioaccumulation, ecotoxicity, biomagnification, and eco-
toxicity (Egamberdieva et al. 2021). Generally, the signifi-
cant consequences of pesticides in the soil environment 
may be mitigated by biochar, which also depends on sev-
eral features listed below.

5.1.1  pH of biochar
The pH of biochar can influence the adsorption of ionic 
pesticides onto its surface. Biochar surface character-
istics, including pH, are crucial in determining its abil-
ity to adsorb different substances, including pesticides. 
Ionic pesticides can be positively or negatively charged 

Table 5 A synopsis of studies highlighting the role of biochar in the retention of pesticides

Biochar feedstock and its 
application rate

Pyrolysis temperature (°C) Pesticide type Remarks

Paper mill slurry at 1–5% 
and chicken bed at an application 
rate of 1% (Martin et al. 2012)

500 °C for each Diuron and atrazine Enhanced diuron sorption ranged 
from 220 to 448%, and atrazine 
from 270 to 515%

Eucalyptus sp. (0.1–1%) (Sopeña 
et al. 2012)

– Isoproturon Increased levels of sorption and hys-
teresis

Wheat straw and chicken beds 
biochar (Sun et al. 2012)

400 °C Fluridone and norflurazon Sorption rose by a factor of 36 
and 24, respectively

Pallets of wood, macadamia nuts, 
and hardwood at 10% (Cabrera 
et al. 2014)

 > 500 °C, 850 °C, 540 °C, respectively Aminocyclopyrachlor and benta-
zone

The sorption of aminocyclopyrachlor 
was enhanced by 18–240% and ben-
tazone by 13%-35%

Hardwood sawing, hardwood, 
and wooden pallets at 2% (Cabrera 
et al. 2011)

500 °C,540 °C, > 500 °C, respectively MCPA and fluometuron There was a 240–5200% rise in sorp-
tion

Sawdust biochar (Wang et al. 2010) 700 °C Terbuthylazine Amended soils exhibit a 63-fold rise 
in sorption

Beech wood at 1.5% (Dechene et al. 
2014)

550 °C Imazamox Increased sorption, which is less 
than 5%

Charcoal biochar (Wang et al. 2010) 350 °C Terbuthylazine Sorption is raised in amended soils 
by 2.7-fold

The sewage of dairy products (Cao 
et al. 2009)

200 °C for 4 h, 350 °C for 4 h Atrazine Biochar sorption in amended soil 
is enhanced at the temperature 
of 200 °C

Biochar derived from corn silage 
at 0.5% (Eibisch et al. 2015)

750 °C Isoproturon Biochar reduced the quantity of bio-
available herbicide from around 10 
to 2283 times

Sawdust biochar (Spokas et al. 
2009)

500 °C Atrazine and acetochlor Kd for acetochlor was raised by 1.5 
times. There was also a correspond-
ing rise in atrazine absorption

Wood pallets, wood chips, and corn 
bran biochar (Hall et al. 2015)

650 °C, 500 °C, and 490 °C, respec-
tively

Aminocyclopyrachlor, metsulfuron-
methyl, alachlor, oxyfluorfen, 
and picloram,

Aminocyclopyrachlor, picloram, 
and metsulfuron-methyl exhibited 
very low sorption, alachlor showed 
intermediate sorption, and oxyfluor-
fen exhibited high sorption

Eucalyptus spp. biochar at 0.1, 0.2, 
0.5, 0.8, and 1.0% (Yu et al. 2006)

50 °C Diuron There was 5 to 125 times more sorp-
tion in amended soils

Pecan, cherry, and apple flakes 
and wooden pallets biochar (Hall 
et al. 2018)

350, 500, 700, and 900 °C; and 350, 
500, and 700 °C

Glyphosate Based on the concentration, 
the absorption rate increased 
as the pyrolysis temperature rose 
to 900 °C

Eucalyptus spp. Biochar at 0.1, 0.5, 
1.0, 2.0, and 5.0% (Yu et al. 2006)

450 °C Diuron Enhanced sorption (7 to 80-fold) 
with 1% of biochar

Sawdust biochar (Wang et al. 2010) 700 °C Terbuthylazine Reduced desorption

Wheat biochar (0.05, 0.5, and 1%) 
(Yang et al. 2006)

Diuron Sorption was increased by 7 
to 80-fold using 1% of biochar

Wheat ash (1%) (Yang and Sheng 
2003)

– Diuron In amended soils, sorption increased 
fourfold
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depending on their chemical structure and the pH of 
the surrounding environment. If the surface of biochar 
is positively charged, it may attract negatively charged 
pesticides, and vice versa. Higher biochar pH values in 
soil enhance the solubility of alkali minerals, whereby the 
alkali catalytic processes are required for the hydrolysis 
of carbamates and organophosphate pesticides (Zhang 
et al. 2013).

The feedstock and pyrolysis  temperature used during 
biochar production influence the surface area, porosity, 
and pH of biochar. The surface functionality of biochar 
is considerably associated with pH owing to the variety 
of feedstock qualities, which may vary from mineral-poor 
woody feedstocks to mineral-rich manures or crop res-
idues like rice hulls (Zhou et  al. 2019). An elevated pH 
level mainly accompanies a high mineral ash ratio in bio-
char. The pH of any given feedstock rises as the tempera-
ture rises, and the pH of biochar can either increase or 
fall based on the feedstock used and the soil characteris-
tics. During a year of incubation, the pH of mineral-poor 
oak wood biochar dropped from 4.9 to 4.7, whereas the 
pH of mineral-rich maize stover biochar rose from 6.7 
to 8.1 (Nguyen and Lehmann 2009). The acidic carboxyl 
groups formed when carbon is oxidized mainly cause 
the pH to decrease (Cheng et  al. 2006). Nevertheless, 
increasing the pH in biochar may be associated with the 
dissolution of alkaline minerals. A study on rice husk bio-
char revealed that glyphosate adsorption rose from 75% 
to 85% between pH 3 and 5, declined from 75% to 65% 
between pH 6 and 8, and then dropped significantly to 
55% at pH 9 (Herath et al. 2017). Contrastingly, previous 
study indicated that biochar exhibited low adsorption of 
glyphosate at high and low pH levels (Cederlund et  al. 
2016). Ultimately, alterations in pH can impact how pes-
ticides may dissolve, thereby affecting their ability to be 
adsorbed onto biochar.

5.1.2  Surface area and porosity
The sorption capacity of biochar with a large surface area 
and high porosity is typically high. The porous surface 
of biochar is created during pyrolysis when water loss 
increases during dehydration. Based on the International 
Union of Pure and Applied Chemistry (IUPAC), the sizes 
of biochar pores can range from micro (< 2 nm) to meso 
(≥ 2 and ≤ 50 nm) to macro (> 50 nm) (Leng et al. 2021). 
Biochar with a lower porosity cannot absorb the pesti-
cide molecules, irrespective of their molecular charges or 
polarities. The surface area of biochar is the most crucial 
component in influencing its sorption capacity, whereas 
temperature is one of the critical aspects to consider 
when producing biochar. The surface area may differ 
from one material to another, between used and non-
used materials and also between aged and fresh biochar. 

The surface area of activated carbon is larger. Biochar 
produced with no  activation step has a smaller surface 
area and pores (Kim et  al. 2012). Therefore, an activa-
tion process is necessary to raise biochar surface area and 
porosity. The activation process can entail physical and 
chemical activation processes.

5.1.3  Surface functional groups
Biochar sorption ability is contributed by functional 
groups including amide, hydroxyl, amine, and lac-
tonic  carboxyl groups (Rajapaksha et  al. 2016; Antón-
Herrero et  al. 2018; Usman et  al. 2019), which also 
influence pesticide adsorption in the soil. Feedstock 
and pyrolysis temperature affect the surface functional 
groups of biochar (El‐Naggar et al. 2018; Askeland et al. 
2019; El-Naggar et al. 2019). When temperatures rise, the 
atomic ratios of hydrogen to carbon (H:C), oxygen to car-
bon (O:C), and nitrogen to carbon (N:C) decrease (Liu 
et al. 2017b), lowering the biochar surface and functional 
groups.

Fourier transform infrared spectroscopy analyzes the 
biochar functional groups, including phenolic, hydroxyl, 
and carboxyl (Igalavithana et  al. 2017; Antoniadis et  al. 
2019). FTIR spectra indicate that varied pyrolysis tem-
peratures result in biochar with noticeably varied struc-
tural compositions (Al-Wabel et al. 2013; Sun et al. 2014). 
Pyrolysis of raw feedstock at temperatures between 100 
and 200 °C does not exhibit a substantial change in FTIR 
spectra. However, cellulose, lignin, and hemicellulose 
are dehydrated at 300  °C (3500–3200   cm−1). At 400  °C, 
various products produced from lignin and cellulose 
emerged owing to the breakdown of carboxylic and phe-
nolic chemicals in lignin, with numerous peaks between 
1600–700   cm−1. According to Keiluweit et  al. (2010), 
the intensity of aromatic condensation might be lower 
at 1650–1500  cm−1 than between 885–752  cm−1. This is 
because aromatic condensation occurs at temperatures 
higher than 500 °C.

Biochar derived from manure within the temperature 
range of 350 to 700  °C exhibited minor carboxyl and 
hydroxyl groups (Cantrell et  al. 2012). Compared with 
biochar produced at 300  °C, the FTIR spectra of bio-
char generated from peanut straw, maize, soybeans, and 
canola were similar when measured at 700  °C (Awad 
et al. 2019). Nuclear magnetic resonance (NMR) is typi-
cally utilized to describe biochar functional groups. In 
this context, 2D-13C NMR  correlation spectroscopy 
indicated that pyrolysis of bran straw and  rice  biochar 
between 100 and 800  °C produces dehydrogenation/
dihydroxylation and aromatization issues due to the crea-
tion of aromatic structures and cleavage of O-alkylated 
carbons, and anomeric O–C–O carbons (Li et al. 2013). 
Before aromatic structure formation, temperature 
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increases cause mass breakage of O-alkylated and ano-
meric O–C–O carbon groups. Biochar generated at 
lowered  and elevated pyrolysis temperatures (< 300 
and > 300 °C, respectively) had more aromatic structures 
and aliphatic O-alkylated carbons (Li et al. 2013). NMR 
spectroscopy showed that the O-alkyl carbon groups in 
wheat straw biochar dropped from 20–56 and 6.9–13% 
at increasing pyrolysis temperatures of 200 and 600  °C, 
respectively. Despite this, Liu et  al. (2016) showed  that 
no alkyl carbons formed at 600 °C within biochar. Pesti-
cide sorption on biochar surface was commonly reduced 
when functional groups were reduced. This is crucial for 
understanding how biochar regulates pesticides in the 
soil, thereby benefiting plants.

5.1.4  Chemical composition of biochar
Ashes, fixed carbon, and volatile materials are the com-
ponents that make up the basic chemical composition 
of biochar. The proportion of volatile material released 
during biochar heating comprises carbon monoxide, 
hydrocarbons, and carbon dioxide molecules. However, 
another quantity of carbon stays passably intact since it 
is not lost with volatile materials and is termed "fixed car-
bon." The fixed carbon and volatile material can be deter-
mined by heating biochar at about 900 °C. On the other 
hand, ash is a mineral oxide residue left behind after bio-
char is completely burned. The quantity of the produced 
oxidized residue could be used to determine the amount 
of ash in the biochar. When heated to very high tempera-
tures, biomass experiences a transformation in which its 
constituent parts are drastically altered (Tomczyk et  al. 
2020; Ćwieląg-Piasecka et al. 2023).

The manufactured biochar for particular pyrolysis set-
tings and high lignin feedstocks is related to its immedi-
ate features, such as higher fixed carbon levels and lower 
ash and volatile content. Each range of temperature 
results in the production of a unique product; however, 
the final temperature significantly impacts the character-
istics of biochar. Biochar produced from eucalyptus wood 
and leaves had a more significant total carbon fixed con-
tent than bovine dung (Singh et al. 2010). Higher carbon 
content levels in biochar evince an effect on the sorption 
capacity of pesticides. According to Cabrera et al. (2014), 
the quantity of organic carbon content in the materials 
improved the impact of several biochars on bentazone 
sorption. A greater sorption of aminocyclopyrachlor 
was found in biochar with a more extensive humification 
index and surface area (Cabrera et  al. 2014). This evi-
dence shows that biochar interacts with each pesticide to 
reduce its effects on the soil environment.

Biochar characteristics are typically linked to the feed-
stock,  pyrolysis   temperature, and time circumstances 
under which it is produced. The biomass used as a 

feedstock for biochar production is based on the accessi-
bility of wood and its derivatives and agricultural wastes. 
These raw materials contain more lignin, cellulose, and 
hemicelluloses, the primary components to be converted 
into a carbon matrix during biochar production. Conse-
quently, the aggregates produced during biochar produc-
tion and the proportional abundance of those aggregates 
determine the characteristics of the manufactured bio-
char (Yavari et al. 2015). Biochar sorption capacity is gov-
erned by its carbon  content and aromatic structure (de 
Jesus et al. 2019). Biochar has significant levels of mineral 
ash, recalcitrant carbon, and leachable or labile carbon 
(Jing et al. 2022). The principal chemical variation among 
biochar and organic materials is a substantially more sig-
nificant proportion of aromatic C (Iacomino et al. 2022). 
These merged aromatic biochar structures can occur in 
various forms, like turbo-stratic C and amorphous C, 
which are predominant at low and elevated temperatures 
in pyrolysis (da Silva Amaral et al. 2022). At temperatures 
lower than 500 °C, biochar generated from lignocellulose 
materials has a higher carbon content (Liu et al. 2017a).

The carbon content of biochar produced at 600  °C is 
significantly greater than that generated at 400 °C (Heit-
kötter and Marschner 2015). For instance, pine chip 
biochar pyrolyzed at 400 and 600 °C had a C content of 
79% and 92%, whereas maize digestate biochar at the 
same temperatures had a C content of 65% and 64%. Guo 
et al. (2021) showed that biochar from C-rich feedstocks 
showed a more remarkable sorption ability for organic 
pollutants. High carbonization and aromatization levels 
in the biochar structure make it highly stable so that it 
can remain in the soil for a long time (Wang et al. 2022). 
Biochar has lately shown the capacity to reduce soil con-
tamination. Zhang and Shen (2022) evinced that biochar 
has a limited decomposition rate, indicating that soil 
microorganisms cannot access and use the nitrogen, car-
bon, and other nutrients in a biochar C structure.

5.1.5  Elemental ratios of biochar
Most biochar generated from nuts and wood evinces 
extremely high carbon-to-nitrogen and carbon-to-phos-
phorus ratios, while biochar derived from crops, manure, 
and food waste has substantially lower ratios (Joseph 
and Lehmann 2009; Askeland et  al. 2019). Biochar pro-
duced from manure has a higher mineral content than its 
C content. The poor stability of biochar, which is high in 
minerals and ash, is connected to its high aromaticity and 
carbon content (Xie et  al. 2023). The H:C and O:C cor-
relate with the polarity and aromaticity of biochar (Koo-
kana 2010). Despite its durability, biochar is subject to 
fragmentation, carboxylation, and biological and physical 
oxidation when contained in the soil. It has been found 
that the atomic ratios of H:C and O:C in biochar decline 
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as the pyrolysis temperature rises. As an example, NMR 
data from Baldock and Smernik. (2002) showed that the 
aromaticity level increases as the temperature rises. Fur-
ther, the heating time of the biomass also impacts the 
H:C and O:C ratios.

5.1.6  Feedstocks
The type of feedstock used to produce biochar signifi-
cantly influences its chemical composition. Different 
feedstocks, such as woody and non-woody biomass, have 
distinct compositions, and these variations can impact 
the properties of biochar (Sorrenti et  al. 2016; Pariyar 
et al. 2020). Wood-based biochar is commonly used and 
has been studied for its ability to adsorb pesticides. How-
ever, non-wood biomass biochar, derived from materials 
such as crop residues, agricultural waste, or other plant-
based sources, can also be practical, depending on their 
specific properties. The carbon content of biochar is a 
fundamental factor influenced by the feedstock. Carbon-
rich biochar is generally more effective in adsorbing pes-
ticides due to the abundance of carbonaceous surfaces 
(Yavari et  al. 2015). The presence of heteroatoms (such 
as oxygen, nitrogen, and sulfur) and functional groups in 
biochar, which play a role in the adsorption of pesticides 
through various chemical interactions, is influenced by 
the feedstock composition (Safaei Khorram et  al. 2016; 
He et  al. 2019). The feedstock influences the physical 
structure of biochar, including surface area and porosity. 
Feedstocks with high lignocellulose content can result in 
biochars with greater porosity, enhancing their ability to 
adsorb pesticides (Kumari et al. 2016; Liu et al. 2018). The 
mineral content of the feedstock influences the ash con-
tent in biochar. Higher ash content may affect the pH of 
the soil and impact pesticide behavior (Yadav et al. 2023). 
The biochar feedstock can influence microbial communi-
ties in the soil (Sadet-Bourgeteau et al. 2023), impacting 
pesticide degradation or persistence.

5.2  Indirect influences of biochar on the fate of pesticides 
in the soil

5.2.1  Influences of biochar on the soil properties
Besides improving soil fertility, biochar can be  used to 
minimize concerns in agriculture activities, leading to 
improved crop production. For instance, El-Naggar et al. 
(2015) showed that when conocarpus wood waste bio-
char is applied to a soil lacking nutrients and soil organic 
matter (e.g., calcareous sandy soils (CSS) in dry and semi-
arid climates), it improves these soils. Inal et  al. (2015) 
evinced that the utilization of biochar associated with 
poultry manure in the soil improved the content of N, P, 
and K due to two significant occurrences: (1) increased 
N mineralization due to increased microbial activity and 
(2) increased cation exchange. Therefore, the addition of 

biochar to the CSS can be a proper strategy for enhanc-
ing soil quality and promoting plant growth. Biochar gen-
erated from rice hulls was productively used in the soil of 
reclaimed tidal lands to improve the unfavorable effects 
of salt on maize plants and increase production (Kim 
et al. 2016). When added at 27 and 67.5 t.  ha−1, biochar 
improved maize yields by 52% and 101%, respectively 
(Palansooriya et al. 2019a). This occurred in salty condi-
tions and may be traced back to an improvement in soil 
phosphate, saturated organic carbon, and particle-size 
fractions of water-stable aggregates.

Additionally, the high potassium content of biochar 
reduces the amount of sodium uptake by maize plants 
and the quantity of sodium that may be exchanged in 
salty soil (Kim et al. 2016). A further challenge for high-
land agriculture is irrigation with salted water. Biochar 
from conocarpus wood waste increased yield from 14.0% 
to 43.3% higher than the control sample when given to 
tomato plants cultivated in saline irrigation (Usman et al. 
2016). The improved crop production occurred despite 
salt stress and may be attributable to enhanced nutrient 
availability because of biochar (Usman et al. 2016). Sor-
ghum yields have improved in the two distinct kinds of 
sandy soil in desert environments (Laghari et al. 2015). In 
addition, dry matter production was increased by around 
18.0–20.0% for both soils compared with the control 
group (Laghari et al. 2015).

Environmental, economic, and sustainability issues 
currently hamper the efficient utilization of biochar in 
farming. The synthesis of biochar from food, agricul-
tural, and municipal waste has favorable financial impli-
cations. The economic viability of biochar in agricultural 
and environmental uses is determined by its life cycle 
costs and environmental implications. Ecological advan-
tages and increases in agricultural yield must be weighed 
against the expenses of garbage pickup, feedstock prepa-
ration, pyrolysis, and biochar handling and application 
(Lehmann and Joseph 2015). Biochar also influences 
the soil microbial population by regulating pH, phos-
phorus level, nitrogen level, and dissolved organic mat-
ter, thereby impacting the biodegradation of pesticides 
(Noyce et  al. 2015). The addition of biochar to the soil 
improves soil sorption capacity for certain pesticides. 
Biochar sorption capacity and the length of its residence 
period in soil rely on the physical and chemical charac-
teristics of biochar (Twagirayezu et al. 2022; Deng et al. 
2022). The addition of biochar to the soil affects pesti-
cide transformation in several ways. The enzyme activity, 
microbe activity, and structure of the soil are affected by 
biochar. These characteristics lead to the enhanced bio-
degradation of pesticides, which stimulates soil fertility 
and crop productivity (Xie et al. 2013; Cheng et al. 2022).
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Biochar influences not only the soil microbiologi-
cal qualities but also its chemical and physical qualities. 
These property changes could affect how the indigenous 
microbial community in the soil gets started, yet they 
may only partially affect the entire amount of micro-
bial biomass in the soil (Zhu et  al. 2017). The addition 
of biochar in the soil environments lowers emissions of 
greenhouse gases and enhances climate change mitiga-
tion. This happens due to an increase in the activity of 
microbial functional groups, which ultimately leads to 
an improvement in the physiochemical properties of the 
soil (Lehmann and Joseph 2015; Cederlund et  al. 2016; 
Kumar et al. 2022a). Biochar often consists of a sizeable 
fraction of aromatic compounds, and these molecules 
are resistant to microbial breakdown, making them per-
sistent pollutants. Further, Noyce et al. (2015) and Wang 
et  al. (2012)  revealed that biochar improves long-term 
carbon sequestration in land environments.

5.2.2  Influences of biochar on the soil microbial community 
diversity and composition

In addition to the ecological services they provide, the 
population and activity of soil microbes have a consider-
able impact on the functioning of the soil (Díaz-López 
et  al. 2019; Twagirayezu et  al. 2023). Hence, any factor 
that affects soil microbial populations and activities can 
influence the persistence and retention of  pesticides in 
the soil environment (Ali et  al. 2019). The addition of 
biochar to the soil impacts the population and behavior 
of soil microbes. The  impact of biochar on microbial 
population and abundance in the soil has been evaluated 
by several techniques such as culture and plate counting 
(Jiang et  al. 2017), extraction of phospholipid fatty acid 
(Ali et al. 2019), total genomic DNA extracted (Grossman 
et al. 2010; Igalavithana et al. 2019), fumigation extraction 
( Palansooriya et al. 2019b; Yuan et al. 2019), respiration 
induced by the substrate (Kolb et al. 2009). Other studies 
have also shown that amendment of biochar in the soil 
enhances the reproduction rate of microbial population 
and abundance (Qiu et  al. 2019; Ge et  al. 2019). How-
ever, the changes in microbial population and abundance 
in the soil that are mediated by biochar vary for various 
types (Lehmann et  al. 2011). For instance, the addition 
of biochar enhanced the quantity of firmicutes, proteo-
bacteria, actinobacteria, and gemmatimonadetes (Ali 
et al. 2019). On the contrary, biochar lowered the relative 
abundances of actinobacteria and chloroflexi. In addition, 
the addition of biochar in the soil led to an increase in 
the proportion of bacterial populations while simulta-
neously reducing the number of arbuscular mycorrhizal 
fungi (Song et al. 2019). The use of biochar typically has 
a positive impact on the population of microorganisms 
as well as the rate of reproduction of the ectomycorrhizal 

and arbuscular mycorrhizal fungus species, which are the 
two most frequent types of mycorrhizal fungus (Ali et al. 
2019). It has been shown that 0.6–6 t  ha–1 of eucalyptus 
wood biochar could increase the colonization of arbus-
cular mycorrhizal fungi in the roots of Triticum aestivum 
by 20–40% (Shukla et al. 2017). Similarly, biochar in the 
soil increased the number of root tips on larch plants 
and the rate of ectomycorrhizal infection by 19–157% 
(Shukla et  al. 2017). However, other studies have indi-
cated that biochar could reduce the quantity or amount 
of soil microbes (Lehmann et  al. 2011). Biochar in the 
soil enhances the availability of water and nutrients to 
plants, leading to a lower necessity for mycorrhizal sym-
biosis and reducing the microbial population. This illus-
trates that addition of biochar in the soil may increase or 
decrease the quantity and population of microorganisms, 
which may alter pesticide adsorption, degradation, or 
mineralization.

6  The advance of biochar application 
in the remediation of pesticide polluted soil

6.1  Aging of biochar
Typically, biochar properties change in the soil dur-
ing aging and weathering processes (Gámiz et al. 2019). 
Biotic and abiotic factors regulate the weathering or aging 
process, including microbial activity, crop types, tillage 
regimes, UV exposure, moisture, and temperature fluctu-
ations (Sorrenti et al. 2016). When biochar ages, its pores 
get clogged by mineral particles, roots, organic matter, or 
microorganisms, thereby reducing the surface available 
for chemical reactions (Ren et al. 2018). Aging processes 
significantly modify the properties of biochar (Mia et al. 
2017), which slightly reduces its adsorption capacity in 
the soil environment (He et  al. 2019). For instance, Ren 
et al. (2018) revealed that aging altered biochar elemental 
concentration and surface area, affecting biochar adsorp-
tion capacities. In addition, Mia et al. (2017) and Cheng 
et  al. (2023) have reported that the aging process may 
reduce the absorption capacity of biochar, leading to an 
increased leaching out and mineralization of simazine in 
the soil environment.

On the other hand, even if aged biochar cannot work 
efficiently, it should be used in soil remediation. Kumari 
et al. (2016) found that after 7–19 months, soil amended 
with wood biochar heated to 500 ℃ had a higher cation 
exchange capacity and greater specific surface area, lead-
ing to a rise in glyphosate sorption in the soil environ-
ment. Trigo et  al. (2016) found that the sorption of the 
chemical metolachlor increased with time in the soil 
amended with various types of biochar (macadamia: 
fresh = 2.4-fold, 1 year = 2.5-fold, 4 years = 1.9-fold, wood: 
fresh = twofold, and 5 years = 14-fold). In addition, Mar-
tin et  al. (2012) conducted a study using biochar aged 
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for 32 months in the soil at a rate of 10 t.ha−1 to assess 
its sorption capacity for atrazine and diuron. In this 
research, soil with biochar had two to five times more 
pesticide sorption than soil without biochar. Aging pro-
cesses may reduce the average pore diameter, and the 
biochar surface becomes more amenable to the leach-
ing of materials. The sorption capacity of diuron was 
shown to be reduced by 47–68% due to the gradual pore 
clogging.

Moreover, Cheng et al. (2023) conducted research using 
biochar that had naturally aged for 9  years in the field. 
The results of the study revealed that the average leach-
ing and mineralization of simazine in the soil amended 
with aged biochar were significantly higher by 4.8% 
and 1.66%, respectively, compared to those in the soil 
amended with fresh biochar. Rice husk biochar generated 
at 500  °C for 30  min in the soil for 13  months lost car-
bon and nitrogen content, pH values dropped to nearly 
neutral, and specific surface area and porosity decreased 
(Cao et  al. 2017). The weathering degrades the biochar 
particles, changing their mass and affecting soil pesti-
cides. Based on the findings of Dong et al. (2017), there 
was a drop in biochar mass of around 40% over 5 years, 
irrespective of the added quantity (30, 60, or 90 t  ha−1). A 
decrease in the abundance of biochar mass with time has 
also been noticed by other researchers as well (Maestrini 
et  al. 2014; Obia et  al. 2017). The natural aging process 

of biochar may also alter the material structure. Trigo 
et al. (2014) analyzed the surface of biochar that had been 
aged for 1 and 2  years. They found that the addition of 
that biochar to the soil caused clay minerals to stick to 
it, carboxylic acids to cover the structure, and fatty acids 
to disappear, resulting in a change in the possible con-
nections to the surface and its ability to hold pesticides. 
In their research, biochar particles had an even greater 
specific surface area after 2 years of incubation, and the 
holes were filled with mineral material. The organic car-
bon content of the biochar decreased from 80.4 mg  L−1 
to 31.6 mg.L−1 after 1 year of incubation due to weather-
ing processes. However, the changes in the chemical and 
structural properties that influence the adsorption capac-
ity of biochar depend on the type of material, pyrolysis 
temperature, conditions, and time incubated in the soil.

6.2  Modification of biochar
Modification of biochar to remediate soil polluted with 
pesticides involves enhancing its properties to improve 
effectiveness in adsorbing, degrading, or immobilizing 
pesticides. Concerning the content of Fig.  7, biochar 
can be prepared with or without pretreatment. There 
are four different sorts of modification techniques 
(Wang et  al. 2017; Sizmur et  al. 2017): (1) controlling 
general production conditions (pyrolytic conditions 
and feedstock); (2) physical modification; (3) chemical 

Fig. 7 Schematic representation of the engineered biochar production process for environmentally responsible agriculture
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modification (pre-treatments of feedstock and post-
treatments of pristine biochar); and (4) biochar-based 
organic composites (co-composting with organic 
waste). By  the modification strategies mentioned 
above, increasing the surface area and optimizing the 
pore structure of biochar can enhance its adsorption 
capacity (Cabrera et  al. 2014; Cheng et  al. 2018). This 
involves controlling pyrolysis conditions during bio-
char production or post-treatment processes to create 
a more porous structure. Introducing or enhancing of 
functional groups on the biochar surface can improve 
its affinity for pesticides. Oxygen-containing functional 
groups, such as hydroxyl (–OH), carboxyl (–COOH), 
and phenolic groups, can interact with pesticides 
through hydrogen bonding and other interactions.

Modifying the surface charge of biochar can influence 
its ability to attract and retain charged pesticide mol-
ecules. Incorporating metal oxides or nanoparticles into 
biochar can improve its catalytic properties, enhancing 
pesticide degradation (Cheng et al. 2022). Mixing biochar 
with organic amendments, such as compost or manure, 
can enhance soil fertility and microbial activity, contrib-
uting to the degradation of pesticides through microbial 
activity. Subjecting biochar to post-treatment processes 
like steam activation or thermal treatment at elevated 
temperatures can modify its properties, including surface 
area and porosity, thus enhancing its effectiveness in pes-
ticide remediation. The hydrophobic nature of biochar 
can be changed to improve its interaction with hydropho-
bic pesticides. Controlling biochar particle size can influ-
ence its distribution in the soil matrix. Fine particles may 
have higher reactivity and surface area, impacting the 
ability of biochar to interact with and adsorb pesticides.

Recently, modified biochar (biochar + FeOS, bio-
char +  FeCl3, biochar + Fe) enhanced the adsorption 
capacity of soil for simazine and changed the microbial 
community and structures that regulate the fate of sima-
zine in the soil environment (Cheng et  al. 2022). In the 
aforementioned study, the modified biochar decreased 
the quantity of microorganisms in the soil, thereby lim-
iting pesticide decomposition. The effectiveness of pesti-
cide removal is directly linked to pesticide concentration 
in the leachate and biochar adsorption capacity (Liu et al. 
2018). Biochar addition results in a considerable decrease 
in the leachate pesticides (e.g., simazine). However, bio-
char modification results in an increase in  improves the 
ability of biochar to adsorb simazine, thereby reducing 
the potential danger of simazine movement into water-
courses (Cheng et  al. 2022). Inevitably, the procedure 
mentioned above increases the adsorption of pesticides 
by biochar and can alter the nature and quantity of the 

microbial population and community, thereby altering 
the fate of pesticides in the soil.

7  The current situation, challenges, and mitigation 
measures for excessive pesticides in the soil

7.1  Current situation
Pesticides are intended to control weeds in crop farming 
for a certain amount before or during planting. This aids 
farmers in enhancing crop yield by minimizing the pres-
ence of undesirable plants and pests in the field. For effi-
cient weed control, pesticides should be used consistently 
and at the appropriate rates. However, their lengthy per-
sistence, often known as carryover, may harm the future 
crop. Pesticides may exert their effects by preventing cell 
division, photosynthesis, or the formation of amino acids, 
or they may cause abnormalities in plants by imitating 
the actions of natural plant growth hormones. The effects 
of excessive pesticides in the soil are a concerning issue. 
However, most countries, particularly developing coun-
tries, still need to be aware of the severe problems caused 
by the overuse and misuse of pesticides in the soil envi-
ronment. Therefore, pesticide adsorption is crucial when 
there is a problem of pesticide soil pollution.

7.2  Challenges and mitigation measures for excessive 
pesticides in the soil

Many pesticides are produced and added to the soil in 
each agricultural season to protect crops from pest infes-
tations. When pesticides are applied, they may endure in 
the sprayed area. This may cause a large concentrations 
of pesticides in other environmental compartments, such 
as surface and groundwater. In Australia, the United 
States, and Europe, the pesticide simazine was detected 
in water at concentrations reaching hundreds of micro-
grams per liter (µg  L–1) (Cox et  al. 2000; Troiano et  al. 
2001). This has generated several environmental con-
cerns, including those regarding human health and the 
health of terrestrial and aquatic environments (Regitano 
et al. 2006; Rico et al. 2012). There are several techniques 
available for remediating pesticide-polluted soil. Among 
these methods, commonly employed approaches include 
biodegradation, phytoremediation, the use of pesticide-
degrading microorganisms, bioremediation of pesticide-
contaminated soils, and the application of soil additives 
for pesticide remediation. However, choosing the most 
effective technique to remove pesticides from the environ-
ment is still a big challenge. As displayed in different litera-
ture, the time required for the remediation process is still 
challenging. Existing methods cannot completely remove or 
degrade pesticides from the soil environment. In addition, 
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there are some limitations, such as poor effectiveness, a long 
time, and even the production of new pollution, which lead 
to a variety of problems in the process of removing pesticide 
contamination from the environment (Meriam Suhaimy 
et al. 2020; Cheng et al. 2022). Hence, workers engaged in 
remediating polluted areas must be equipped with appro-
priate personal protective equipment, including gloves, 
splash goggles, boots, respirators, and coveralls. Protec-
tive equipment must be carefully stored and disinfected 
during the complete remediation activities. Most impor-
tantly, a systematic surveillance system should be estab-
lished at the national level, including regular, continuous 
measurements of pesticides utilized in agricultural activi-
ties. Therefore, it is advisable to utilize surveillance meth-
ods to assess the state of pesticides in the soil.

8  Conclusions and future perspectives
This review paper shows that biochar can influence the 
fate of pesticides differently, impacting pesticide sorption, 
biodegradation, and leaching. The temperature during the 
pyrolysis process, feedstocks, and techniques used for the 
pyrolysis substantially affect biochar for controlling soil 
pesticides. However, using biochar as a primary source for 
remediating soil polluted by pesticides is possible. Surface 
functional groups of biochar, like carboxyl and hydroxyl 
groups, are primarily responsible for the ability of biochar 
to adsorb pesticides. Even though the effectiveness of bio-
char in remediating soil polluted with pesticides depends 
on various factors, future efforts should prioritize refining 
its qualities. This can be achieved by enhancing its capacity 
through modifications or combining it with another promis-
ing remediation technique, such as phytoremediation. These 
enhancements could position biochar as a promising option 
for remediating soil contaminated with pesticides.

On the other hand, ongoing studies are essential to 
explore optimal methods for recovering biochar from the 
soil, particularly in the context of diverse environmental 
applications. These should be done by balancing the posi-
tive and negative influence of biochar in the soil. It is of 
the utmost significance to categorize biochar according 
to its potential for remediating soil polluted by pesticides. 
This can be done by checking the physicochemical char-
acteristics of the biochar and soil and the kind of pesti-
cide. In addition, positive and negative influences should 
be balanced during biochar application in the soil. For 
future research endeavors, the adsorption processes of 
pesticides on biochar have to be well explored. The influ-
ence that feedstock and pyrolysis of biochar could have 
on the activity of soil microorganisms and plants must be 
evident. Further, a comprehensive understanding of the 
sorption and adsorption processes of pesticides on bio-
char in various types of soil is still needed.
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