陈剑争,张辉,唐勇等. 2024. 新疆阿尔泰伟晶岩型锂矿床磷的地球化学行为及其对锂成矿作用的指示意义. 岩石学报,40 (09): 2925-2943, doi: 10.18654/1000-0569/2024.09.18

新疆阿尔泰伟晶岩型锂矿床磷的地球化学行为及其对 锂成矿作用的指示意义^{*}

陈剑争^{1,2,3} 张辉^{3**} 唐勇³ 吕正航³ 王惊涛^{1,2} CHEN JianZheng^{1,2,3}, ZHANG Hui^{3**}, TANG Yong³, LÜ ZhengHang³ and WANG JingTao^{1,2}

1. 深圳城市职业学院珠宝学院,深圳 518116

2. 深圳技师学院珠宝学院,深圳 518116

3. 中国科学院地球化学研究所,关键矿产成矿与预测重点实验室,贵阳 550081

1. School of Jewelry, City Polytechnic of Shenzhen, Shenzhen 518116, China

2. School of Jewelry, Shenzhen Institute of Technology, Shenzhen 518116, China

3. State Key Laboratory for Critical Mineral Research and Exploration, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China 2024-03-05 收稿, 2024-06-30 改回.

Chen JZ, Zhang H, Tang Y, Lü ZH and Wang JT. 2024. Geochemical behavior of phosphorus and its implication for lithium mineralization in the pegmatite-type lithium deposit in Altai, Xinjiang. *Acta Petrologica Sinica*, 40(9): 2925 – 2943, doi: 10.18654/1000-0569/2024.09.18

Abstract The Altai orogenic belt is an important pegmatite-type rare metal metallogenic belt, with multiple pegmatite-type lithium deposits of various scales in Xinjiang, China. Currently, it is unclear about geochemical behavior of phosphorus during the magma-hydrothermal evolution and its indicative significance for lithium mineralization. This paper conducted a comparative study on the microstructure and chemical composition of phosphate-bearing minerals such as alkaline feldspar, apatite and lithiophilite (triphyline) in the Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite, aiming to explore the above mentioned scientifical issues. The research results show that phosphorus gradually accumulates in the residual magma with the magma fractional crystallization. When it reaches a certain extent, immiscibility occurs between the phosphate melt and the silicate melt, and Li is preference for entering into the phosphate melt, leading to the formation of lithium-rich phosphate minerals such as lithiophilite (triphyline). The crystallization of Mn-rich apatite with skeletal texture in the zone II of Koktokay No. 3 pegmatite may be attributed to rapid crystallization caused by magma undercooling. Moreover, the already formed lithiophilite (triphyline) are easily altered by the exsolved magmatic fluids in the later stage, resulting in a series of complex secondary phosphate minerals.

Key words Magmatic-hydrothermal evolution process; Lithium mineralization; Phosphate-rich minerals; Alkali feldspar; Pegmatite in Altai

摘要新疆阿尔泰造山带是我国重要的伟晶岩型稀有金属成矿带,分布有不同规模的多个伟晶岩型锂矿床,目前尚不明确岩浆-热液演化过程中磷的地球化学行为及其对锂成矿作用的指示意义。本文通过对可可托海3号脉、小虎斯特91号脉和塔拉提1号脉中碱性长石、磷灰石和磷锰(铁)锂矿等含磷矿物的微区结构和化学成分的对比研究,探讨上述科学问题。研究结果显示,随着岩浆分离结晶作用进行,磷逐渐在残余岩浆中富集,到达一定程度后会出现磷酸盐熔体与硅酸盐熔体的不混溶作用,由于锂更加倾向于进入磷酸盐熔体中,因此会形成磷锰(铁)锂矿等富锂的磷酸盐矿物。可可托海3号脉II带中出现 骸晶结构富锰磷灰石可能是由于岩浆过冷导致晶体快速结晶所致。此外,已经形成的磷锰(铁)锂矿等易被更晚期出溶的岩浆流体交代从而形成一系列复杂的次生磷酸盐矿物。

^{*} 本文受国家自然科学基金重点项目(9196222)、第三次新疆综合科学考察项目(2022xjkk1302)和深圳技师学院校级科研项目(2314006) 联合资助.

第一作者简介:陈剑争,男,1995年生,博士,主要从事伟晶岩及相关的矿物学宝石学研究,E-mail: chenjianzheng18@ mails. ucas. ac. cn ** 通讯作者:张辉,男,1965年生,研究员,博士生导师,主要从事伟晶岩及相关的稀有金属矿床研究,E-mail: zhanghui@ mail. gyig. ac. cn

关键词 岩浆-热液演化过程;锂成矿作用;磷灰石;磷锰锂矿;碱性长石;阿尔泰伟晶岩 中图法分类号 P578.922; P588.131; P618.71

近年来,随着国家"双碳"(碳达峰和碳中和)战略进程 的逐步推进,我国持续推进产业结构和能源结构调整升级, 倡导绿色,环保、低碳的生活方式,大力发展新能源建设。而 锂作为一种最轻的能源金属,被广泛用于航空航天、核聚变, 尤其是新能源汽车(充电锂电池)等新兴领域,需求量逐年迅 速增加。自然界中锂资源主要来源于硬岩型和盐湖型锂矿 床,其中伟晶岩型锂矿床由于易于采选和提取,提供了全世 界一半以上的锂资源(Benson et al., 2017; Bowell et al., 2020)。目前,弄清楚岩浆-热液演化过程中锂富集的精细过 程的厘定是理解伟晶岩型锂成矿过程的关键。前人提出的 主要观点包括岩浆分离结晶(Shearer et al., 1992; Hulsbosch et al., 2014; Wu et al., 2017)、岩浆不混溶(Webster et al., 1997; Veksler and Thomas, 2002; 李建康等, 2023)、超临界 流体 (Thomas et al., 2000; Thomas and Davidson, 2012, 2016)、组成带状纯化(London, 2018a)和差应力条件下无水 矿物周边发育边界层富 Li 熔体的抽提(Liu et al., 2024)。

新疆阿尔泰是我国最重要的伟晶岩型稀有金属成矿带, 分布着十万余条伟晶岩脉,是研究伟晶岩成岩成矿过程的天 然实验室。阿尔泰稀有金属伟晶岩具有规模大、期次多、类 型多的特征,主要形成于晚二叠世、晚三叠世,其次是晚泥盆 世和早侏罗世,已发现超大型矿床1处(可可托海3号脉), 大型矿床2处(卡鲁安Li矿,柯鲁木特Li-Be-Nb-Ta矿)、中 型矿床5处,以及众多小型矿点和矿化点(赵振华等, 2022)。近年来,我国学者通过对阿尔泰稀有金属伟晶岩年 代学、矿物学、同位素和包裹体等方面研究,在成岩成矿时 代、岩石成因、内部演化与成矿机制等方面取得众多重要进 展(任宝琴等, 2011;张辉等, 2019;秦克章等, 2021; Han *et al.*, 2023; Shen *et al.*, 2022; 周起凤等, 2023)。

可可托海3号脉是世界范围内分异最为完善、矿化最强的伟晶岩脉,小虎斯特91号脉和塔拉提1号脉虽是中小型 伟晶岩矿床,但是都出现明显的矿物结构分带现象,并且这 三条伟晶岩脉都以富磷为特征,出现较多富锂的磷酸盐矿 物。因此,本文拟通过上述三条岩脉中各结构带的碱性长 石、磷灰石、磷锰(铁)锂矿等含磷矿物进行系统研究,进一步 提高岩浆-热液演化过程中磷的地球化学行为及其对锂矿化 影响的认识。

1 区域地质背景

中亚造山带是一典型的显生宙增生型造山带,由不同时 代的岩浆弧、岛弧增生楔、海山、蛇绿混杂岩及微陆块等地体 拼贴形成(Windley et al., 2007;龙晓平, 2007)。阿尔泰造 山带是中亚造山带的重要组成部分,整体呈为北西-南东走 向,是古亚洲洋在古生代形成的增生体,并且自古生代以来 发生了强烈的俯冲、碰撞、增生造山作用、变形变质作用以及 大规模的岩浆活动(Windley et al., 2002, 2007)。

依据地层、岩浆活动、变质作用和构造特征,阿尔泰造山带自北向南被分为4个地块,以红山嘴-诺尔特、阿巴宫-库尔特、富蕴-锡泊渡和额尔齐斯断裂为界分别为北阿尔泰、中阿尔泰、琼库尔和南阿尔泰地体(图1)(Yuan et al., 2007; Long et al., 2008; Sun et al., 2009; Cai et al., 2011; Lü et al., 2018, 2021)。其中,北阿尔泰地体(单元Ⅰ)由泥盆纪石炭纪的变火山岩和变沉积岩组成。中阿尔泰地体(单元 Ⅱ)是由哈巴河群浊积岩和火山碎屑岩、上奥陶统的火山碎 屑岩、东锡列克组和白哈巴组陆源碎屑岩以及上志留统的库 鲁木提组变质砂岩组成。琼库尔地体(单元Ⅲ)由古生代碎 屑岩和火山岩组成,主要包括早泥盆世康布铁堡组和中泥盆 世阿尔泰组。南阿尔泰地体(单元Ⅳ)西部大部分为第四纪 沉积物,东南部为康布铁堡泥盆纪片麻岩和变沉积岩(新疆 地质矿产局, 1993)。

2 矿床地质背景

可可托海矿区主要出露晚奥陶世泥砂质岩石以及由泥 盆-石炭纪火山沉积岩变质而形成的二云母片岩、片麻岩和 混合岩,以及由加里东期辉长岩变质而成的斜长角闪岩、海 西期的片麻状黑云母花岗岩、斑状黑云母花岗岩和二云母花 岗岩。含稀有金属矿化的伟晶岩均见于晚奥陶世变质岩、加 里东晚期变辉长岩和海西期花岗岩中(朱金初等,2000)。 伟晶岩脉沿北北西向、东西向及北西断裂发育(图2a)。

可可托海3号伟晶岩位于可可托海伟晶岩田西南部,其 地理坐标:N47°12′24″、E89°48′54″。该伟晶岩由一个椭圆形 的岩钟体部分和底部一个平缓倾斜的脉体部分组成,整体上 像一顶实心草帽,总体走向310°,倾向SW,倾角上部近90°, 下部为10°~25°。岩钟体大小为250m(长)×250m(宽)× 250m(深)。根据矿物共生组构特征,从外到内部带可把该 伟晶岩钟体部分划分成9个结构带,构成近同心环带状构造 结构带(朱金初等,2000; 邹天人和李庆昌,2006),分别为: 文象变文象伟晶岩带(I带)、糖粒状钠长石带(II带)、块状 微斜长石带(II带)、白云母-石英巢体带(IV带)、叶钠长石-锂辉石带(V带)、石英-锂辉石带(VI带)、白云母-薄片钠长 石带(II带)、锂云母-薄片钠长石带(II带)、块体微斜长石和 石英带(IX带)。I-IV带为伟晶岩外部结构带,约占岩钟体 总体积的70%,V和VI带体积分别占14.8%和8.7%,而VI-IX带总共体积仅占6%左右(邹天人和李庆昌,2006)。

小虎斯特 91 号脉是一个中小型的 Li-Be-Ta-Nb 伟晶岩 矿床(张辉等, 2019),隶属可可托海伟晶岩矿集区,其地理 坐标:N47°17′07″、E89°46′32″。矿区主要出露哈巴河群变质

图 1 中国阿尔泰造山带区域地质简图(据 Windley et al., 2002; Lü et al., 2021 修改)

Ⅰ-北阿尔泰地体;Ⅱ-中阿尔泰地体;Ⅲ-琼库尔地体;Ⅳ-南阿尔泰地体.A-青河-哈龙稀有金属成矿亚带;B-加曼哈巴-大喀拉苏稀有金属成 矿亚带.①青河伟晶岩矿集区;②可可托海伟晶岩矿集区;③库威-结别特伟晶岩矿集区;④柯鲁木特-吉德克伟晶岩矿集区;⑤卡拉额尔齐 斯河上游伟晶岩矿集区;⑥大喀拉苏-可可西尔伟晶岩矿集区;⑦小喀拉苏-切别林伟晶岩矿集区;⑧海流滩-也留曼伟晶岩矿集区;⑨加曼哈 巴伟晶岩矿集区

Fig. 1 Regional geological sketch map of the Altay orogenic belt (modified after Windley et al., 2002; Lü et al., 2021)

I -North Altai domain; II -Central Altai domain; II -Qiongkuer domain; IV-South Alta domain. A-Halong-Qinghe pegmatite sub-belt; B-Jiamanhaba-Dakalasu pegmatite sub-belt. ①Qinghe pegmatite field; ②Koktokay pegmatite field; ③Kuwei-Jiebiete pegmatite field; ④ Kelumute-Jideke pegmatite field; ⑤Kalaeerqisi pegmatite field; ⑥Dakalasu-Kekexier pegmatite field; ⑦Xiaokalasu-Qiebielin pegmatite field; ⑧Hailiutan-Yeliuman pegmatite field; ⑨Jiamanhaba pegmatite field

岩系、康布铁堡组火山-沉积岩系、第四系沉积物和较大面积 的中生代阿拉尔似斑状黑云母花岗岩,周围出露有较多花岗 岩细脉和伟晶岩细脉(田润等, 2021)。其中哈巴河群是一 套中深变质岩系,岩性为黑云母石英片岩、斜长角闪片岩、石 榴石云母石英片岩、黑云母斜长变粒岩、石榴石夕线石黑云 母斜长片麻岩和黑云母角闪斜长片麻岩等。第四系主要为 洪积冲积角砾沙砾、冲积碎石和砂土等,小虎斯特91号伟晶 岩脉西段一部分沿着断层被第四系沉积物覆盖(图 2b)。伟 晶岩脉体长约400m、宽约133m,平均厚度35m,呈不规则分 枝弯曲状。主脉的总体为近东西走向,NW 倾向,倾角在 35° ~45°之间。根据特定的岩石结构特征和矿物共生组合,小 虎斯特91号脉从外部到内部分为了5个结构带,分别为:文 象伟晶岩带(Ⅰ带)、块体微斜长石带(Ⅱ带)、石英-白云母巢 体带(Ⅲ带)、石英-叶钠长石-锂辉石带(Ⅳ带)、石英-锂辉石 核部带(V带)。根据 Li 矿化特征矿物组合关系, I-Ⅲ结构 带为该伟晶岩脉外部带, W-V结构带为该伟晶岩内部带。

塔拉提1号脉是一个小型 Li-Be-Ta-Nb 矿化伟晶岩矿 床,位于青河伟晶岩矿集区中部。地理坐标:N46°42'50"、 E90°32′38″。该矿区位于赛克博洛泰断裂以南的中上奥陶统 哈巴河群上亚群,岩性为红柱黑云母石英片岩、黑云母石英 片岩夹少量角闪片岩。该断裂北部为哈巴河群下亚群,主要 为绢云母石英片岩(新疆地质矿产局,1993)。区内有伟晶 岩脉60余条,其中有矿化脉6条。伟晶岩脉多顺片理产出 (图2c)。塔拉提1号伟晶岩脉侵入黑云母石英片岩中(图 2c),在黑云母石英片岩外接触带中发现大量的锂蓝闪石且 与围岩接触方向上存在单向固结结构。脉体长约105m,宽4 ~8m,整体走向为310°,倾角80°。根据矿物共生组构关系, 塔拉提1号脉被分为4个结构带,分别为:糖粒状钠长石带 (Ⅰ带)、块体微斜长石带(Ⅱ带)、石英-白云母巢体带(Ⅲ 带)和石英-叶钠长石-锂辉石带(IV带)。由于塔拉提1号脉 脉体较小且结构带分界线不够清晰,Ⅱ-Ⅲ结构带不连续零 星分布于Ⅰ带中。Ⅰ-Ⅲ带为伟晶岩脉外部带,Ⅳ结构带为

图 2 可可托海 3 号脉(a)、小虎斯特 91 号脉(b)和塔拉提 1 号脉(c)矿区地质平面图(据朱金初等, 2000; 田润等, 2021; 新疆地质局矿产局, 1993)

Fig. 2 Geological maps of the Koktakay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite (modified after Zhu *et al.*, 2000; Tian *et al.*, 2021; BGMRX, 1993)

伟晶岩内部带。

3 样品特征及分析方法

本次研究采集可可托海 3 号脉、小虎斯特 91 号脉和塔 拉提 1 号脉各结构带碱性长石、磷灰石、磷锰(铁)锂矿样品, 制成光薄片,进行详细的岩相学、显微镜和扫描电镜观察,选 取各矿物颗粒代表性位置进行原位主、微量元素分析测试。

3.1 矿物产状及结构特征

可可托海3号脉Ⅰ带微斜长石与石英呈文象结构产出 (图3a),石英沿着同一方向结晶,正交偏光镜下可以观察到 自形的石英晶体被微斜长石包裹,微斜长石显示典型的格子 双晶结构(图3b)。Ⅱ带糖粒状钠长石与大量粗粒浅绿色绿 柱石、墨绿色磷灰石和暗红色自形的石榴子石共生(图3c), 在正交偏光显微镜下可以观察到细粒的钠长石具有聚片双 晶结构,半自形的绿柱石和石榴子石的共生矿物组合(图 3d)。Ⅲ带微斜长石呈单一白色-浅肉红色的巨大块体产出 (图3e),正交偏光镜下呈现格子双晶,局部出现脉状钠长石 (图3f)。而可可托海3号脉内部结构带中以V带叶钠长石 与粗大颗粒(达到几十厘米)锂辉石共生为主要组合特征 (图3g),小虎斯特91号脉Ⅳ带显示石英、板片状锂辉石、微 斜长石矿物共生组合(图 3h),塔拉提1号脉内部结构带具 有类似的叶钠长石、石英和锂辉石共生组合(图 3i)。

可可托海3号脉、小虎斯特91号脉和塔拉提1号脉各 结构带均有不同产状的磷灰石产出。有些磷灰石颗粒粗大, 肉眼可识别,以集合体形式出现,粒径达到 500µm 以上;而 有些颗粒较小,依靠镜下观察,呈短柱状颗粒独立出现,粒径 约10µm(图4)。可可托海3号脉糖粒状钠长石带(Ⅱ带)发 育大量的磷灰石和绿柱石,其磷灰石显示为复杂弯曲的树枝 状、网格状的骸晶结构(图4a),明显区别于其他结构带的磷 灰石。可可托海 3 号脉 V 带磷灰石呈短柱状, 自形, 长约 200µm,与锂辉石和钠长石共生(图4b)。小虎斯特91号脉 内部带有小颗粒短柱状磷灰石,粒径 10~20µm,与钠长石和 次生锂云母共生(图4c);而与钠长石、白云母共生的粗粒自 形磷灰石,粒径可达600µm以上(图4d);在锂辉石内部的解 理裂隙中有较多粒径约10µm的细粒状磷灰石或细脉状磷 灰石充填出现(图4e,f)。塔拉提1号脉边缘接触带有较多 磷灰石沿着白云母边缘结晶,长度最长可达 1mm 以上(图 4g);糖粒状钠长石带中有他形斑点状磷灰石集体出现(图 4h);自形的大颗粒磷灰石中有钠长石包体矿物,同时半自形 的磷灰石出现溶蚀结构(图 4i)。这三条伟晶岩脉内部结构 带中与锂辉石、羟磷锂铝石以及云母共生的磷灰石呈他形, 细脉状充填产出(图4j-l)(Chen et al., 2022)。整体而言,本

图 3 可可托海 3 号脉(a-g)、小虎斯特 91 号脉(h)和塔拉提 1 号脉(i)碱性长石矿物手标本与镜下照片 (a,b)可可托海 3 号脉文象结构带(I带),石英和微斜长石交错生长;(c,d)可可托海 3 号脉糖粒状钠长石带(Ⅱ带),出现较多磷灰石、绿 柱石和石榴子石共生;(e,f)可可托海 3 号脉块体微斜长石(Ⅲ带);(g-i)可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉内部结构带中 的锂辉石、石英、碱性长石共生组合结构.Qtz-石英;Mic-微斜长石;Gn-石榴子石;Bn-绿柱石;Ab-钠长石;Ap-磷灰石;Clv-叶钠长石;Spd-锂 辉石

Fig. 3 Photos and microscopic photographs of feldspar-bearing hand specimens from the Koktokay No. 3 pegmatite (a-g), Xiaohusite No. 91 pegmatite (h) and Talati No. 1 pegmatite (i)

(a, b) graphic pegmatite zone (I zone), quartz and microcline interlace growth; (c, d) saccharoidal albite zone (II zone), occur more apalite, beryl and garnet intergrowth association; (e-f) blocky microcline zone (II zone); (g-i) the intergrowth association of spodumene, quartz and alkaline feldspar in the internal structural zone of the Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite, respectively. Qtz-quartz; Mic-microcline; Grt-garnet; Brl-beryl; Ab-albite; Ap-apatite; Clv-cleavelandite; Spd-spodumene

研究的磷灰石具有多种不同结构特征,指示了不同的岩浆结 晶环境。

可可托海3号脉、小虎斯特91号脉和塔拉提1号脉内 部结构带磷锰(铁)锂矿均为团块状,长度大约5~10cm,主 要与石英共生(图5)。可可托海3号脉磷锰锂矿样品与另 外两个样品外观有些不同,表现为外部有黑色薄层包裹,而 内部主要为浅粉色(图5a)。通过BSE照片和能谱鉴别该样 品浅粉色内部为成分较均一的磷锰锂矿,局部有亮白色条带 状蚀变产物(图5b),而外部黑色薄层为钠长石,可能是后期 风化的产物(图5c)。小虎斯特91号脉磷锰锂矿内部出现有 磷铝锰石包体以及较多他形磷灰石,且磷铝锰石外环有石英 围绕产出(图5e),内部裂隙中出现锰氧化物细脉和他形磷 灰石(图5f)。塔拉提1号脉磷锰锂矿内部出现很多热液流体交代蚀变现象,呈细的群脉状(图5h)。小虎斯特91号脉野外岩壁露头上可观察到磷锰锂矿和羟磷锂铝石等磷酸岩矿物包体出现(图5j,k)。

3.2 主量元素分析

矿物主量元素分析在中国科学院地球化学研究所矿床 地球化学国家重点实验室完成。碱性长石和磷灰石分析采 用了日本生产的 JEOLJXA-8230 型电子探针,磷锰(铁)锂矿 分析采用了 JXA8530F-plus 型场发射电子探针。仪器的工作 条件为:工作电压 25kV,加速电流为 10nA,对于碱性长石、磷 锰(铁)锂矿等大颗粒矿物采用 10μm 的束斑直径,对于部分

图 4 可可托海 3 号脉(a、b、j)、小虎斯特 91 号脉(c-f、k)和塔拉提 1 号脉(g-i、l)不同结构带中磷灰石 BSE 照片 (a)可可托海 3 号脉 II 带呈骸晶状产出的磷灰石;(b)可可托海 3 号脉 V 带自形磷灰石与锂辉石、钠长石共生;(c、d)小虎斯特 91 号脉磷灰 石与次生锂云母共生;(e、f)小虎斯特 91 号脉磷灰石充填产出于锂辉石裂隙中;(g)塔拉提 1 号脉边缘接触带磷灰石沿着白云母边缘生长; (h)塔拉提 1 号脉他形次生磷灰石;(i)塔拉提 1 号脉自形磷灰石内部有钠长石小包体以及有溶蚀结构的半自形磷灰石;(j-l)图片引自 Cheng et al. (2022),伟晶岩内部结构带中与锂辉石、羟磷锂铝石以及白云母共生的磷灰石呈他形,细脉状充填产出. Lep-锂云母;S-Lep-次 生锂云母;S-Mtb-次生羟磷锂铝石

Fig. 4 BSE images of apatites from the KoktokayNo. 3 pegmatite (a, b, j), Xiaohusite No. 91 pegmatite (c-f, k) and Talati No. 1 pegmatite (g-I, 1)

(a) skeletal crystalline apatite in zone II of the Koktokay No. 3 pegmatite; (b) euhedral apatite is associated with spodumene and albitite in zone V of the Koktokay No. 3 pegmatite; (c, d) apatite associated with secondary lepidolite in the Xiaohusite No. 91 pegmatite; (e, f) apatite is filled with spodumene fissure in in the Xiaohusite No. 91 pegmatite; (g) apatite grows along the muscovite margin in the contact zone of the Talati No. 1 pegmatite; (h) the anhedral secondary apatite of the Talati No. 1 pegmatite; (i) the albitite inclusions are present in the euhedral apatite and subhedral apatite with dissolution structure in the Talati No. 1 pegmatite; (j-1) quoted from Cheng *et al.* (2022), the apatite associated with spodumene, montebrasite and muscovite in the inner textural zones of the pegmatites are anhedral and filled in vein shapes. Lep-lepidolite; S-Lep-secondary leucite; S-Mtb-secondary montebrasite

图 5 可可托海 3 号脉(a-c)、小虎斯特 91 号脉(d-f、j、k)和塔拉提 1 号脉(g-i)野外磷锰锂矿样品、BSE 照片和能谱分析结果

(a)可可托海3号脉磷锰锂矿样品,外部有黑色薄层包裹,内部主要为桃红色;(b)可可托海3号脉磷锰锂矿薄片BSE照片,主要内部成分均一,局部出现亮白色条带状蚀变产物,外层黑色矿物经过能谱鉴定为硅铝酸盐矿物(c);(d)小虎斯特91号脉磷锰锂矿样品,呈团块状,黑褐色;(e)小虎斯特91号脉磷锰锂矿内部出现磷铝锰石包体以及较多他形富锰的磷灰石,并且磷铝锰石外环有一圈石英环绕生长;(f)小虎斯特91号脉磷锰锂矿内部裂隙中还出现锰氧化物细脉和他形磷灰石;(g)塔拉提1号脉磷锰铁锂矿样品,呈团块状,黑褐色,与石英共生;(h、i)塔拉提1号脉磷锰铁锂矿内部出现很多热液流体交代蚀变现象,呈细的脉群状;(j、k)小虎斯特91号脉岩壁上可观察到有磷酸盐包体出现. Ltp-磷锰锂矿;Eos-磷铝锰石;MnO-锰氧化物

Fig. 5 Images of field, lithiophilite samples, BSE and energy spectrum analysis results in the Koktokay No. 3 pegmatite (a-c),

Xiaohusite No. 91 pegmatite (d-f, j, k) and Talati No. 1 pegmatite (g-i)

(a) the lithiophilite sample is coated with black thin layer on the outside and peach color on the inside of the Koktokay No. 3 pegmatite; (b) the BSE photo of the section of lithiophilite from the Koktokay No. 3 pegmatite shows that the main internal part components are homogeneous, there are local bright white banded alteration products, and the outer black mineral are identified as aluminosilicate mineral by energy spectrum analysis (c); (d) the lithiophilite sample is clumpy and dark brown from the Xiaohusite No. 91 pegmatite; (e) there are eosphorite inclusions and many anhedral Mn-rich apatite in the lithiophilite of the Xiaohusite No. 91 pegmatite in the Xiaohusite No. 91 pegmatite; (g) the internal fracture of lithiophilite occur manganese oxide veins and anhedral apatite in the Xiaohusite No. 91 pegmatite; (g) the lithiophilite sample is clumpy and dark brown, associated with quartz from the Talati No. 1 pegmatite. (h, i) there are many hydrothermal fluid metasomatic alteration phenomena in the lithiophilite of the Talati No. 1 pegmatite, which is in the shape of a fine vein group; (j, k) phosphate inclusions can be observed on the wall of Xiaohusite No. 91 pegmatite. Ltp-lithiophilite; Eos-Eosphorite; MnO-manganese oxide

图 6 可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉不同结构带碱性长石中 P₂O₅ 含量变化图 Fig. 6 Variation of P₂O₅ content of alkali feldspar in different structural zones of the Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite

小颗粒磷灰石采用3~5μm的束斑直径。测试过程中使用 天然样品和人工合成氧化物作为标准样品。碱性长石测试 所用标样为:正长石(K)、斜长石(Ca、Al)、钠长石(Na、Si)、 硅酸钡钛矿(Ba)、镁铝榴石(Fe)。磷灰石测试所用标样为: 磷灰石(Ca、P、Sr、F)、镁铝榴石(Si、Mg、Mn、Fe)、钠长石 (Na)、天青石(S)、硅铍铝钠石(Cl)。磷锰锂矿测试所用标 样为:磷灰石(P)、镁铝榴石(Fe、Ti、Si、Al、Mg、Ca)、蔷薇辉石 (Mn)、钠长石(Na)、正长石(K)。所有数据经过 ZAF 校正。

3.3 微量元素分析

碱性长石和磷锰(铁)锂矿微量元素分析是在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,其中碱性长石采用 RESOlution S-155型 193nm激光结合 Agilent 7700X 质谱仪。磷锰(铁)锂矿采用飞秒激光剥蚀系统结合 Agilent 7900 质谱仪。激光束直径为40µm,频率为6Hz,能量为75mJ。氦气用作载气,氮气用于提高灵敏度。以人工合

成的硅酸盐玻璃标准物质 NIST SRM610 和 SRM612 作为标样,每完成 12 个样品点测试一组标样以监测仪器运行状态。 对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)采用软件 ICPMS DataCal 完成(Liu *et al.*, 2008)。

4 分析结果

4.1 碱性长石

本次研究的各结构带碱性长石矿物的主量元素并无明 显变化,分析结果见表 1。3 条伟晶岩脉中不同结构带中产 出的碱性长石均集中于钾长石(An_{0.000.00} Ab_{0.020.06} Or_{0.940.98}) 和钠长石(An_{0.000.01} Ab_{0.99-1.00} Or_{0.000.01})端元。钠长石大量出 现在伟晶岩脉的所有结构带,而微斜长石在可可托海 3 号脉 I-III带、小虎斯特 I-V带和塔拉提 1 号脉 II 和 III 带中出现。

不同结构带中碱性长石的 P2O5 含量不同。可可托海 3

					비비几	何5550					
结构带	I		I		1	Ш	IV	V	VI	VII	VIII
样品号	KK	ГЗ	KKT	13	KK	T16	KKT7	KKT20-1	KKT25	KKT22	KKT21-1
矿物	Ab $(n=6)$	Kfs $(n=6)$	Ab $(n=6)$ K	If $s(n=6)$	Ab $(n=6)$	Kfs $(n=6)$	Ab $(n=6)$	Ab $(n=6)$	Ab $(n=6)$	Ab $(n=6)$	Ab $(n=6)$
SiO_2	68.59	65.48	69.06	65.64	68.75	65.88	68.79	68.47	68.87	69.10	68.49
Al_2O_3	18.76	18.12	19.53	18.39	18.94	18.17	18.89	19.03	19.20	19.13	19.16
FeO	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.03	0.01	0.01	0.01
CaO	0.01	0.00	0.03	0.00	0.01	0.00	0.03	0.06	0.03	0.00	0.01
Na_2O	11.97	0.61	11.83	0.43	12.11	0.61	11.86	11.57	12.18	12.17	11.82
K_2O	0.16	16.05	0.14	16.28	0.11	15.99	0.07	0.04	0.03	0.07	0.03
BaO	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03
P_2O_5	0.00	0.10	0.04	0.24	0.00	0.12	0.00	0.02	0.00	0.00	0.09
Total	99.50	100.35	100.63	100.98	99.94	100.80	99.65	99.22	100.31	100.48	99.63
基于8个	0原子计算										
Si	3.014	3.010	2.997	2.999	3.008	3.013	3.014	3.010	3.002	3.006	3.001
Al	0.972	0.982	0.999	0.990	0.977	0.979	0.976	0.986	0.986	0.981	0.990
Fe	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000
Ca	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.003	0.001	0.000	0.000
Na	1.020	0.054	0.996	0.038	1.027	0.054	1.008	0.986	1.029	1.027	1.004
K	0.009	0.941	0.008	0.949	0.006	0.933	0.004	0.002	0.002	0.004	0.002
Ba	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001
Р	0.000	0.004	0.001	0.009	0.000	0.005	0.000	0.001	0.000	0.000	0.003
Sum	5.015	4.991	5.003	4.985	5.020	4.984	5.004	4.990	5.021	5.018	5.002
Ab	0.99	0.05	0.99	0.04	0.99	0.05	0.99	0.99	1.00	1.00	1.00
An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Or	0.01	0.95	0.01	0.96	0.01	0.95	0.00	0.00	0.00	0.00	0.00
					小虎斯物	侍91 号脉					
结构带	边缘接触带		Ι		I		Ш		IV		V
样品号	XH1	XH18	XH20		XH8	Х	.H5	XH10	XH	7	XH3
矿物	Ab $(n=6)$	Ab $(n = 4)$) Kfs $(n = 4$) Ab (n =	:4) Kfs (r	n = 5) Ab (n = 6) Kfs	(n=5) A	b(n=5)l	Kfs $(n=6)$	Ab $(n=8)$
SiO ₂	68.60	68.72	65.03	68.60) 65.	34 68	3.91 (5.65	68.84	64.93	68.31
Al_2O_3	19.16	18.94	18.37	19.18	8 18.	23 19	0.27	18 45	19.35	18 28	19.06
FeO	0.01								17100	10.20	
CaO		0.01	0.00	0.00	0.0	01 0	. 01	0.01	0.00	0.00	0.00
Na.O	0.02	0.01 0.01	0.00	0.00 0.01	0.0	01 0 00 0	. 01	0.01 0.00	0.00 0.00	0.00	0.00 0.02
114220	0.02 11.81	0.01 0.01 11.93	0.00 0.00 0.64	0.00 0.01 11.86	0.0 0.0 5 0.0	01 0 00 0 67 11	. 01 . 01 . 71	0.01 0.00 0.32	0.00 0.00 12.04	0.00 0.00 0.26	0.00 0.02 11.55
K ₂ 0	0.02 11.81 0.04	0.01 0.01 11.93 0.06	0.00 0.00 0.64 16.00	0.00 0.01 11.86 0.07	0.0 0.0 5 0.0 15.	01 0 00 0 67 11 80 0	. 01 . 01 . 71 . 06	0.01 0.00 0.32 16.06	0.00 0.00 12.04 0.07	0.00 0.00 0.26 15.90	0.00 0.02 11.55 0.10
K ₂ O BaO	0.02 11.81 0.04 0.00	0.01 0.01 11.93 0.06 0.00	0.00 0.00 0.64 16.00 0.11	0.00 0.01 11.86 0.07 0.00	0.0 0.0 5 0.0 15. 0.0	01 0 00 0 67 11 80 0 00 0	. 01 . 01 . 71 . 06 . 02	0.01 0.00 0.32 16.06 0.03	0.00 0.00 12.04 0.07 0.00	0.00 0.00 0.26 15.90 0.00	0.00 0.02 11.55 0.10 0.01
$ \begin{array}{c} \text{K}_2\text{O}\\ \text{BaO}\\ \text{P}_2\text{O}_5\\ \end{array} $	0.02 11.81 0.04 0.00 0.00	0.01 0.01 11.93 0.06 0.00 0.00	0.00 0.00 0.64 16.00 0.11 0.27	0.00 0.01 11.86 0.07 0.00 0.10	0.0 0.0 5 0.0 15. 0.0 0.2	01 0 00 0 67 11 80 0 00 0 32 0	. 01 . 01 . 71 . 06 . 02 . 00	0.01 0.00 0.32 16.06 0.03 0.21	0.00 0.00 12.04 0.07 0.00 0.00	0.00 0.00 0.26 15.90 0.00 0.35	0.00 0.02 11.55 0.10 0.01 0.00
$K_2 O$ BaO $P_2 O_5$ $Total$	0.02 11.81 0.04 0.00 0.00 99.64	0.01 0.01 11.93 0.06 0.00 0.00 99.67	0.00 0.64 16.00 0.11 0.27 100.41	0.00 0.01 11.86 0.07 0.00 0.10 99.81	0.0 0.0 5 0.0 15. 0.0 0.1	01 0 00 0 67 11 80 0 00 0 32 0 .37 99	.01 .01 .71 .06 .02 .00 0.98 1	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73	0.00 0.00 12.04 0.07 0.00 0.00 100.30	0.00 0.00 0.26 15.90 0.00 0.35 99.71	0.00 0.02 11.55 0.10 0.01 0.00 99.05
K ₂ O BaO P ₂ O ₅ Total 基于8个	0.02 11.81 0.04 0.00 0.00 99.64 0原子计算	0.01 0.01 11.93 0.06 0.00 0.00 99.67	0.00 0.64 16.00 0.11 0.27 100.41	0.00 0.01 11.86 0.07 0.00 0.10 99.81	0.0 0.0 5 0.0 15. 0.0 0.1 1. 100	01 0 00 0 67 11 80 0 00 0 32 0 .37 99	.01 .01 .71 .06 .02 .00 0.98 1	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73	0.00 0.00 12.04 0.07 0.00 0.00 100.30	0.00 0.00 0.26 15.90 0.00 0.35 99.71	0.00 0.02 11.55 0.10 0.01 0.00 99.05
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si	0.02 11.81 0.04 0.00 0.00 99.64 0原子计算 3.006	0.01 0.01 11.93 0.06 0.00 0.00 99.67 3.012	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990 \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001	0.0 0.0 5 0.0 15. 0.0 0.1 1. 100	01 0 000 0 67 11 80 0 000 0 32 0 .37 99 999 3.	.01 .01 .71 .06 .02 .00 0.98 1 .007	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002	0.00 0.00 12.04 0.07 0.00 0.00 100.30	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990	0.01 0.01 11.93 0.06 0.00 0.00 99.67 3.012 0.978	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990\\ 0.996\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989	0.0 0.0 5 0.0 15. 0.0 0.1 1 100 1 2.9 0 0.9	01 0 00 0 67 11 80 0 00 0 32 0 .37 99 3. 886 0.	.01 .01 .71 .06 .02 .00 0.98 1 007 2 991 0	0.01 0.00 0.32 16.06 0.03 0.21 00.73 3.002 0.994	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000	0.01 0.01 11.93 0.06 0.00 0.00 99.67 3.012 0.978 0.000	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990\\ 0.996\\ 0.000\\ 0.000 \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000	0.0 0.0 0.0 15. 0.0 0.0 0.0 1 1000 1 2.9 0 0.9 0 0.0	01 0 00 0 67 11 80 0 00 0 32 0 .37 99 999 3. 986 0. 000 0.	.01 .01 .71 .06 .02 .00 .98 1 .00 .98 1 .007 .007 .007 .000 .000 .000 .000 .0	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990\\ 0.996\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000	0.0 0.0 0.0 15.0 0.0 0.0 0.0 1 100 1 2.9 0 0.9 0 0.0 0 0.0 0 0.0	01 0 00 0 67 11 80 0 00 0 32 0 .37 99 999 3. 986 0. 000 0.	.01 .01 .71 .06 .02 .00 .98 1 .007 .991 .000 .000 .000 .000	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 0.000	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.000	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline\\ 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990\\ 0.996\\ 0.000\\ 0.000\\ 0.057\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000 0.000 1.000	0.0 0.0 0.0 15. 0.0 0.0 0.0 1 100 1 2.9 0 0.9 0 0.0 0 0.0 0.	01 0 00 0 67 11 80 0 000 0 32 0 .37 99 .386 0. 000 0. 000 0. 000 0. 000 0.	.01 .01 .71 .06 .02 .00 .98 1 .00 .98 1 .00 .98 1 .00 .99 1 .00 .00 .00 .00 .00 .00 .00 .00 .00	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000 0. 028	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 0.000 1.017	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.023	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline \\ 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ 2.990\\ 0.996\\ 0.000\\ 0.000\\ 0.057\\ 0.938 \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.985 0.000 0.000 1.006	0.0 0.0 0.0 15. 0.0 0.0 0.0 1.100 1.2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 000 0 32 0 .37 99 .386 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 025 0.	.01 .00 .00 .00 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .0000 .0003 .003	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000 0. 028 0. 937	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 0.000 1.017 0.004	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.023 0.936	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K Ba	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002 0.000	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ \hline\\ 2.990\\ 0.996\\ 0.000\\ 0.000\\ 0.057\\ 0.938\\ 0.002\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000 0.000 1.000 0.000	0.0 0.0 0.0 15. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 000 0 32 0 .37 99 3.86 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0.	.01 .01 .01 .71 .06 .02 .00 0.98 1 .00 .991 .00 .000 .000 .000 .000 .000	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000 0. 028 0. 937 0. 001	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 1.017 0.004 0.000	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.023 0.936 0.000	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006 0.000
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K Ba P	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002 0.000 0.000	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ \hline\\ 2.990\\ 0.996\\ 0.000\\ 0.000\\ 0.057\\ 0.938\\ 0.002\\ 0.011\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000 0.000 1.000 0.000 0.000 0.000	0.0 0.0 0.0 15. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 000 0 32 0 .37 99 3. .37 999 3. 000 0. 000 0. 000 0. 000 0. 000 0. 025 0. 000 0. 012 0.	.01 .00 .00 .00 .00 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000 0. 028 0. 937 0. 001 0. 008	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 0.000 1.017 0.004 0.000 0.000 0.000	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.023 0.936 0.000 0.014	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006 0.000 0.000
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K Ba P Sum	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002 0.000 0.000 5.002	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ 0.000\\ 0.000\\ 0.000\\ 5.008\\ \end{array}$	0.00 0.64 16.00 0.11 0.27 100.41 2.990 0.996 0.000 0.000 0.057 0.938 0.002 0.011 4.994	$\begin{array}{c} 0.00\\ 0.01\\ 11.86\\ 0.07\\ 0.00\\ 0.10\\ 99.81\\ 3.001\\ 0.985\\ 0.000\\ 0.000\\ 1.006\\ 0.004\\ 0.004\\ 5.004\end{array}$	0.0 0.0 0.0 15. 0.0 15. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 00 0 32 0 337 99 3.37 99 3.86 0. 000 0. 000 0. 000 0. 000 0. 025 0. 000 0. 012 0.	.01 .00 .00 .0000	0.01 0.00 0.32 16.06 0.03 0.21 00.73 3.002 0.994 0.000 0.000 0.028 0.937 0.001 0.008 4.971	0.00 0.00 12.04 0.07 0.00 0.00 100.30 2.999 0.994 0.000 1.017 0.004 0.000 5.014	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.000 0.023 0.936 0.000 0.014 4.965	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006 0.000 0.000 0.000 4.992
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K Ba P Sum Ab	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002 0.000 0.000 5.002 1.00	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ 0.000\\ 0.000\\ 5.008\\ 1.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ \hline 2.990\\ 0.996\\ 0.000\\ 0.096\\ 0.000\\ 0.057\\ 0.938\\ 0.002\\ 0.011\\ 4.994\\ 0.06\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000 0.000 1.006 0.002 0.002 5.004 1.00	0.0 0.0 0.0 15. 0.0 15. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 00 0 32 0 .37 99 3. 86 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 025 0. 000 0. 012 0. 082 4. 06 1	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .00 .00 .00 .00 .00	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 000 0. 028 0. 937 0. 001 0. 008 4. 971 0. 03	0.00 0.00 12.04 0.07 0.00 100.30 2.999 0.994 0.000 1.017 0.004 0.000 0.000 5.014 1.00	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.023 0.936 0.000 0.014 4.965 0.02	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006 0.000 0.000 0.000 4.992 0.99
K ₂ O BaO P ₂ O ₅ Total 基于 8 个 Si Al Fe Ca Na K Ba P Sum Ab An	0.02 11.81 0.04 0.00 99.64 0原子计算 3.006 0.990 0.000 0.001 1.003 0.002 0.000 5.002 1.00 0.00	$\begin{array}{c} 0.01\\ 0.01\\ 11.93\\ 0.06\\ 0.00\\ 0.00\\ 99.67\\ \hline 3.012\\ 0.978\\ 0.000\\ 0.000\\ 1.014\\ 0.003\\ 0.000\\ 0.000\\ 5.008\\ 1.00\\ 0.00\\ \hline 0.00\\ \hline \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.64\\ 16.00\\ 0.11\\ 0.27\\ 100.41\\ \hline\\ 2.990\\ 0.996\\ 0.000\\ 0.096\\ 0.000\\ 0.057\\ 0.938\\ 0.002\\ 0.011\\ 4.994\\ 0.06\\ 0.00\\ \end{array}$	0.00 0.01 11.86 0.07 0.00 0.10 99.81 3.001 0.989 0.000 0.000 1.006 0.002 5.002 1.00 0.002	0.0 0.0 0.0 15. 0.0 15. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	01 0 00 0 67 11 80 0 000 0 32 0 332 0 34 0 999 3. 986 0. 900 0. 900 0. 900 0. 900 0. 900 0. 900 0. 900 0. 900 0. 912 0. 906 1 900 0	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .00 .02 .00 .00 .00 .00 .00	0. 01 0. 00 0. 32 16. 06 0. 03 0. 21 00. 73 3. 002 0. 994 0. 000 0. 028 0. 937 0. 001 0. 008 4. 971 0. 03 0. 00	0.00 0.00 12.04 0.07 0.00 100.30 2.999 0.994 0.000 1.017 0.004 0.000 5.014 1.00 0.00	0.00 0.00 0.26 15.90 0.00 0.35 99.71 2.997 0.995 0.000 0.023 0.936 0.000 0.014 4.965 0.02 0.00	0.00 0.02 11.55 0.10 0.01 0.00 99.05 3.009 0.990 0.000 0.001 0.987 0.006 0.000 0.000 4.992 0.99 0.00

Continued Table 1

			ţ	塔拉提1号脉				
结构带(单元)	边缘接触带	Ι		Π]	Ш	IV	
样品号	TLT21	TLT2	TLT11	TLT40	TI	_T6	TLT13	TLT10
矿物	Ab $(n=3)$	Ab $(n = 4)$	Ab (n=4)	Kfs $(n = 5)$	Ab $(n=6)$	Kfs $(n=6)$	Ab $(n=6)$	Ab(n=9)
SiO_2	68.34	68.32	67.89	63.82	69.08	63.36	67.97	68.85
Al_2O_3	19.41	18.80	19.30	19.05	19.09	19.23	19.52	18.67
FeO	0.03	0.02	0.01	0.01	0.01	0.02	0.00	0.03
CaO	0.22	0.04	0.00	0.00	0.01	0.00	0.01	0.00
Na ₂ O	11.53	11.93	11.88	0.16	11.90	0.19	11.64	12.05
K20	0.05	0.17	0.06	15.71	0.14	16.00	0.09	0.10
BaO	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.02
P_2O_5	0.00	0.07	0.16	0.16	0.00	0.34	0.25	0.00
Total	99.57	99.34	99.30	98.91	100.21	99.16	99.49	99.72
基于8个0原	子计算							
Si	2.996	3.007	2.987	2.971	3.011	2.949	2.982	3.018
Al	1.003	0.975	1.001	1.045	0.981	1.055	1.009	0.965
Fe	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.001
Ca	0.010	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.980	1.018	1.014	0.014	1.006	0.017	0.990	1.024
Κ	0.003	0.010	0.003	0.933	0.008	0.950	0.005	0.006
Ba	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Р	0.000	0.003	0.006	0.006	0.000	0.013	0.009	0.000
Sum	4.994	5.015	5.012	4.970	5.006	4.987	4.997	5.014
Ab	0.99	0.99	1.00	0.02	0.99	0.02	0.99	0.99
An	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Or	0.00	0.01	0.00	0.98	0.01	0.98	0.01	0.01

注:Ab-钠长石;Kfs-钾长石;n-分析点数

号脉钠长石的 P_2O_5 含量为 0 ~ 0.20%, 微斜长石的 P_2O_5 含量为 0 ~ 0.24%; 小虎斯特 91 号脉钠长石的 P_2O_5 含量为 0 ~ 0.11%, 微斜长石的 P_2O_5 含量为 0.21% ~ 0.51%; 塔拉提 1 号脉钠长石的 P_2O_5 含量为 0 ~ 0.27%, 微斜长石的 P_2O_5 含量为 0.11% ~ 0.56%。上述 3 条伟晶岩脉中微斜长石的 P_2O_5 含量均明显大于钠长石的 P_2O_5 含量。

如图 6 所示,可可托海 3 号脉 I 带至 III 带中钠长石 P₂O₅ 含量逐步增加,最高可达到 0. 20%,而 N 带至 VII 带中钠长石 P₂O₅ 含量整体较低,低于 0. 05%, VII 带 P₂O₅ 含量略高,达 0. 10%。可可托海 3 号脉 I 带微斜长石 P₂O₅ 含量平均值为 0. 09%, II 带略低(平均值为 0. 06%), III 带中最高(平均值 为 0. 13%)。小虎斯特 91 号脉 II 带钠长石的 P₂O₅ 含量较高 (平均值为 0. 08%),而其余结构带钠长石 P₂O₅ 含量整体上 低于或接近于检测限。反而小虎斯特 91 号脉微斜长石 P₂O₅ 含量很高, I 带至 V 带中微斜长石 P₂O₅ 含量呈轻微振荡上 升趋势, I 带平均值为 0. 26%, II 带平均值为 0. 32%, III 带 平均值为 0. 25%, N 带平均值为 0. 39%。塔拉提 1 号脉从外 部结构带到内部结构带中钠长石 P₂O₅ 含量整体上呈现轻微 振荡上升的趋势。观察发现塔拉提 1 号脉 N 带存在 P₂O₅ 含 量明显不同的两种钠长石,一种是与磷锂铝石共生的钠长 石,P₂O₅ 含量较高(0. 09%~0. 27%);另外一种是与锂辉石 共生的钠长石,P₂O₅ 含量较低(0~0.02%)。塔拉提1号脉 微斜长石中 P₂O₅ 含量从外部Ⅱ带(平均值为0.19%)到内 部Ⅲ带(平均值为0.45%)也呈上升趋势。

4.2 磷灰石

针对以上伟晶岩各个结构带不同产状的磷灰石进行 EPMA 主量元素分析测试,其代表性化学成分结果列于表 2。 可可托海 3 号脉各结构带磷灰石具有较为一致的 P_2O_5 (38.84%~44.64%)和 CaO(47.48%~55.93%)含量、高 F (2.85%~5.55%)、低 Cl(基本上低于检测限)的特征,为典型的氟磷灰石。但是 MnO 含量变化较大(0.09%~ 7.35%),其中II带骸晶状磷灰石 MnO(5.89%~7.35%)含量最高,而其他元素 FeO、Na₂O、MgO、SO₃、SrO 和 Al₂O₃等含量较低(基本上都 <0.20%)。

小虎斯特 91 号脉外部结构带(从边缘接触带到 II 石英 白云母带)磷灰石 $P_2O_5(40.95\% ~ 42.39\%)$ 、CaO(49.85% ~54.61%)、MnO(0.90% ~ 4.68%)和 F(2.93% ~ 4.02%) 含量较为均一,但是内部矿化结构带(IV和V带)磷灰石 $P_2O_5(34.71\% ~ 42.12\%)$ 、CaO(40.67% ~ 51.51%)、MnO (2.66% ~ 9.57%)和 F(0~4.30%)含量变化范围较大,存 在岩浆成因和热液成因的磷灰石。并且内部结构带磷灰石

wt%
化学组成(
代表性磷灰石主要
^ 结构带中 (
号脉和塔拉提
永、小虎斯特 91
可可托海3号服
表 2

Table 2	Major	chemic	al comp	ositions	of rep	resentat	uve apa	the from	m the K	oktokay	1 C .0N	oegmati	te, Miac	husite	No. 91	pegmatit	e and T	alati Ne	o. 1 peg	matite	(wt%)			
伟晶岩			Ē	可托海	3 号脉						Ύ.	虎斯斯特	‡91 号∥	永						塔拉提	1 号脉			
结构带	-	ш	=	N	Λ	И	М	Ш	边缘	г	п	H	Ŋ	-	2		边缘	Π		п	⊨		N	
样品号	K3	K13	K16	К7	K20	K25	K22	K21	XI	X18	X9	X5	X7-1	X7-2	X4	ß	T21	12	T11	T6	T4	T13-1	T13-2	T10
成因				出来	27					∰	裟		热	夜	岩浆	热液	出。	<u>مح</u>	热液		出浚		菜	夜
点数	6	7	5	4	4	6	4	6	9	6	5	9	4	4	5	8	7	5	4	5	6	3	6	7
$\rm P_2O_5$	41.75 4	41.27 4	41.62 4	40.04 ⁴	41.70	41.82	41.31	41.57	41.99	41.54	41.62	41.85	41.36	38.44	41.81	38.13	42.17	41.63	36.31	41.25	41.35	41.57	41.84	40.13
CaO	51.92	48.51 5	5.93	53.34	50.27	52.39	48.49	50.21	49.98	54.04	53.55	51.99	51.51	44. 24	51.30	49.15	55.55	52.47	53.63	51.84	52.45	52.02	51.74	53.81
$\mathrm{Al}_2\mathrm{O}_3$	0.00	0.01	0.06	0.02	0.05	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.03	0.07	0.00	0.04	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.17
FeO	0.17	0.12	0.06	0.05	0.08	0.04	0.16	0.03	0.09	0.03	0.17	0.23	0.02	0.08	0.10	0.03	0.03	0.16	0.07	0.06	0.15	0.09	0.04	0.12
M_{nO}	3.44	6.45	0.42	2.04	4.64	3.29	6.32	5.33	4.68	1.14	2.20	3.25	2.66	9.03	4.04	4.05	0.43	1.43	0.34	1.54	1.39	1.54	0.00	0.63
MgO	0.03	0.00	0.00	0.00	0.01	0.02	0.02	0.00	0.00	0.00	0.01	0.04	0.01	0.00	0.00	0.00	0.01	0.06	0.01	0.00	0.00	0.01	0.29	0.06
$\mathrm{Na}_2\mathrm{O}$	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.08	0.09	0.01	0.04	0.05	0.07	0.01	0.43	0.00	0.00	1.15	0.11	0.20	0.08	0.12	0.22
SrO	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.20	0.13	0.00	0.00	0.38	0.14	0.02	0.19	0.09	0.11	0.01	0.51	0.37	0.46	0.00	0.00
SO_3	0.00	0.01	0.02	0.04	0.00	0.01	0.01	0.00	0.00	0.00	0.03	0.00	0.04	0.18	0.00	0.27	0.00	0.00	3.43	0.03	0.04	0.02	3.48	0.33
н	3.39	3.44	4.01	2.97	3.38	2.85	3.20	4.15	3.55	3.12	3.56	3.25	0.00	0.22	3.19	0.00	3.03	3.03	4.82	3.85	3.81	4.04	1.66	0.62
CI	0.00	0.00	0.00	0.00	0.00	0.02	0.08	0.00	0.01	0.00	0.00	0.00	0.01	0.03	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.12	0.01
$\rm H_2O^{*}$	0.15	0.09	0.00	0.36	0.13	0.41	0.19	0.00	0.05	0.29	0.09	0.22	1.72	1.54	0.24	1.70	0.36	0.29	0.00	0.00	0.00	0.00	0.86	1.47
$\mathbf{F}=\mathbf{O}$	1.42	1.44	1.68	1.25	1.42	1.20	1.34	1.74	1.49	1.31	1.50	1.37	0.00	0.09	1.34	0.00	1.27	1.27	2.02	1.62	1.60	1.70	0.70	0.26
Total	99.41	98.38 1	00.50	37.88	98.73	99.65	98.32	99.29	98.77	99.01	99.82	99.49	97.31	93.88	99.30	94.12	00.36	97.70	97.75	96.83	97.66	97.32	98.63	97.46
基于10	一田离-	₹; 0H -	+ F + Cl	=2 计算																				
Р	6.02	6.07	5.84	5.75	6.10	6.00	6.09	6.03	6.16	5.95	5.93	6.03	6.08	5.89	6.05	5.67	5.96	6.11	5.12	6.12	6.05	6.14	6.31	5.78
Са	9.47	9.03	9.93	9.70	9.31	9.52	9.04	9.22	9.27	9.80	9.66	9.48	9.59	8.58	9.40	9.25	9.93	9.75	9.57	9.73	9.71	9.73	9.88	9.80
Al	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
Fe	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.00	0.01	0.00	0.02	0.03	0.00	0.01	0.01	0.00	0.00	0.02	0.01	0.01	0.02	0.01	0.01	0.02
Мn	0.50	0.95	0.06	0.29	0.68	0.47	0.93	0.77	0.69	0.16	0.31	0.47	0.39	1.38	0.59	0.60	0.06	0.21	0.05	0.23	0.20	0.23	0.00	0.09
M_{g}	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.08	0.02
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.01	0.02	0.02	0.00	0.15	0.00	0.00	0.37	0.04	0.07	0.03	0.04	0.07
S	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.04	0.00	0.00	0.43	0.00	0.01	0.00	0.47	0.04
Ч	1.83	1.89	2.10	1.59	1.85	1.53	1.76	2.25	1.94	1.67	1.89	1.75	0.00	0.13	1.72	0.00	1.60	1.66	2.54	2.13	2.08	2.23	0.94	0.33
CI	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
НО	0.17	0.11	0.00	0.41	0.15	0.47	0.22	0.00	0.05	0.33	0.11	0.25	2.00	1.86	0.28	1.99	0.40	0.34	0.00	0.00	0.00	0.00	1.03	1.66

注:*为计算值

表 3 月	回艽海、	る 与 取 い	小虎斯型		水、昭拉 :	混 L - 「 」 の 別	そ 解 (1)	沃) 裡 4、	处具饵 3	15.11.2000	電酸盐句	物土罢1	ん平成と	r (wt%)							
Table 3	Major cl	hemical	composit	ion of lit	thiophilit	e and alt	tered mir	teral fron	n the the	Soktok	ay No. 3	pegmati	te, Xiao	husite N	э. 91 ре _б	matite a	nd Talat	i No. 1 _I	pegmatite	; (wt%)	
伟晶岩			可可托》	每3号脉						小虎	斯特 91-	号脉						塔拉携	是1 号脉		
样品号	K-1	K-2	K-3	K4	K-5	K-6	X-1	X-2	X-3	Х-7	X-8	6-X	X-10	X-11	X-12	T-1	T-2	T-3	T-7	T-8	T-9
矿物		磷锰锂矿	4		蚀变矿物	1		磷锰锂矿			磷铝锰石			磷灰石		耧	锰铁锂の	1		蚀变矿物	
P_2O_5	38.11	39.09	38.92	16.35	15.62	14.85	45.79	45.77	45.96	30.42	30.14	30.15	40.48	40.59	40.25	47.62	47.92	48.14	34.78	34.99	34.94
MnO	41.79	38.30	41.73	47.56	48.93	49.26	28.82	28.54	28.79	23.97	23.46	23.35	6.61	5.64	6.30	18.67	18.64	18.94	5.93	9.25	4.25
SiO_2	0.00	0.00	0.02	0.00	0.00	0.00	0.04	0.07	0.07	0.01	0.01	0.03	0.00	0.00	0.00	0.04	0.01	0.03	0.02	0.00	0.00
$\mathrm{Al}_2\mathrm{O}_3$	0.01	0.00	0.03	0.01	0.00	0.01	0.00	0.00	0.00	22.05	21.62	21.61	0.01	0.01	0.02	0.00	0.00	0.00	0.02	0.00	0.00
FeO	0.98	1.30	0.53	0.80	1.72	1.03	17.18	17.10	16.94	5.72	6.31	6.82	1.47	0.86	0.95	18.46	18.34	18.36	24.35	19.78	25.22
M_{gO}	0.11	0.22	0.12	0.26	0.29	0.33	0.91	0.84	0.88	0.00	0.03	0.01	0.01	0.01	0.04	5.98	6.10	6.10	8.20	8.32	8.34
CaO	2.98	6.25	3.37	10.37	10.06	10.01	0.02	0.00	0.01	0.44	0.68	0.50	45.52	46.96	46.11	0.00	0.08	0.00	0.49	2.98	0.54
ZnO	0.67	0.14	0.73	0.53	0.49	0.46	0.12	0.11	0.14	0.00	0.02	0.02	0.04	0.01	0.02	0.82	0.82	0.81	1.54	0.75	0.70
$\mathrm{Na}_2\mathrm{O}$	0.00	0.00	0.00	0.11	0.28	0.15	0.00	0.03	0.00	0.01	0.00	0.00	0.14	0.21	0.22	0.00	0.06	0.00	2.05	1.65	2.54
$K_2 O$	0.00	0.00	0.00	0.51	0.61	0.63	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00
$Li_20^{\left(LA\right)}$	9.41	9.40	9.60				6.91	7.04	7.83							6.75	6.69	6.81			
Total	94.06	94.70	95.05	76.57	78.00	76.73	99.81	99.50	100.62	82.63	82.28	82.48	94.31	94.31	93.91	98.34	98.66	99.19	77.36	77.75	76.55
注:Li,O ^{(L/}	1) 含量来	源于 LA-	-ICPMS 分	h析得出																	

FeO、Na₂O、MgO、SO₃、SrO 和 Al₂O₃ 等元素含量整体上都略 高于外部结构带。但是全部磷灰石 Cl 含量都是很低的 (<0.03%)。

塔拉提 1 号脉磷灰石中 $P_2O_5(36.22\% ~ 42.41\%)$ 、CaO (51.51% ~ 55.55%)、MnO (0 ~ 2.52%)和 F(0.10% ~ 4.82%,除了有一个异常点 9.19%)含量变化不大。值得注意的是,糖粒状钠长石带有一个样品(TLT11)出现斑点状磷灰石 集 合体(图 4h),其 Na₂O(0.99% ~ 1.15%)、SO₃ (2.37% ~ 3.44%)和 F(4.14% ~ 4.82%)含量较高,并且内部带与锂辉石共生的次生热液磷灰石 SO₃(3.48% ~ 3.84%)和 Cl(0.07% ~ 0.12%)含量相对较高,而其他的原生磷灰石 SO₃ 和 Cl含量大都低于检测限。

4.3 磷锰(铁)锂矿及相关蚀变产物

如表 3 所示,可可托海 3 号脉磷锰锂矿主要含有 P_2O_5 (38.11%~39.09%)和 MnO(38.30%~41.79%)以及少量 CaO(2.98%~6.25%)、FeO(0.53%~1.30%)和 ZnO (0.14%~0.73%),而亮白色区域蚀变矿物水磷钙锰矿(图 5b 黄色线条圈起部分)相对更加富 MnO(47.56%~ 49.26%)、CaO(10.01%~10.37%)、Na₂O(0.11%~ 0.28%)和 K₂O(0.51%~0.63%),而 P_2O_5 含量相对较低 (14.85%~16.35%)。

小虎斯特 91 号脉磷锰锂矿中 P_2O_5 含量为 45.77% ~ 46.47%, MnO 含量为 28.51% ~ 28.92%, FeO 含量为 16.78% ~ 17.18%, MgO 含量为 0.75% ~ 0.91%, ZnO 含量 0.11% ~ 0.15%。而共生的磷铝锰石主要含有 P_2O_5 (30.14% ~ 30.42%)、 Al_2O_3 (21.61% ~ 22.05%)、FeO (5.72% ~ 6.82%)、MnO(23.35% ~ 23.97%)以及少量 CaO (0.44% ~ 0.68%), 其他 SiO₂、MgO、ZnO、Na₂O和 K₂O 含量 较低, 大都低于检测限。磷铝锰石内部的次生磷灰石 P_2O_5 含量为 40.25% ~ 40.59%, CaO 含量为 45.52% ~ 46.96%, MnO 含量为 6.30% ~ 6.64%, FeO 含量为 0.86% ~ 1.47%, 而其他元素含量较低。

塔拉提1号脉磷锰(铁)锂矿中 P_2O_5 含量为47.62%~ 48.42%, MnO 含量为18.64%~19.05%, FeO 含量为 18.20%~18.46%, MgO 含量为5.98%~6.26%, ZnO 含量 为0.76%~0.82%。其他元素SiO₂、Al₂O₃、Na₂O和 K₂O 含 量较低, 大都低于检测限。其内部细的脉群状的蚀变产物羟 磷铁锰石主要成分为 P_2O_5 (34.78%~34.99%)、FeO (19.78%~25.22%)、MnO(4.25%~9.25%)、MgO(8.20% ~8.34%)以及少量的CaO、ZnO和 K₂O。

4.4 碱性长石、磷锰(铁)锂矿微量元素组成特征

可可托海 3 号脉 I 带至W带和W至W带钠长石含有 0 ~ 22×10⁻⁶ Li、0.1×10⁻⁶ ~12×10⁻⁶ Rb、0.01×10⁻⁶ ~5× 10⁻⁶ Cs、4×10⁻⁶ ~40×10⁻⁶ Pb、0.03% ~0.12% P₂O₅(电子 版附表 1);而 I 带和Ⅲ带微斜长石含有 10×10⁻⁶ ~127×

图 7 可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉 长石 K/Rb 与 Li、Be、B、P₂O₅、Ga、Rb、Cs 和 Pb 关系图解 纯黑色图标代表钠长石,灰色图标代表微斜长石

Fig. 7 K/Rb vs. Li, Be, B, P_2O_5 , Ga, Rb, Cs and Pb plots in feldspar from the Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite

The black icons represent albite and the gray icons represent microcline

10⁻⁶ Li $(37 \times 10^{-6} \sim 2416 \times 10^{-6} \text{ Rb}, 2 \times 10^{-6} \sim 154 \times 10^{-6} \text{ Cs}, 7 \times 10^{-6} \sim 67 \times 10^{-6} \text{ Pb}, 0.03\% \sim 0.15\% \text{ P}_2\text{O}_5$ 。小虎斯特 91 号脉 I 带和 III 带钠长石含有 0 ~ 12 × 10⁻⁶ Li $(0.2 \times 10^{-6} \sim 40 \times 10^{-6} \text{ Rb}, 0.01 \times 10^{-6} \sim 7 \times 10^{-6} \text{ Cs}, 5 \times 10^{-6} \sim 53 \times 10^{-6} \text{ Pb}, 0 \sim 0.33\% \text{ P}_2\text{O}_5; m \text{ I 带至 IV 带微斜长石含有 56 × 10^{-6} ~ 134 \times 10^{-6} \text{ Li}, 5970 \times 10^{-6} \sim 8287 \times 10^{-6} \text{ Rb}, 409 \times 10^{-6} \sim 817 \times 10^{-6} \text{ Cs}, 4 \times 10^{-6} \sim 71 \times 10^{-6} \text{ Pb}, 0.35\% \sim 0.40\% \text{ P}_2\text{O}_5$ 。 塔拉提 1 号脉 I 带至 IV 带钠长石含有 1 × 10⁻⁶ Cs $(3 \times 10^{-6} \sim 59 \times 10^{-6} \text{ Rb}, 0.1 \times 10^{-6} \sim 34 \times 10^{-6} \text{ Cs}, 3 \times 10^{-6} \sim 39 \times 10^{-6} \text{ Pb}, 0.01\% \sim 0.70\% \text{ P}_2\text{O}_5; m \text{ II 带和 III 带 徽 $\proptote{\mathbf{R}} + 3936 \times 10^{-6} \mathbf{Rb}, 1338 \times 10^{-6} \sim 3031 \times 10^{-6} \text{ Cs}, 69 \times 10^{-6} \sim 159 \times 10^{-6} \text{ Pb}, 0.11\% \sim 0.64\% \text{ P}_2\text{O}_5$ 。 伟晶岩徽斜长石中 Li $(\text{Rb}, (\text{Cs}, \text{Pb} 和 P_2\text{O}_5)$ 含

量明显高于可可托海3号脉中微斜长石。随着 K/Rb 值的减 小,Li、Rb、Cs、Pb 和 P₂O₅ 含量整体上呈现逐渐增加趋势,而 Be、B 和 Ga 等元素含量不高且无明显变化趋势(图 7)。其 他微量元素以及稀土元素含量都很低,大都低于检测限。

由于能谱和 EPMA 都不能分析出 Li 和 Be 这些轻质量 元素,故采用 LA-ICPMS 对可可托海 3 号脉、小虎斯特 91 号 脉和塔拉提 1 号脉磷锰(铁)锂矿样品薄片进行分析(表 3), 可可托海 3 号脉磷锰锂矿 Li₂O 含量为 9.00% ~ 9.95%,平 均值为 9.51%;小虎斯特 91 号脉磷锰锂矿 Li₂O 含量为 6.91% ~ 8.98%,平均值为 7.42%;塔拉提 1 号脉磷锰铁锂 矿 Li₂O 含量为 6.64% ~ 6.89%,平均值为 6.77%(表 3)。 以上样品 Be 含量均基本低于检测限。

5 讨论

5.1 矿物组构变化对伟晶岩内部岩浆-热液演化过程的 指示

根据野外地质现象观察,这三条伟晶岩脉都具有明显的 结构分带,共同表现为从外部带中的文象结构带、块体微斜 长石带向内部带中的叶钠长石-锂辉石带过渡演变,即外部 带中以微斜长石为主要特征矿物,而内部带中以钠长石为主 要特征矿物。王贤觉(1980)通过热力学计算将可可托海 3 号脉划分为 K-Na、Na-Li 和 K 三个主要的地球化学阶段,但 并不是所有的伟晶岩都有出现微斜长石核部带。所以,依据 长石固溶体系列矿物组合变化可以将伟晶岩演化过程简单 划分为早期 K-Na 岩浆阶段、晚期 Na-Li 岩浆-热液过渡阶段 两个主要阶段。

在过铝质岩浆体系,以显著低的 Fe-Mg-Ca-REE 为特征。 碱性长石化学成分上显示,可可托海 3 号脉、小虎斯特 91 号 脉以及塔拉提 1 号脉产出的主要是 K-Na 两个端元长石(表 1),基本没有钙长石出现,说明伟晶岩岩浆中 Ca 含量较低。 大部分碱性长石结构和组分都较为均一,部分微斜长石中出 现条纹状钠长石(图 3f),这说明存在条纹长石出溶结构,这 在伟晶岩中较为常见(London, 2018b; Tang *et al.*, 2018)。

Černý et al. (1985)认为钾长石和云母的 K/Rb 和 K/Cs 比值可以有效指示伟晶岩的演化趋势和分离结晶程度。微 斜长石明显比钠长石更加富集 Li、Rb、Cs,这主要是由于不同 晶体结构决定的。随着 K/Rb 比值的减小,Li、Rb、Cs、Pb 和 P₂O₅ 含量显著增加(图7),表明岩浆分离结晶作用使得从残 余岩浆中结晶的碱性长石中 Li、Rb、Cs、Pb 和 P 逐渐富集。 虽然碱性长石中含有一定量的 B、Ga 和 Be,但与 K/Rb 无明 显变化规律,表明这些元素可能受岩浆分异演化影响较小。

磷灰石能较好记录和保存岩浆-热液活动的原始信息, 是一种常见的示踪矿物(邢凯和舒启海,2021)。由于岩浆 成因和热液成因磷灰石的地球化学特征具有较大差异,通过 组构差异可以区分不同成因磷灰石,从而能够示踪伟晶岩岩 浆-热液演化过程。可可托海3号脉糖粒状钠长石带(Ⅱ带)

中存在两种成分上有显著不同的磷灰石,一种以 MnO 含量 较低(1.48%~1.97%)为特征的自形磷灰石,另外一种以 MnO 含量较高(5.89%~7.35%)和骸晶结构为特征的磷灰 石(图4a)。前者代表早期岩浆在相对稳定的条件下结晶形 成,而后者可能是早期岩浆侵位过程过冷条件下快速结晶所 致。London (2008)认为矿物骸晶结构是由于岩浆过冷不平 衡结晶形成的,凤永刚等(2019)研究新疆大红柳滩伟晶岩中 的磷铁锂矿也出现了骨骼状、树枝状的形态,可能反映了伟 晶岩在过冷条件下结晶。最近 McCaffrey and Jowitt (2023) 对比研究了全球 200 多条伟晶岩脉的结晶温度,认为液相线 过冷是稀有金属成矿的关键因素。因此,可可托海3号脉糖 粒状钠长石(Ⅱ带)集合体状骸晶磷灰石与大量共生绿柱石 (铍矿化阶段)(图 3b)很可能形成于岩浆过冷条件下。除此 之外,可可托海3号脉其他结构带自形磷灰石(图4b)主要 是岩浆成因,从外部带到内部带磷灰石 F 含量无明显变化, 基本集中在 3.0%~4.5% 区间(图 8a), 而 MnO 含量与 CaO 含量呈很好的负相关性(图 8b),表明岩浆演化过程中磷灰 石晶格中部分的 Ca2+被 Mn2+类质同象替代,指示了伟晶岩 岩浆从外部带到内部带的演化方向(张辉和刘丛强, 2001; Cao et al., 2013; 白应雄等, 2021)。此外, 在内部带中锂辉 石解理裂隙中往往出现热液成因的锂云母和磷灰石细脉(图 4j)(Chen et al., 2022),指示晚期存在富 P、F 的岩浆流体作 用。可可托海伟晶岩脉还出现后期热液作用使磷灰石溶解 再沉淀的磷灰石,其SO,含量相对较高(白应雄等,2021)。

小虎斯特91 号脉外部带主要是岩浆成因氟磷灰石,F含量集中于3.0%~4.5%(图8a),同样地,MnO含量与CaO含量呈较好的负相关性(图8b)。IV带和V带存在岩浆和热液成因磷灰石,与次生锂云母共生的大颗粒自形磷灰石(图4d)为岩浆成因,其F含量较高与外部带中磷灰石基本一致;而其他与锂辉石和次生锂云母共生的细粒他形磷灰石(图4c,e,f)中F含量很低(图8a),主要被OH⁻替代,是羟磷灰石,表明形成于富H₂O的流体体系,为热液成因。由于MnO含量相对较高且变化范围较大(图8c),表明这些磷灰石形成于流体成分波动较大的晚期流体中。

塔拉提1号脉外部带主要也是岩浆成因氟磷灰石,但是 其 MnO 含量整体上低于可可托海3号脉和小虎斯特91号脉 (图 8b),表明其岩浆演化程度相对较低。而内部带中Ⅳ带 产出F含量较低的次生羟磷灰石(图 8a),表明主要形成于 岩浆后期富H₂O的热液体系。边缘接触带中白云母定向结 晶,呈梳状结构,而有较多氟磷灰石沿着白云母边缘结晶(图 4g),可能指示其形成于的富F、P的岩浆-热液流体体系。磷 灰石内部有小颗粒的钠长石晶体表明磷灰石结晶晚于钠长 石(图 4i)。外部带中团簇状磷灰石以及内部带中次生的磷 灰石 SO₃ 含量较高(表 2),表明塔拉提1号脉后期流体具有 富硫特征,这明显区别于可可托海3号脉和小虎斯特91号 脉中磷灰石。已有研究显示,斑岩系统中磷灰石中 SO₃ 含量 越高,通常表明岩浆氧逸度越高(Streck and Dilles, 1998; Li http://www.ysxb.ac.cn

图 8 可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉不同结构带中磷灰石成分变化图解

Fig. 8 Diagrams of apatite composition variations in different zones of Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite

et al., 2012; Tang et al., 2020)。磷灰石中高的 SO₃ 含量, 很可能指示塔拉提 1 号脉岩浆演化后期流体中氧逸度升高。 花岗岩-伟晶岩演化体系中氧逸度升高,并富集 H₂O 和 F 等 挥发份,这是有利于 Li、Be 等稀有元素富集的(严清高等, 2022)。

可可托海 3 号脉磷锰锂矿 MnO 含量(38.30%~41.79%)远远高于 FeO 含量(0.53%~1.30%),基本接近于磷锰锂矿端元,但是其 P₂O₅ 含量较低,总量也只有 95% 左右(表 3),推测其含有相当量的结构 H₂O(~5%),OH⁻ 替代了

图 9 可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉 磷锰锂矿 MnO/(FeO + MnO)比值与 Li₂O 含量变化图解 Fig. 9 Diagram of MnO/(FeO + MnO) value versus Li₂O content variation of lithiophylite in the Koktokay No. 3 pegmatite, Xiaohusite No. 91 pegmatite and Talati No. 1 pegmatite

部分 PO₄³⁻ 位置,可能指示其形成于相对富 H₂O 环境体系。 可可托海 3 号脉中磷锰锂矿的 MnO/(MnO + FeO)比值和 Li₂O 含量明显高于小虎斯特 91 号脉,而小虎斯特 91 号脉中 磷锰锂矿的 MnO/(MnO + FeO)比值和 Li₂O 含量又高于塔拉 提 1 号脉(图 9),指示了更高的演化程度和矿化程度。这与 可可托海 3 号脉矿化程度要好于小虎斯特 91 号脉和塔拉提 1 号脉的实际情况是吻合的。然而塔拉提 1 号脉磷锰锂矿中 MnO 和 FeO 含量相差不大,变化于 18% ~19% 之间,其 Mn/ Fe 比值接近于 1,按照严格命名应该为磷锰铁锂矿(倪云祥 等, 1989)。因此,磷锰(铁)锂矿的 MnO/(MnO + FeO)比值 可以较好的指示岩浆演化程度以及脉体的矿化程度,即 MnO/(MnO + FeO)比值越大,Li₂O 含量越高,表明伟晶岩演 化程度越高,矿化程度越好。

综合以上碱性长石、磷灰石和磷锰铁锂矿产状和矿物组成变化分析,可可托海3号脉、小虎斯特91号脉和塔拉提1 号脉从外部带到内部带演化程度逐渐升高,都经历了复杂的 岩浆阶段、岩浆-热液过渡阶段和热液阶段的演化过程。

5.2 磷的变化对锂富集成矿的指示

虽然碱性长石中磷含量不是很高(绝大部分 <1%),但 是碱性长石作为伟晶岩最重要的造岩矿物,是磷的最主要储 库,大量碱性长石的结晶(特别是块体微斜长石)会消耗岩浆 中绝大部分磷(London *et al.*, 1990;黄小龙等, 2001)。碱 性长石中磷含量变化可以有效指示过铝质岩浆体系的演化 过程,磷能降低花岗质熔体的液相线温度、粘度以及增加 Li 和 H₂O 在熔体中的溶解度(唐勇等, 2008)。唐勇等(2009) 通过实验研究表明在过铝质岩浆体系中,液相线温度降低是 由于 P⁵⁺与 Al³⁺的结合形成 AlPO₄,降低了熔体中碱性长石 组分的活度。如图 6 所示,可可托海 3 号脉 Ⅲ 带碱性长石 P₂O₅ 含量平均值最高,表明 I 带至 Ⅲ 带岩浆阶段中磷是随 着演化逐渐富集的。Ⅲ 带由于大量块体微斜长石或者其他 磷酸盐矿物的结晶消耗了岩浆中大量的磷,导致后续结构带 中碱性长石中磷含量相对较低,随着进一步演化至Ⅲ带磷再 次富集。可可托海 3 号脉 Ⅲ带微斜长石 P₂O₅ 含量在 0.30% ~0.64% 之间,平均值达到了 0.50%,远高于外部带中微斜 长石(张辉, 2001)。值得注意的是,可可托海 3 号脉 Ⅱ 带微 斜长石 P₂O₅ 含量相对 I 带和 Ⅲ 带较低,这可能是同时大量 的磷灰石结晶,争夺并消耗了岩浆中的磷,导致 P₂O₅ 含量 降低。

小虎斯特 91 号脉和塔拉提 1 号脉碱性长石从边缘接触 带到内部带中碱性长石 P_2O_5 含量整体上也是呈振荡上升趋 势的(图 6),这也是反映了岩浆逐步分离结晶演化对磷具有 富集作用,而其他富磷矿物的结晶也会影响岩浆中 P 含量。 值得注意的是,塔拉提 1 号脉内部带中存在有两种 P_2O_5 含 量明显不同的钠长石,一种是与磷锂铝石共生的钠长石, P_2O_5 含量较高(0.08% ~0.27%),而另外一种是与锂辉石 共生的钠长石, P_2O_5 含量低于检测限。黄小龙等(1998)研 究江西雅山花岗岩中也发现与磷锉铝石相邻的钠长石磷含 量明显增加,钠长石的解理缝及边缘出现了磷含量较高的 物质,表明磷在岩浆演化晚期越来越富集,形成富磷残余熔 体,结晶出富磷长石或磷酸盐矿物。

整体而言,伟晶岩从外部带到内部带中碱性长石磷含量 的增大反映了岩浆分离结晶对磷富集的作用,此外,磷酸盐 矿物(磷灰石、磷锂铝石和磷锰铁锂矿)的结晶也会影响残余 熔体中磷含量。结合前人研究数据(张辉,2001; 吕正航等, 2018),可可托海3号脉、小虎斯特91号脉和塔拉提1号脉 微斜长石 P₂O₅含量基本上都大于0.1%,并且内部带中都出 现氟磷灰石、羟磷锂铝石以及磷锰铁锂矿等磷酸盐矿物,表 明这三个伟晶岩型锂矿床都是以富P、富F为特征,而P和F 等挥发份对 Li具有强的亲和性,具有重要的溶解和富集作 用(London, 198, 2018a)。

在锂辉石结晶之后,磷锂铝石-羟磷锂铝石系列矿物是下一个重要的富锂磷酸盐矿物,在伟晶岩中经常与磷灰石共生(Chen et al., 2022)。London et al. (1999)认为 P_2O_5 浓度的增加是在透锂长石-磷锂铝石平衡体系中出现磷锂铝石的主要原因,在 525 \mathbb{C} 和 200 MPa 条件下,熔体中 P_2O_5 浓度达到 1.4%时,会发生以下反应:

 $LiAiSi_4O_{10}(锂辉石) + 0.5P_2O_5(熔体) + 0.5H_2O(熔体)$ = $LiAlPO_4(OH)(羟磷锂铝石) + 4SiO_2$

可可托海3号脉、小虎斯特91号脉和塔拉提1号脉磷 锰(铁)锂矿都是以团块状产出,自形较好,整体上成分较为 均一,应该是在岩浆阶段结晶的原生矿物。然而徐遥辰等 (2019)在新疆协库斯特伟晶岩(小虎斯特91号脉)岩壁上发 现磷锰锂矿与羟磷锂铝石团块状包体,其认为其是磷酸盐熔体与硅酸盐熔体的不混溶作用所致。我们对小虎斯特 91 号脉野外地质露头观察发现,局部有磷锰锂矿团块状包体产出(图 5j,k)。并且在扫描电镜下观察到,磷锰锂矿内部有宽约 500μm、长约有 1000μm 的粗粒磷铝锰石包体以及较多棉絮状富 Mn 磷灰石产出,并且其外部有一圈石英环绕结晶(图 5e)。London et al. (1999)通过硅酸盐-磷酸盐反应实验研究表明,锰铝榴石在富含 P₂O₅ 和 H₂O 熔体作用下能形成磷锰矿和磷锰铝石,反应方程式如下:

 $4Mn_3Al_2Si_3O_{12}$ (锰铝榴石) + 5P₂O₅(熔体) + 9H₂O(熔体) = 2Mn_3(PO_4)_2(磷锰矿) + 6MnAlPO_4(OH) · H₂O(磷锰 铝石) + Al_2SiO_5(熔体) + 11SiO_2(熔体)

而磷锰矿在后期富 Ca²⁺流体作用下极易被蚀变交代形 成富 Mn 磷灰石,即磷锰矿中 Mn²⁺被流体中 Ca²⁺类质同象 替代。如果小虎斯特 91 号脉中磷锰铝石的原生矿物是锰铝 榴石,即锰铝榴石相对较早结晶,而团块状磷锰锂矿较晚期 结晶才将其包裹,可能反映了磷酸盐熔体与硅酸盐熔体不混 溶机制,并且岩浆后期存在富 Ca²⁺流体的进一步交代蚀变作 用。

结合野外宏观地质现象观察和显微结构研究,我们认为 岩浆分离结晶作用使 Li 和 P 在残余岩浆中明显富集是磷锂 铝石-羟磷锂铝石、磷锰锂矿-磷铁锂矿系列矿物晶出的必要 条件,同时由于磷作为一种不相容元素独特的性质,可以改 变熔体的粘度、液相线温度以及 Li、Be、Nb、Ta 等稀有金属的 地球化学行为(Tang et al., 2016; Rao et al., 2017),可能局 部分离出富磷熔体相,以团块状富锂磷酸盐矿物形式独立于 硅酸盐矿物,对 Li 富集具有重要的作用。磷对于伟晶岩内 部锂成矿作用的影响还有待于下一步来自熔体包裹体、岩浆 不混溶实验等研究的直接证据。

晚期出溶的富H₂O、F以及P热液流体在相对封闭的伟 晶岩岩浆-热液体系中会经历广泛的矿物-流体相互作用 (Fan et al., 2020; Yin et al., 2020), 对早期结晶的锂矿物 进行一定程度的交代蚀变,从而释放出 Li⁺导致热液流体中 Li⁺含量增大,最后形成一些次生锂云母、羟磷灰石或羟磷铝 锂石(Kaeter et al., 2018; Barros et al., 2020)。原生的磷锰 (铁)锂矿常见被热液流体交代蚀变,可可托海3号脉磷锰锂 矿边缘局部也出现有脉状蚀变现象,其化学成分相对于原生 磷锰锂矿更加亏损 P2O5,而相对富集 MnO、CaO、Na2O 和 K₂O,并且此蚀变产物中 EPMA 相关元素总量只有 77% 左右 (表3),推测其含有相当量的 Li₂0 和 H₂0,表明存在富碱金 属和 Mn 的流体对原生磷锰锂矿的交代蚀变作用。小虎斯特 91 号脉磷锰锂矿内部出现较多细脉状磷灰石和锰氧化物,可 能是由于晚期富 Ca²⁺流体交代蚀变所致,因为 Ca²⁺ 很易于 在流体中迁移,置换出矿物晶体中的 Mn²⁺,而 Mn²⁺ 难以在 流体中长距离迁移,可能就近在裂隙中以锰氧化物的形式充 填出现(图5f)。塔拉提1号脉磷锰铁锂矿出现更多的交代 蚀变细脉(图 5h, i),成分上显示相对亏损 P2O5 和 MnO,而 富集 MgO、FeO、CaO 和 Na₂O(表 3),可能含有相当量的 H₂O,指示后期热液流体中 Mg²⁺、Fe²⁺、Ca²⁺、Na⁺和易于替 代了原生矿物中 Mn²⁺和 Li⁺位置,造成了原生矿物中 Li⁺的 淋滤流失。

可可托海3 号脉、小虎斯特91 号脉和塔拉提1 号脉磷 锰(铁)锂矿都出现了不同程度的交代蚀变现象(图5),相对 于原生磷锰(铁)锂矿,蚀变产物成分上共同特征是 CaO 和 Na₂O 含量增加(表3),表明后期流体中 Ca²⁺和 Na⁺浓度的 增加,对原生磷锰(铁)锂矿中的 Mn²⁺和 Li⁺进行置换形成 次生交代矿物(London and Burt, 1982)。结合本次研究结果 和 Rao *et al.* (2014)研究福建南平31 号伟晶岩脉磷铁锂矿 的交代反应,推断磷锰锂矿存在以下蚀变交代反应:

 $2LiMnPO_4(磷锰锂矿) + 2Ca^{2+}(流体) + 4H_2O(流体) =$ Ca₂Mn(PO₄)₂ · 4H₂O(磷钙锰石) + Mn²⁺ + 2Li⁺(流体)

综上所述,可可托海3号脉、小虎斯特91号脉和塔拉提 1号脉岩浆的分离结晶作用是控制伟晶岩锂成矿的关键因 素,而磷酸盐熔体与硅酸盐熔体不混熔作用促进锂进一步富 集。而晚期出溶的不同性质流体对早期结晶的锂辉石、磷锂 铝石以及磷锰锂矿具有溶解破坏作用,但是锂的进入流体富 集和迁移,并最终结晶形成多种次生锂矿物。

6 结论

(1)可可托海 3 号脉、小虎斯特 91 号脉和塔拉提 1 号脉 均属于高分异伟晶岩型锂矿床,从外部结构带到内部结构带 其演化程度逐渐增高,经历了从岩浆到热液逐渐演化过程, 岩浆分离结晶作用是锂富集成矿的主要机制。

(2)岩浆中磷含量的变化可能引起局部硅酸盐熔体与磷酸盐熔体不混溶作用,这利于锂在磷酸盐熔体中富集,形成磷锰锂矿等富锂磷酸盐矿物。而可可托海3号脉Ⅱ带特殊的骸晶状的富锰磷灰石的结晶可能是由于岩浆过冷快速结晶所致。

(3)晚期出熔的岩浆流体对于早期结晶的磷锰(铁)锂 矿等矿石矿物进行交代蚀变作用,淋滤出Li*进入热液流体 中迁移,再沉淀形成次生矿物,这不利于锂矿石的保存。

致谢 室内矿物分析得到了中国科学院地球化学研究所 矿床地球化学国家重点实验室戴智慧老师、唐燕文老师、李 响老师和郑文勤老师的指导和协助,在此表示真诚的感谢。 感谢两位审稿人提出的建设性修改意见!

References

Bai YX, Shen P, Cao C, Pan HD, Li CH, Luo YQ, Feng HX and Suo QY. 2021. Geochemical characteristics and significance of apatite from the Koktokay pegmatitic rare-metal deposit, Altay, Xinjiang. Acta Petrologica Sinica, 37 (9): 2843 – 2860 (in Chinese with English abstract)

- Barros R, Kaeter D, Menuge JF and Škoda R. 2020. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry. Lithos, 352 – 353: 105289
- Benson TR, Coble MA, Rytuba JJ and Mahood GA, 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communication, 8(1): 270
- Bowell RJ, Lagos L, de los Hoyos CR and Declercq J, 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259 – 264
- Bureau of Geology and Mineral Resources of Xinjiang Province (BGMRX). 1993. Regional Geology of Xinjiang Province. Beijing: Geological Publishing House (in Chinese)
- Cai KD, Sun M, Yuan C, Long XP and Xiao WJ. 2011. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: A review. Russian Geology and Geophysics, 52(12): 1619 - 1633
- Cao MJ, Zhou QF, Qin KZ, Tang DM and Evans NJ. 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: Implications for pegmatite petrogenesis. Mineralogy and Petrology, 107(6): 985 – 1005
- Černý P, Meintzer RE and Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23(3): 381-421
- Chen JZ, Zhang H, Tang Y, Lv ZH, An Y, Wang MT, Liu K and Xu YS. 2022. Lithium mineralization during evolution of a magmatichydrothermal system: Mineralogical evidence from Li-mineralized pegmatites in Altai, NW China. Ore Geology Reviews, 149: 105058
- Fan JJ, Tang GJ, Wei GJ, Wang H, Xu YG, Wang Q, Zhou JS, Zhang ZY, Huang TY and Wang ZL. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352 -353: 105236
- Feng YG, Wang YQ, Zhang Z, Liang T, Zhou Y, Gao JG and Teng JX. 2019. Geochemistry of triphylite in Dahongliutan lithium pegmatites, Xinjiang: Implications for pegmatite evolution. Acta Geologica Sinica, 93(6): 1405 – 1421 (in Chinese with English abstract)
- Han JS, Zhao ZH, Hollings P and Chen HY. 2023. A 50 m. y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: Implications from a newly identified Jurassic granite. GSA Bulletin, 135(5-6): 1467-1479
- Huang XL, Wang RC, Liu CS, Yin L, Chen XM and Chen PR. 1998. Determination and significance of phosphorus in feldspar of Yashan granite in Jiangxi. Chinese Science Bulletin, 43(23): 2547 - 2550 (in Chinese)
- Huang XL, Wang RC, Chen XM and Liu CS. 2001. Phosphate minerals from the Yashan F- and P-rich granite in Yichun, Jiangxi Province: Genetic implications. Geological Review, 47 (5): 542 – 550 (in Chinese with English abstract)
- Hulsbosch N, Hertogen J, Dewaele S, André L and Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349 – 374
- Kaeter D, Barros R, Menuge JF and Chew DM. 2018. The magmatichydrothermal transition in rare-element pegmatites from Southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbitetantalite. Geochimica et Cosmochimica Acta, 240: 98 – 130
- Li JK, Li P, Yan QG, Wang DH, Ren GL and Ding X. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatitetype rare-metal metallogenic belt in China: An overview and synthesis. Science China (Earth Sciences), 66(8): 1702 – 1724
- Li JX, Li GM, Qin KZ, Xiao B, Chen L and Zhao JX. 2012. Mineralogy and mineral chemistry of the cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco Arc, Northern Tibet. Resource Geology, 62(1): 19-41
- Liu XC, Kohn MJ, Wang JM, He SX, Wang RC and Wu FY. 2024.

Formation of lithium-rich pegmatites via rapid crystallization and shearing: Case study from the South Tibetan Detachment, Himalaya. Earth and Planetary Science Letters, 629: 118598

- Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
- London D and Burt DM. 1982. Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho District, Arizona. American Mineralogist, 67(1-2): 97-113
- London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(3): 403 – 420
- London D, Cerny P, Loomis J and Pan JJ. 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. The Canadian Mineralogist, 28(4): 771-786
- London D, Wolf MB, Morgan GB and Garrido MG. 1999. Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40(1): 215-240
- London D. 2008. Pegmatites. Ottawa: Mineralogical Association of Canada, 1 – 368
- London D. 2018a. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349 – 383
- London D. 2018b. Reading pegmatites: Part 4, What quartz and feldspars say. Rocks & Minerals, 93(4): 320 336
- Long XP. 2007. The sedmintary timing, source provenance and tectonic setting of paleozoic clastic sedimentary rock in the Altai orogen, Xinjiang. Ph. D. Dissertation. Guanzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1 – 127 (in Chinese with English abstract)
- Long XP, Sun M, Yuan C, Xiao WJ and Cai KD. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208(3-4): 88-100
- Lü ZH, Zhang H, Tang Y, Liu YL and Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161 – 181
- Lü ZH, Zhang H, Tang Y, Zhao JY, Liu YL and Guo L. 2018. The distribution of phosphorous in various types of pegmatites from Altai, Xinjiang and its implication. Bulletin of Mineralogy, Petrology and Geochemistry, 37 (2): 260 270 (in Chinese with English abstract)
- Lü ZH, Zhang H and Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380 – 381: 105865
- McCaffrey DM and Jowitt SM. 2023. The crystallization temperature of granitic pegmatites: The important relationship between undercooling and critical metal prospectivity. Earth-Science Reviews, 244: 104541
- Ni YX, Yang YQ, Guo LH, Zou TR and Lin YY. 1989. Triphylitelithiophilite series in China. Acta Petrologica et Mineralogica, 8 (2): 144 - 155 (in Chinese with English abstract)
- Qin KZ, Zhou QF, Tang DM, Wang CL and Zhu LQ. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai. Acta Geologica Sinica, 95(10): 3039 – 3053 (in Chinese with English abstract)
- Rao C, Wang RC, Hatert F and Baijot M. 2014. Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1): 179 – 188
- Rao C, Wang RC, Yang YQ, Hatert F, Xia QK, Yue XG and Wang WMY. 2017. Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91: 864 – 876
- Ren BQ, Zhang H, Tang Y and Lü ZH. 2011. LA-ICPMS U-Pb zircon

geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica, 31(3): 587 - 596 (in Chinese with English abstract)

- Shearer CK, Papike JJ and Jolliff BL. 1992. Petrogenetic links among granites and pegmatites in the harney peak rare-element granitepegmatite system, Black Hills, South Dakota. The Canadian Mineralogist, 30(3): 785 - 809
- Shen P, Pan HD, Li CH, Feng HX, He LF, Bai YX, Luo YQ, Suo QY and Cao C. 2022. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite. Gondwana Research, 112: 24 - 51
- Streck MJ and Dilles JH. 1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology, 26 (6): 523 - 526
- Sun M, Long XP, Cai KD, Jiang YD, Wang BY, Yuan C, Zhao GC, Xiao WJ and Wu FY. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China (Series D), 52(9): 1345-1358
- Tang M, Lee CTA, Ji WQ, Wang R and Costin G. 2020. Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances, 6(31): eaba6342
- Tang Y, Zhang H, Liu CQ and Rao B. 2008. The current status and problems in the studies of the phosphorous-rich peraluminous magmatic system. Acta Mineralogica Sinica, 28(1): 35 – 42 (in Chinese with English abstract)
- Tang Y, Zhang H, Liu CQ and Rao B. 2009. Experimental study of effect of phosphorous on liquidus temperature of peraluminous magmatic system. Geochimica, 38(1): 37 – 42 (in Chinese with English abstract)
- Tang Y, Zhang H and Rao B. 2016. The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts. American Mineralogist, 101(2): 415 -422
- Tang Y, Wang H, Zhang H and Lü ZH. 2018. K-feldspar composition as an exploration tool for pegmatite-type rare metal deposits in Altay, NW China. Journal of Geochemical Exploration, 185: 130 – 138
- Thomas R, Webster JD and Heinrich W. 2000. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401
- Thomas R and Davidson P. 2012. Water in granite and pegmatite-forming melts. Ore Geology Reviews, 46: 32-46
- Thomas R and Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state: Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088 – 1101
- Tian R, Zhang H, Lü ZH and Tang Y. 2021. Mineralogical characteristics of micas in the Xiaohusite No. 91 pegmatite dyke in the Koktokay area, Xinjiang and their geological significances. Acta Mineralogica Sinica, 41(6): 593 – 609 (in Chinese with English abstract)
- Veksler IV and Thomas R. 2002. An experimental study of B-, P- and Frich synthetic granite pegmatite at 0.1 and 0.2GPa. Contributions to Mineralogy and Petrology, 143(6): 673 – 683
- Wang XJ. 1980. The evolution of alkali elements and the division of geochemical stages at certain pegmatitic vein No. 3, Xinjiang, China. Geochimica, (2): 186 – 192 (in Chinese with English abstract)
- Webster JD, Thomas R, Rhede D, Förster HJ and Seltmann R. 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochimica et Cosmochimica Acta, 61(13): 2589 – 2604
- Windley BF, Kröner A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology,

110(6): 719 - 737

- Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47
- Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219
- Xing K and Shu QH. 2021. Applications of apatite in study of ore deposits: A review. Mineral Deposits, 40 (2): 189 - 205 (in Chinese with English abstract)
- Xu YC, Lu H and Rao C. 2019. Mineralogical behavior of lithium and its implications from the Xiekusite pegmatite, Altay, Xinjiang. Geological Journal of China Universities, 25 (3): 321 – 332 (in Chinese with English abstract)
- Yan QG, Li JK, Li C, Chen ZY and Xiong X. 2022. The geochemical characteristics and their geological significance of apatite from the Zhawulong-Caolong granitic pegmatite-hosted rare metal deposit in Sichuan and Qinghai provinces, West China. Acta Petrologica Sinica, 38(2): 341-355 (in Chinese with English abstract)
- Yin R, Huang XL, Xu YG, Wang RC, Wang H, Yuan C, Ma Q, Sun XM and Chen LL. 2020. Mineralogical constraints on the magmatichydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China. Lithos, 352 – 353: 105208
- Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39
- Zhang H. 2001. The geochemical behaviors and mechanisms of incompatible trace elements in the magmatic-hydrothermal transition system: A case study Of Altay No. 3 pegmatite, Xinjiang. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Science, 1 - 178 (in Chinese with English abstract)
- Zhang H and Liu CQ. 2001. Tetrad effect of REE in apatites from pegmatite No. 3, Altay, Xinjiang and its implications. Geochimica, 30(4): 323 – 334 (in Chinese with English abstract)
- Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)
- Zhao ZH, Chen HY and Han JS. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1-26 (in Chinese with English abstract)
- Zhou QF, Qin KZ, Zhu LQ and Zhao JX. 2023. Overview of magmatic differentiation and anatexis: Insights into pegmatite genesis. Earth Science Frontiers, 30 (5): 26 – 39 (in Chinese with English abstract)
- Zhu JC, Wu CN, Liu CS, Li FC, Huang XL and Zhou DS. 2000. Magmatic-hydrothermal evolution and genesis of Koktokay No. 3 rare metal pegmatite dyke, Altai, China. Geological Journal of China Universities, 6(1): 40 - 52 (in Chinese with English abstract)
- Zou TR and Li QC. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House, 1 – 284 (in Chinese with English abstract)

附中文参考文献

- 白应雄, 申萍, 曹冲, 潘鸿迪, 李昌昊, 罗耀清, 冯浩轩, 索青宇. 2021. 新疆阿尔泰可可托海伟晶岩型稀有金属矿床中磷灰石地 球化学特征及意义. 岩石学报, 37(9): 2843 - 2860
- 风永刚,王艺茜,张泽,梁婷,周义,高景刚,腾家欣.2019.新疆大 红柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩 演化的指示意义.地质学报,93(6):1405-1421
- 黄小龙,王汝成,刘昌实,尹琳,陈小明,陈培荣. 1998. 江西雅山 花岗岩长石中磷的测定及意义. 科学通报,43(23):2547-

2943

2550

- 黄小龙,王汝成,陈小明,刘昌实. 2001. 江西雅山富氟高磷花岗岩 中的磷酸盐矿物及其成因意义. 地质论评,47(5):542-550
- 李建康,李鹏,严清高,王登红,任广利,丁欣. 2023. 松潘-甘孜-西 昆仑花岗伟晶岩型稀有金属成矿带成矿规. 中国科学(地球科 学),53(8):1718-1740
- 龙晓平. 2007. 新疆阿尔泰古生代碎屑沉积岩的沉积时代、物质来源 及其构造背景. 博士学位论文. 广州:中国科学院广州地球化 学研究所, 1-127
- 吕正航,张辉,唐勇,赵景宇,刘云龙,郭柳.2018. 新疆阿尔泰不 同矿化类型伟晶岩中磷的分布特征及其找矿指示. 矿物岩石地 球化学通报,37(2):260-270
- 倪云祥,杨岳清,郭立鹤,邹天人,林月英.1989.中国的磷铁锂矿-磷锰锂矿系列矿物.岩石矿物学杂志,8(2):144-155
- 秦克章,周起凤,唐冬梅,王春龙,朱丽群. 2021. 阿尔泰可可托海 3 号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及 待解之谜. 地质学报,95(10):3039-3053
- 任宝琴,张辉,唐勇,吕正航. 2011. 阿尔泰造山带伟晶岩年代学及 其地质意义. 矿物学报,31(3):587-596
- 唐勇,张辉,刘丛强,饶冰. 2008. 富 P 过铝质岩浆体系的研究现状 及存在的问题. 矿物学报,28(1):35-42
- 唐勇,张辉,刘丛强,饶冰. 2009. 磷对过铝质岩浆液相线温度影响 的实验研究. 地球化学, 38(1): 37-42
- 田润,张辉,吕正航,唐勇. 2021.新疆可可托海矿区小虎斯特91 号脉中云母类矿物学特征与地质意义.矿物学报,41(6):593 -609
- 王贤觉. 1980. 新疆阿尔泰 3 号伟晶岩脉碱的演化与地球化学阶段 的划分. 地球化学, (2): 186-192

新疆地质矿产局. 1993. 新疆区域地质志. 北京: 地质出版社

- 邢凯,舒启海. 2021. 磷灰石在矿床学研究中的应用. 矿床地质,40 (2):189-205
- 徐遥辰, 卢奂, 饶灿. 2019. 新疆阿尔泰协库斯特伟晶岩中锂的矿物 学行为及其启示. 高校地质学报, 25(3): 321-332
- 严清高,李建康,李超,陈振宇,熊欣. 2022. 川西扎乌龙-青海草陇 花岗伟晶岩型稀有金属矿床磷灰石地球化学特征及地质意义. 岩石学报,38(2):341-355
- 张辉. 2001. 岩浆-热液过渡阶段体系中不相容元素地球化学行为及 其机制——以新疆阿尔泰3号伟晶岩脉研究为例. 博士学位论 文.贵阳:中国科学院地球化学研究所,1-172
- 张辉,刘丛强. 2001. 新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素"四分组效应"及其意义.地球化学,30(4):323-334
- 张辉,吕正航,唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属 矿床成矿规律、找矿模型及其找矿方向. 矿床地质,38(4):792 -814
- 赵振华,陈华勇,韩金生.2022.新疆阿尔泰造山带中生代伟晶岩的 稀有金属成矿作用.中山大学学报(自然科学版),61(1):1-26
- 周起凤,秦克章,朱丽群,赵俊兴. 2023. 花岗伟晶岩成因探讨:岩 浆分异与深熔. 地学前缘, 30(5):26-39
- 朱金初,吴长年,刘昌实,李福春,黄小龙,周东山. 2000. 新疆阿 尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因. 高校地质学 报,6(1):40-52
- 邹天人,李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质 出版社, 1-284