DOI: 10.3724/j.1000-4734.2024.44.065

於祖相石, Sr₃Fe³⁺(Si₂O₆)₂(OH)·3H₂O: 一种链状 硅酸盐新矿物

谷湘平1,4*,杨和雄2,谢先德3,刘光华1

(1. 江西应用科技学院 宝石与矿物资源学院,江西 南昌 330100; 2. 亚利桑那大学地球科学系,美国图森市第4街1040号,邮编AZ
85721-0077; 3. 中国科学院地球化学研究所 矿物学与成矿学重点实验室/广东省矿物物理与材料重点实验室,广东 广州 510640;
4. 中南大学 地球科学与信息物理学院,湖南 长沙 410083)

摘要:於祖相石发现于南非北开普省卡拉哈里锰矿田韦瑟尔锰矿,呈浅棕色微晶-纳米纤维状集合体产出,集合体 粒度50~200 µm, 共生矿物有硅镁锶钠石(meieranite)、羟钾锶鱼眼石[hydroxymcglassonite-(K)]、钠锂大隅石 (sugilite)、针钠钙石(pectolite)、霓石等,呈玻璃光泽,具平行(100)及(001)的完全解理,估测莫氏硬度3-3½, 计算密度3.451 g·cm⁻³。在光学显微镜下,於祖相石为无色-浅黄色的针状、纤维状晶体,单晶体粒径<3 µm,二轴 晶负光性, α =1.66(3), β =1.68(5), γ =1.72(3)(白光), 2Vcal=72°。其拉曼光谱出现100~1500 cm⁻¹范围里22个拉曼 位移峰,归属Si—O, Fe—O, Sr—O振动模式, 1500~4000 cm⁻¹范围里出现5个拉曼位移峰,归属OH,H₂O的振动 模式。其经验化学式为(Sr_{2.94}Pb_{0.04}Ca_{0.02})₂₃(Fe_{0.91}Al_{0.09})₂₁[(Si_{3.98} Al_{0.02})₂₄O₁₂](OH)-3H₂O,理想式Sr₃Fe(Si₂O₆)₂(OH)-3H₂O。 X射线单晶衍射结构分析确定於祖相石为单斜晶系,空间群P2₁/m,晶胞参数a=11.1035(10)Å,b=7.8463(7)Å,c=7.8222(7)Å, β =101.406(8)°, V=668.02(11)Å³, Z=2。於祖相石与水硅钛锶石(ohmilite)等结构,由2条平行的 SiO₄四面体单链(²T_{4p})夹FeO₄(OH)₂八面体链形成平行b轴的复合链,链间空隙分布Sr²⁺和H₂O分子。其X射线粉晶 衍射最强线条为:dÅ(I%,hkl): 4.632(92,111), 3.486(100,021), 3.291(67,021), 3.065(57,-221), 2.841 (48,311), 2.118(49,330), 1.956(46,040)。於祖相石的命名以致敬和纪念矿物学家於祖相教授(1930— 2019)的学术贡献。

关键词:於祖相石;水硅钛锶石;新矿物;链状硅酸盐;卡拉哈里锰矿田;南非

中图分类号: P57 文献标志码: A 文章编号: 1000-4734(2024)05-0630-13

第一作者: 谷湘平, 男, 1964年生, 教授, 从事晶体结构及新矿物研究。E-mail: guxp2004@163.com。

Yuzuxiangite, Sr₃Fe³⁺(Si₂O₆)₂(OH)·3H₂O: a new inosilicate mineral

GU Xiangping^{1,4*}, YANG Hexiong², XIE Xiande³, LIU Guanghua¹

(1. Guanghua School of Gemmology and Mineral Resources, Jiangxi University of Applied Science and Technology, Nanchang Jiangxi 330100, China; 2. Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA; 3. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, CAS, and Guangdong Key Laboratory of Mineral Physics and Materials, Guangzhou Guangdong 510640, China; 4. School of Geosciences and Info-Physics, Central South University, Changsha Hunan 410083, China)

Abstract: Yuzuxiangite was discovered in the Wessels Mine, Kalahari Mangnese Field, North Cape Province of Africa. It occurs as agglomerates of acicular and fiberous crystals, 50-200 μ m in size of the aggregate, in association with meieranite, hydroxymcglassonite-(K), sugilite, pectolite and aegirine. It has light brown color, vitreous lustre, perfect cleavages parallel to (1 0 0) and (0 0 1), an estimated Mohs hardness of 3-3½, and the calculated desity of 3.451 g·cm⁻³. Under microscope of

收稿日期: 2024-08-22。

基金项目:国家自然科学基金资助(批准号:41172042、42072054)。

^{*}通信作者, E-mail: guxp2004@163.com。

transmittance light, yuzuxiangite is observed as colorless to light yellow acicular and fiberous crystals with single crystal size less than 3 µm in diameter. It is biaxial crystal (-), α =1.66(3), β =1.68(5), γ =1.72(3) (white), 2Vcal=72°. Its Raman spectrum consists of 22 peaks in 100-1500 cm⁻¹, belonging to the Si-O, Fe-O, and Sr-O vibration modes, and 5 peaks in 1500-4000 cm⁻¹ belonging to OH and H₂O vibration modes. Its ideal formula is Sr₃Fe(Si₂O₆)₂(OH) 3H₂O and its empirical formula (based on cation=8) is (Sr_{2.94}Pb_{0.04}Ca_{0.02})₂₃(Fe_{0.91}Al_{0.09})₂₁[(Si_{3.98} Al_{0.02})₂₄O₁₂](OH) 3H₂O. The X-ray single crystal diffraction analysis confirms that uzuxiangite belongs to the monocliniccrystal system, with cell paramters of space group $P2_1/m$, α =11.1035(10) Å, b=7.8463(7) Å, c=7.8222(7) Å, β =101.406(8)°, V=668.02(11) Å³, Z=2. The crystal structure of yuzuxiangite is same with ohmiite, characterized by a composite chain parallel to the *b*-axis, composed of a chain of corner-shared FeO₄(OH)₂ octahedra flanked by 2 parallel chains (²T_{4p}) of corner-shared SiO₄ tetrahedra, leaving the surrounding space occupied by Sr and H₂O. The strongest powder X-ray diffraction lines are of d Å(I%, hkl), including 4.632(92, 1 1 1), 3.486(100, 0 2 1), 3.291(67, 0 2 1), 3.065(57, -2 2 1), 2.841(48, 3 1 1), 2.118(49, 3 3 0), and 1.956(46, 0 4 0). Yuzuxiangite is named in honor of Prof. YU Zuxiang (1930-2019), an eminent Chinese mineralogist with important contributions to studies of new minerals, especially to studies of platinum-group element minerals in China.

Keywords: yuzuxiangite; ohmilite; inosilicate; new mineral; Kalahari manganese field; South Africa

南非北开普省卡拉哈里锰矿田(KMF)是世界最大的锰矿产地,锰资源量高达40亿吨,占地球可采锰资源的80%^[1]。该矿田也是世界著名的新矿物产地,自1981年至今该地已发现27种新矿物,如表1^[2-25]。根据矿石的富集程度矿田分为高品位矿和低品位矿,前者由恩其瓦宁三号矿(N'Chwaning III)和韦塞尔矿(Wessels)组成,形成于元古代(1.25~1.0 Ga)的构造控制的热液富集^[26,27],矿石矿物主要为黑锰矿(Mn²⁺Mn³⁺O₄)、方铁锰矿[(Fe, Mn)₂O₃]、褐锰矿[(Mn²⁺Mn³⁺O₈(SiO₄)]和水锰矿[Mn³⁺O(OH)]。低品位矿又称妈妈团型(Mamatwan-type),呈层状分布在古元古代穿瓦尔超群(Transvaal Supergroup)的霍塔泽尔泥屑岩建造(Hotazel Formation),占矿田资源总量的97%^[1],矿石矿物主要为微晶质的褐锰矿、锰白云石。表1中的新矿物大多数产于韦塞尔矿和恩其瓦林三号矿。

IMA批准号	矿物名	化学式	空间群	参考文献
	Braunite-II 褐锰矿-II*	Ca(Mn ³⁺ , Fe ³⁺) ₁₄ SiO ₂₄	I4 ₁ /acd	文献[2]
1981-011	Sturmanite 硼铁钙矾	$Ca_{6}Fe_{2}^{3+}(SO_{4})_{2.5}[B(OH)_{4}]~(OH)_{12}\cdot 25H_{2}O$	$P3_1c$	文献[3]
1988-029	Orlymanite 奥硅钙锰石	$Ca_4Mn_3^{2+}Si_8O_{20}(OH)_6\!\cdot\!2H_2O$	<i>P</i> -3 or <i>P</i> 3	文献[4]
1991-031	Vonbezingite 冯铜钙矾	$Ca_6Cu_3(SO_4)_3(OH)_{12}\cdot 2H_2O$	$P2_{1}/c$	文献[5]
1992-033	Hennomartinite锶锰硬柱石	$SrMn^{3+}$ (Si ₂ O ₇)(OH) ₂ ·H ₂ O	Cmcm	文献[6]
1992-012	Poldervaartite 羟硅钙石	(Ca, Mn ²⁺) ₂ [SiO ₃ (OH)](OH)	Pbca	文献[7]
1993-036	Effenbergerite 硅铜钡石	BaCuSi ₄ O ₁₀	P4/ncc	文献[8]
1994-002	Nchwaningite 水羟硅锰石	$Mn_2SiO_3(OH)_2$ ·H ₂ O	$Pca2_1$	文献[9]
1994-055	Wesselsite硅铜锶石	SrCuSi ₄ O ₁₀	P4/ncc	文献[10]
2000-040	Manganvesuvianite 锰符山石	$Ca_{19}Mn \ Al_{10}Mg_2(SiO_4)_{10}(Si_2O_7)_4O(OH)_9$	P4/n	文献[11]
2001-014	Tweddillite 锰锶红帘石	$CaSr(Mn^{3+}, Fe^{3+})_2Al[Si_3O_{12}](OH)$	$P2_{1}/m$	文献[11]
2006-026	Olmiite 羟硅锰钙石	CaMn[SiO ₃ (OH)](OH)	Pbca	文献[12]
2009-061	Guidottiite锰铁蛇纹石	$(Mn_2Fe^{3+})(SiFe^{3+})O_5(OH)_4$	$P6_{3}$	文献[13]
2012-027	Scottyite斯硅铜钡石	$BaCu_2Si_2O_7$	Pnma	文献[14]
2012-028	Lavinskyite硅铜锂钾石	$K(LiCu)Cu_6(Si_4O_{11})_2(OH)_4$	Pcnb	文献[15]
2012-060	Colinowensite紫硅铜钡石	BaCuSi ₂ O ₆	I4 ₁ /acd	文献[16]
2012-096	Diegogattaite硅铜钙钠石	$Na_2CaCu_2Si_8O_{20}{\cdot}H_2O$	<i>C</i> 2/ <i>m</i>	文献[17]

表 1 卡拉哈里锰矿田发现的新矿物 Table 1. List of new minerals discovered in the Kalahari Manganese Field

矿物学报

(头衣1)				
IMA批准号	矿物名	化学式	空间群	参考文献
2012 s.p.	Potassic-mangani-leakeite 钾锰利克闪石	$KNa_{2}(Mg_{2}Mn_{2}^{3+}Li)Si_{8}O_{22}(OH)_{2}$	$P2_1/m$ or $P2_1/a$	文献[6,18]
2013-012	Cairncrossite硅钠钙锶石	$Sr_{2}Ca_{7}(Si_{4}O_{10})_{4}(OH)_{2} \cdot 15H_{2}O$	<i>P</i> -1	文献[19]
2014-085	Lipuite李璞石	$KNa_8Mn_5^{3+}Mg_{0.5}[Si_{12}O_{30}(OH)_4](PO_4)O_2(OH)_2\cdot 4H_2O$	Pnnm	文献[20]
2014-107	Taniajacoite塔雅锶锰石	$SrCaMn^{3+}_{2}Si_4O_{11}(OH)_4 \cdot 2H_2O$	<i>C</i> 1	文献[21]
2015-009	Meieranite硅镁锶钠石	$Na_2Sr_3MgSi_6O_{17}$	P2 ₁ nb	文献[22]
2015-044	Cyprine 铜符山石	$Ca_{19}Cu^{2+}(Al_{10}Mg_2)Si_{18}O_{68}(OH)_{10}$	P4/n	文献[23]
2017-045	Strontioruizite 水硅锰锶石	$Sr_{2}Mn_{2}^{3+}Si_{4}O_{11}(OH)_{4}\!\cdot\!2H_{2}O$	<i>C</i> 2	文献[22]
2019-056	Saccoite羟氟钙锰矾	$Ca_2Mn_2^{3+}F(OH)_8 \cdot 0.5(SO_4)$	P4/ncc	文献[24]
2020-066	Hydroxymcglassonite-(K) 羟钾锶鱼眼石	KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O	P4/mnc	文献[25]
2020-084	Yuzuxiangite 於祖相石	$Sr_3Fe(Si_2O_6)_2(OH) \cdot 3H_2O$	$P2_{1}/m$	本文

*未经CNMNC批准矿物。

於祖相石是该矿田发现的第27种新矿物,该新矿物种及命名经国际矿物学会新矿物命名及分类 委员会(IMA-CNMNC)投票批准,批准号IMA-2020-084。该矿物的命名以纪念和致敬矿物学家 於祖相教授(1930—2019)。於祖相出生于中医世家,1953年毕业于北京地质学院[现中国地质大学 (北京)],随后进入中国地质科学院地质研究所工作。在66年的地质科研生涯中,於祖相教授致力 于矿物学、矿床学的基础研究,尤其是贵金属、铂族元素的矿物学和找矿研究,作为第一作者共报 道了22种新矿物,其中14种被IMA-CNMNC批准(含12种铂族元素矿物),为中国的新矿物发现和 研究做出了重要贡献,曾获国家自然科学奖、地矿部科技进步奖等多项奖励,并担任IMA-CNMNC 的委员(2000—2008)。於祖相石的原型标本存放中国地质博物馆(物件号M16111),同型标本存 放在亚利桑那大学博物馆(物件号 22692)和RRUFF开放项目(存件号R200008)。

1 产状及物理性质

於祖相石发现于南非北开普省卡拉哈里锰矿田韦塞尔矿,地理坐标: 27°6′51.82″S, 22°51′ 18.31″E,呈纤维集合体产于块状淡绿色钠锂大隅石(sugilite)中,集合体粒度50~200 µm(图1), 肉眼下淡棕色,无色条痕,油脂光泽,脆性,参差状断口,估测莫氏硬度3-3½。可见沿纤维方向平 行(1 0 0)或(0 0 1)的完全解理,计算密度3.455 g·cm⁻³。在X射线及阴极射线照射下无发光性,磁针 测试无磁性。在光学显微镜下,於祖相石与硅镁锶钠石(meieranite)、羟钾锶鱼眼石(hydroxymeglassonite-(K))、霓石(aegirine)和针钠钙石(pectolite)共生,呈星点浸染状分布在钠锂大隅石 基体中(图2a,b),单偏光透射视域下,於祖相石呈无色-浅黄棕色微晶-纳米集合体,显棕黄色内反 射,具微弱多色性,正交偏光视域下显一级灰白至一级红色干涉色(图2c,d),单晶体粒径不足 3 µm。根据抛光片反射率转换及共生矿物的对比,测得白光下於祖相石的光性参数为,二轴晶正光 性, α =1.66(3), β =1.68(5), γ =1.72(3), 2Vcal=72°。

据Kleyenstuber^[28]及Gutzmer and Beukes^[26]的研究,与於祖相石共生的矿物组合形成于元古代的一次富碱热液事件,其形成温度条件为270~420°C,压力20~100 MPa。

2 化学成分

於祖相石的化学成分采用岛津EPMA-1720电子探针仪分析,加速电压15 kV,束流10 nA,束径1 μm。定性分析显示主要元素为Si、Fe、Sr,及少量Al、Ca、Pb。波谱定量分析采用纯相石英(SiO₂)、赤铁矿(Fe₂O₃)、天青石(SrSO₄)、刚玉(Al₂O₃)、硅灰石(CaSiO₃)及硫酸铅矿

(結主1)

rruff项目标本号R200008 (catalogue #R200008 in http://rruff.info/)。 图1 含於祖相石的浅绿色块状钠锂大隅石标本,蓝色斑点为硅镁锶钠石

Fig. 1. A specimen containing light brown yuzuxiangite and dark blue meieranite disseminated in light green sugilite matrix

a. 体视显微镜下,星点状棕色於祖相石与蓝色硅镁锶钠石(meieranite)、无色的针钠钙石(pectolite)及暗褐色霓石(aegerine)产于块状浅绿 色钠锂大隅石(sugilite)中; b. 反光显微镜下,於祖相石呈灰色纤维集合体分布在钠锂大隅石间隙; c. 透射单偏光下,於祖相石的微米-纳米纤 维集合体颗粒; d. 透射正交偏光下,於祖相石的微米-纳米纤维集合体颗粒的一级灰白至红色干涉色。

图2 於祖相石 (yuzuxiangite) 在显微镜下的特征

Fig. 2. Microscopic features of yuzuxiangite

(PbSO₄)做标样。分析过程中不停地移动样品台以减少样品的电子束损伤。计数结束后按仪器提供

的ZAF3程序进行含量校正,并按理想式给出H₂O含量(9.09%),分析结果如表2。根据9个分析数据的平均,按8个非氢阳离子数,结合晶体结构设定O、OH及H₂O的系数,计算经验化学式为: (Sr_{2.94}Pb_{0.04}Ca_{0.02})_{Σ3}(Fe_{0.91}Al_{0.09})_{Σ1}[(Si_{3.98} Al_{0.02})_{Σ4}O₁₂](OH)·3H₂O,理想式Sr₃Fe(Si₂O₆)₂(OH)·3H₂O。

Table 2. Analytical data for yuzuxiangite $(w_B)^{(m)}$								
组分	平均值	范围	标准差	apfu	标样			
SiO ₂	34.54	33.57~35.30	0.56	3.98	Pure SiO ₂			
Al_2O_3	0.80	0.55~1.09	0.16	0.11	Pure corundum Al ₂ O ₃			
Fe ₂ O ₃	10.56	9.92~10.94	0.32	0.91	Pure Fe ₂ O ₃			
SrO	44.06	41.05~45.85	1.33	2.94	Pure SrSO ₄			
PbO	1.24	0.43~2.72	0.80	0.04	Pure PbSO ₄			
CaO	0.17	0.09~0.24	0.05	0.02	Pure CaSiO ₃			
H_2O*	9.09			6.98				
Total	100.46	99.53~101.42	0.28					

表 2	於祖相石的化学成份	$(w_{\rm B}/\%)$	

*H₂O的含量按理想化学式的含量。

3 拉曼光谱

於祖相石的拉曼光谱在Horiba LabRamis显微激光拉曼光谱仪上测定,采用He-Ne激光,波长 633 nm,功率2 mW,100倍物镜,谱图收集时间20 min,分辨率2 cm⁻¹,共测定了6个随意定向的晶体,代表性谱图如图3。

於祖相石的拉曼光谱中,100~400 cm⁻¹范围里出现10个拉曼位移峰,可归属Fe—O,Sr—O伸 缩振动模式或晶格平动模式,400~800 cm⁻¹范围里出现7个拉曼位移峰,可归属Si—O键的弯曲振 动模式,800~1500 cm⁻¹范围里出现5个拉曼位移峰,可归属Si—O键的伸缩振动模式,1500~ 4000 cm⁻¹范围里出现5个拉曼位移峰,归属OH,H₂O的振动模式(图3)。

4 X射线衍射及晶体结构

晶体结构采用Rigaku Synergy 单晶衍射仪测定,X射线光管加速电压 50 kV,电流 1 mA,阳极 钼靶产生的MoKα(波长0.71073 Å)为光源,经多层膜聚焦至样品位,焦斑直径约200 μm,检测器 为Hypix 6000。在显微镜下挑选粒径约8 μm的样品颗粒,预实验显示样品为集合体颗粒,晶胞指标 化率不足50%,按获得的单斜晶胞收集衍射数据,帧曝光时间140 s,总曝光时间50 h。衍射数据及 样品吸收处理采用厂商配套的CrysAlisPro软件,结构求解及精修采用SHELX软件^[29,30]及Olex2软件 包^[31]。

粉末衍射数据在Rigaku Synergy 单晶衍射仪上采用铜靶CuKα(波长1.54184Å)按甘多菲方式 收集,获得的2*θ*-I一维数据用随机软件进行寻峰和强度提取,如表3。按单晶衍射得到的结构模型对 数据指标化,采用免费软件Unitcell^[32]计算晶胞参数为: *a*=11.0867(6)Å, *b*=7.8316(4)Å, *c* =7.8085(5)Å, β=101.382(4)°, V= 664.65(4)Å³, Z=2。

	18	able 3. X-ray po	owder diffraction	data of yuzuxia	ngite (d/A , $I/\%$)	
I _{meas}	$d_{ m meas}$	$d_{ m calc}$	hkl	I _{meas}	$d_{ m meas}$	$d_{ m calc}$	hkl
28.8	10.838	10.869	1 0 0	8.0	1.983	1.983	3 3 1
15.1	6.9644	6.936	$-1 \ 0 \ 1$	11.9	1.970	1.969	412
13.0	5.462	5.434	200	46.2	1.956	1.958	040
21.3	5.201	5.192	-1 1 1	12.3	1.926	1.928	-2 0 4
21.1	4.923	4.912	-2 0 1	7.2	1.902	1.901	520
92.4	4.632	4.633	111	6.4	1.884	1.882	430
3.9	4.173	4.161	-2 1 1	2.7	1.845	1.844	-5 0 3
2.7	3.915	3.916	020	3.6	1.837	1.834	4 2 -3
10.2	3.859	3.856	-1 0 2	6.8	1.816	1.819	-2 4 1
16.8	3.685	3.684	120	7.0	1.776	1.779	-6 0 2
10.6	3.611	3.610	211	9.8	1.747	1.747	-1 2 4
6.7	3.563	3.557	-3 0 1	12.4	1.730	1.731	-3 3 3
100.0	3.486	3.486	021	3.5	1.720	1.719	024
67.1	3.291	3.288	3 1 0	13.1	1.689	1.690	601
23.8	3.239	3.236	121	8.6	1.661	1.664	214
37.7	3.175	3.171	-2 1 2	7.9	1.644	1.648	3 4 1
17.4	3.122	3.123	112	4.0	1.621	1.625	-4 3 3
57.1	3.065	3.062	-2 2 1	7.1	1.602	1.605	432
3.0	2.938	2.936	-3 0 2	3.9	1.591	1.592	-4 4 1
7.0	2.877	2.874	202	11.4	1.566	1.564	-1 4 3
48.0	2.841	2.842	311	3.4	1.552	1.553	700
28.0	2.821	2.821	221	1.3	1.525	1.526	-2 1 5

表 3 於祖相石的X-射线粉末衍射数据 (*d*/Å, *I*/%)

6	3	6
~	~	~

<u>(</u> 续表3)							
$I_{\rm meas}$	$d_{ m meas}$	$d_{ m calc}$	hkl	I _{meas}	$d_{ m meas}$	$d_{ m calc}$	hkl
32.9	2.743	2.749	-3 1 2	10.1	1.511	1.511	-6 2 3
22.9	2.635	2.633	-3 2 1	4.2	1.494	1.495	134
35.2	2.598	2.601	-1 0 3	1.3	1.486	1.476	105
27.1	2.571	2.570	122	9.1	1.467	1.468	-7 2 1
7.2	2.508	2.508	-2 0 3	2.8	1.446	1.446	-2 2 5
7.7	2.466	2.468	-1 1 3	2.3	1.437	1.438	3 5 0
11.4	2.411	2.405	302	3.4	1.425	1.427	-2 5 2
3.5	2.381	2.382	103	7.2	1.413	1.411	442
5.4	2.378	2.377	131	3.2	1.390	1.393	3 5 1
7.0	2.348	2.344	-4 1 2	8.7	1.372	1.374	-2 4 4
2.7	2.312	2.317	222	3.3	1.370	1.365	-534
5.0	2.242	2.243	-4 2 1	1.1	1.342	1.342	-5 4 3
23.4	2.220	2.217	-3 1 3	1.9	1.333	1.329	712
7.8	2.165	2.167	-1 2 3	3.2	1.327	1.321	225
12.4	2.134	2.138	023	8.0	1.317	1.317	-6 4 2
49.4	2.118	2.118	3 3 0	2.7	1.307	1.308	-5 2 5
3.9	2.083	2.086	-2 3 2	2.2	1.295	1.297	-3 5 3
19.1	2.073	2.072	132	1.9	1.283	1.287	061
27.6	2.054	2.055	421	10.1	1.2784	1.279	641
16.6	2.034	2.034	402	3.4	1.278	1.275	722
4.5	2.009	2.006	-4 1 3	3.4	1.265	1.266	253

由于样品呈微晶-纳米集合体,未能提取到好的单晶颗粒,获得的单晶衍射数据质量不高,但仍然求解出空间群为P2₁/m的合理结构模型。在结构精修过程中,为避免不合理的各向异性位移参数,O、Si原子位置仅按各向同性位移精修,Fe、Sr位置按各向异性位移精修,所有原子位置占位率均固定为1,氢原子位置根据可能的氢键构型手工设定。表4列出了衍射实验及精修的综合信息。表5为获得的原子分数坐标及位移参数。表6为代表性的键长及键角数据。

由表4可知,虽然精修参数R1、wR2、Rint、Rσ及剩余电荷密度等偏高,但获得的结构模型是 合理的(表5),与水硅钛锶石(Ohmilite)^[33,34]的结构对应,为其Fe³⁺端元。在该结构的非对称单 元中,存在2个Si位(Si1、Si2),3个Sr位(Sr1、Sr2、Sr3),1个Fe位,及11个阴离子O位(O1-O11)。BVS及电价平衡计算表明(表5),Fe为三价铁,O1为OH,O9、O10、O11为H₂O,故其结 构式为Sr₃Fe³⁺(Si₂O₆)₂(OH)·3H₂O。如图4所示,结构中存在由FeO₄(OH)₂八面体共用角项OH链接形 成平行b轴的八面体链,和由SiO₄四面体共项形成的横竖折形单链。一条FeO₄(OH)₂链与两侧的二条 SiO₄四面体单链共项形成平行b轴的复合链[Si₄O₁₂·Fe₂(OH)₂·Si₄O₁₂],Sr、H₂O沿该复合链的之间的 空隙分布,Sr与复合链的O及空隙的H₂O形成配位数为8~9的配位多面体。SiO₄四面体中,Si—O间 距为1.576~1.661 Å(平均1.625 Å),FeO₄(OH)₂八面体中,Fe—O间距为1.975~2.05 Å(平均 2.007 Å),Sr的配位多面体中,Sr—O(OH,H₂O)的间距为2.517~2.847 Å(平均2.671 Å)(如 表6)。此外,根据O···O间距范围(2.7~3.2 Å)判定,存在O1—H···O4,O9—H···O3,O10—H··· O6,O11—H···O5,O11—H···O6的氢键(表6)。在SiO₄四面体横竖折形单链中,Si—Si—Si横竖的 夹角为104.3°,而非垂直关系。

结构式	$Sr_3Fe^{3+}(Si_2O_6)_2(OH)\cdot 3H_2O$
分子量	694.13
晶体尺寸/mm ³	0.01×0.008×0.006
晶系	monoclinic
空间群	<i>P</i> 2 ₁ / <i>m</i> (#11)
晶胞参数	a=11.1035(10) Å, $b=7.8463(7)$ Å, $c=7.8222(7)$ Å, $\beta=101.406(8)^{\circ}$
晶胞体积	668.02(11) Å ³
Ζ	2
计算密度	3.451 g/cm ³
数据收集	及结构精修
仪器	Rigaku Synergy
射线, 波长, 温度	Μο Κα, 0.71073 Å, 293(2) K
20 范围 (°)	5.312~52.732
总反射数	10424
独立反射数	1457
独立反射数[<i>I</i> > 4σ(<i>I</i>)]	1171
$R_{ m int}$	0.1828
R_{σ}	0.1003
h, k, I范围	$-13 \le h \le 13; -9 \le k \le 9; -9 \le l \le 9$
$R_{1,} wR_2 [反射I > 4\sigma(I)]$	$R_1 = 0.1458$, $wR_2 = 0.3408$
R _{1,} wR ₂ [全部反射]	$R_1 = 0.1714$, $wR_2 = 0.3557$
拟合优度	1.198
精修参数,限定数	75, 5
最大/最小残余电荷密度 (e Å-3)	6.02/-2.85

表4 於祖相石晶体及精修综合信息

Table 4. Information on crystal and structural refinement for yuzuxiangite

表5 於祖相石原子分数坐标、位移参数(Å2)及键价和(BVS, v.u.)

Table 5.	Fractional	atomic	coordinates,	displacement	parameters	$(Å^2)$) and	bond	valence sums	(BVS	, v.u.)	of a	atoms	in
----------	------------	--------	--------------	--------------	------------	---------	-------	------	--------------	------	---------	------	-------	----

	yuzuxiangite							
原子位置	Wyck.	х	у	Z	占位率	$U_{ m eq}/{ m U_{ m iso}}$	BVS*	
Sr1	2 <i>e</i>	0.1094(3)	0.25	0.3552(4)	1	0.0149(9)	2.06	
Sr2	2 <i>e</i>	0.5825(3)	0.75	0.2792(4)	1	0.0159(9)	2.02	
Sr3	2 <i>e</i>	0.2680(3)	0.75	0.3953(4)	1	0.0157(9)	1.89	
Fe	2a	0	0.5	1	1	0.0210(13)	3.08	
Sil	4 <i>f</i>	0.2960(6)	0.4527(9)	0.1221(9)	1	0.0137(15)	4.01	
Si2	4 <i>f</i>	0.2014(6)	0.5479(9)	0.7435(9)	1	0.0113(14)	4.00	
O1 (OH)	2 <i>e</i>	-0.031(3)	0.75	1.000(4)	1	0.030(7)	1.24	
H1	2 <i>e</i>	-0.111 219	0.75	0.907 24	1	0.02		
02	4 <i>f</i>	0.1641(15)	0.527(2)	0.148(2)	1	0.015(4)	1.92	
O3	4 <i>f</i>	0.0623(16)	0.529(3)	0.772(2)	1	0.021(4)	1.77	
O4	2 <i>e</i>	0.285(2)	0.25	0.168(3)	1	0.016(5)	2.14	

(续表5)							
原子位置	Wyck.	х	У	Z	占位率	$U_{ m eq}/{ m U_{iso}}$	BVS*
O5	2 <i>e</i>	0.239(2)	0.75	0.737(3)	1	0.011(5)	2.09
O6	4f	0.4081(15)	0.541(2)	0.247(2)	1	0.017(4)	1.70
O7	4f	0.2338(16)	0.457(2)	0.575(2)	1	0.019(4)	1.77
O8	4f	0.2994(15)	0.465(2)	0.911(2)	1	0.014(4)	1.99
O9 (W1)	2 <i>e</i>	0.031(2)	0.75	0.410(3)	1	0.009(5)	0.48
Н9	4f	-0.0107	0.65949	0.32506	1	0.013	
O10 (W2)	2 <i>e</i>	0.495(2)	0.75	0.563(2)	1	0.023(6)	0.50
H10	4f	0.5006	0.66378	0.65902	1	0.02	
O11 (W3)	2 <i>e</i>	0.489(3)	0.75	-0.047(4)	1	0.024(6)	0.30
H11A	4f	0.513 436	0.847 819	-0.131 03	0.5	0.037	
H11B	2 <i>e</i>	0.39947	0.75	-0.1099	1	0.037	
原子位置	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}	
Sr1	0.0285(19)	0.0123(17)	0.0038(16)	0	0.0027(13)	0	
Sr2	0.029(2)	0.0096(16)	0.0099(17)	0	0.0065(14)	0	
Sr3	0.034(2)	0.0073(16)	0.0071(16)	0	0.0060(14)	0	
Fe	0.038(3)	0.015(3)	0.012(3)	0.005(2)	0.008(2)	0.003(2)	

*键价和计算参数据Brese & O'Keeffe^[35]。

表 6 於祖相石中典型的键长(Å)及键角数据(°) Table 6 Selected bond lengths (Å) and angles (°) for vuzuxiangite

	Table 0. Selec	ted bolid lengths (A) a	ind angles () for	yuzuxlangite	
键	长度	键	长度	键	长度
Fe—O2 ^{×2}	1.975(16)	Sr1-07 ^{×2}	2.559(18)	$Sr2-O6^{\times 2}$	2.517(17)
—O1 ^{×2} (OH)	1.995(5)	—O3 ^{×2}	2.624(18)		2.563(27)
—O3 ^{×2}	2.050(18)	$-09^{\times 1}(W1)$	2.636(22)	—O10 ^{×1} (W2)	2.643(27)
		O4 ^{×1}	2.663(24)	—O7 ^{×2}	2.680(17)
		—O1 ^{×1} (OH)	2.738(32)	O8 ^{×2}	2.754(16)
		$-02^{\times 2}$	2.847(17)		
平均	2.007	平均	2.677	平均	2.638
Sr3—O10 ^{×1} (W2)	2.620(26)	Si1—O6 ^{×1}	1.576(18)	$Si2-07^{\times 1}$	1.599(18)
$-09^{\times 1}(W1)$	2.660(22)	$-02^{\times 1}$	1.622(17)	—O3 ^{×1}	1.602(18)
O6 ^{×2}	2.674(17)	O4 ^{×1}	1.641(9)	O5 ^{×1}	1.642(9)
$-02^{\times 2}$	2.686(17)	$-08^{\times 1}$	1.661(18)	O8 ^{×1}	1.659(9)
$-05^{\times 1}$	2.749(24)				
—O7 ^{×2}	2.768(18)				
平均	2.698	平均	1.625	平均	1.625
O1(OH)····O4	2.87(4)	O9(W1) •••O3 ^{×2}	2.70(3)	O10(W2) •••O6 ^{×2}	2.82(2)
O11(W3)O5	2.95(4)	O11(W3)O6	3.11(3)		
键	夹角	键	夹角	键	夹角
O1—Fe—O1	160.2(2)	Si1-O4-Si1	151.7(2)	Si2—O5—Si2	149.6(2)
Si1—O8—Si2	131.8(2)	Si1—Si2—Si2	104.3(2)	03—09—03	108.1(1)
O6—O10—O6	109.5(1)	04-011-08	127.2(1)		

a. 沿b轴视域; b. 沿c轴视域; 用VESTA软件绘制^[36]; 棕绿色实线为晶胞范围。 图4 於祖相石的晶体结构 Fig. 4. Crystal structure of yuzuxiangite

5 与相似矿物的晶体化学关系

於祖相石与水硅钛锶石为等结构的不同固溶体端元,其类质同象替换关系为: Fe³⁺+OH⁻↔Ti⁴⁺ +O²⁻。表7列出了二者主要结晶学参数,可见与水硅钛锶石相比,於祖相石具有更大的晶胞体积和 Sr—O、Fe—O键长。同时,由于硅酸盐矿物中存在的各种复杂的类质同象替换,可以预测会出现 更多的固溶体端元,如Al³⁺ (V³⁺, Cr³⁺, Mn³⁺) ↔ Fe³⁺; Ba²⁺ (Ca²⁺, Pb²⁺) ↔ Sr²⁺。

Table 7. Comparison of crystal chemical parameters between yuzuxiangite and ohmilite				
参数	於祖相石	水硅钛锶石*		
理想式	$Sr_3Fe^{3+}(Si_2O_6)_2(OH)\cdot 3H_2O$	Sr ₃ Ti(Si ₂ O ₆) ₂ O·2H ₂ O		
经验式	$\begin{array}{c}(Sr_{2.94}Pb_{0.04}Ca_{0.02})_{\Sigma 3}(Fe_{0.91}Al_{0.09})_{\Sigma 1}\\(Si_{3.98}Al_{0.02})_{\Sigma 4}O_{12}(OH)\cdot 3H_2O\end{array}$	$\frac{Sr_{3,10}(Ti_{0.97}^{4+}Fe_{0.02})_{\Sigma 0.99}}{(Si_{3.92}O_{12})[O_{0.79}(OH)_{0.21}]\cdot 2.41H_2O}$		
空间群	$P2_{1}/m$	$P2_1/m$		
晶胞参数	a = 11.1035(10) Å b = 7.8463(7) Å c = 7.8222(7) Å $\beta = 101.406(8)^{\circ}$	a = 10.979(6) Å b = 7.799(5) Å c = 7.818(4) Å $\beta = 100.90(3)^{\circ}$		
	$V = 668.02(11) \text{ Å}^3$	$V = 657.4(6) \text{ Å}^3$		
	Z = 2	Z = 2		
<fe(ti)一o>键长</fe(ti)一o>	2.007 Å	1.992 Å		
<sr1一o>键长</sr1一o>	2.677 Å	2.674 Å		
<sr2一o>键长</sr2一o>	2.638 Å	2.594 Å		
<sr3一o>键长</sr3一o>	2.698 Å	2.674 Å		
<sil一o>键长</sil一o>	1.625 Å	1.623 Å		
<si2一o>键长</si2一o>	1.625 Å	1.626 Å		
O1(OH)—O2键长	2.748 Å	2.767 Å		

表7 於祖相石和水硅钛锶石的晶体化学参数对比

第	5	期	

矿	圽	学	报
τų –	1//		ALC:

(续表7)				
参数	於祖相石	水硅钛锶石*		
O9(W1)一O3键长	2.709 Å	2.688 Å		
O10(W2)—O6键长	2.796 Å	2.831 Å		
O11(W3)—O4键长	2.833 Å	2.830 Å		
O1-Fe(Ti)-O1键角	159.0°	162.4°		
Si1-O4-Si1键角	152.1°	150.3°		
Si2-O5-Si2键角	150.0°	151.0°		
Si1-O8-Si2键角	132.0°	130.3°		
Si1-Si2-Si2键角	104.2°	104.1°		

*水硅钛锶石数据来自Komatsu等^[33]及 Mizota等^[34]。

於祖相石、水硅钛锶石^[34]、硅钡钛石(batisite)^[37,38]、硅铌钛碱石(shcherbakovite)^[39]等具 有类似的横竖折形的硅氧四面体单链(图5c)。根据Day and Hawthorne^[40]对链状硅酸盐所做的系统 全面的分析总结,於祖相石等类似矿物的硅氧四面体单链的特点是具有4个硅氧四面体和2个共用角 顶的重复周期,记为²T₄,考虑结构中链条平行,可记为²T_{4p}。推而广之,我们根据重复周期的硅氧 四面体数(r)和共用角顶数(c),以及是否平行(p/j)的规律对单链硅酸盐(共用角顶数c=2)作 如下简单归类(²T_{rp/j})(如图5示):

图5 硅氧四面体单链的不同重复周期及延展方向 Fig. 5. Variation of periodicity and direction in single chains of SiO₄ tetrahedra

1)2个硅氧四面体重复周期的平行链条,简写为²T_{2p},如辉石类的顽火辉石^[41](图5a)。

2)3个硅氧四面体重复周期的平行链条,简写为²T₃₀,如硅灰石^[42](图5b)。

3)4个硅氧四面体重复周期的平行链条,简写为²T_{4v},如於祖相石(图5c)。

4)5个硅氧四面体重复周期的平行链条,简写为²T_{5p},如蔷薇辉石^[43](图5d)。

5)6个硅氧四面体重复周期的交叉链条,简写为²T_{6j},如铅锆石(plumbogaidonnayite)^[44](图5e)。

6)7个硅氧四面体重复周期的平行链条,简写为 $^{2}T_{7p}$,如三斜锰辉石 (pyroxmangite) [43] (图5f)。

根据硅氧四面体的复杂连接方式,可以预见还会存在更多形式的硅氧四面体单链,如从硅镁锶 钠石(meieranite)^[22](²T³_{8i}T_{4i})中去掉一个硅氧四面体后即可得到²T_{10i}的单链(图5g, h)。

6 结论

於祖相石呈浅棕色纤维状微晶-纳米晶集合体产于南非北开普省卡拉哈里锰矿田韦塞尔矿区, 化学式Sr₃Fe(Si₂O₆)₂(OH)·3H₂O,单斜晶系,空间群P2₁/m,晶胞参数a=11.1035(10)Å,b=7.8463(7)Å,c=7.8222(7)Å, β =101.406(8)°,V=668.02(11)Å³,Z=2。其粉末衍射主要峰值数据 为,dÅ(I%,hkl): 4.632(92,111), 3.486(100,021), 3.291(67,021), 3.065(57,-221), 2.841(48, 311), 2.118(49,330), 1.956(46,040)。於祖相石与水硅钛锶石按Fe³⁺+OH⁻↔Ti⁴⁺+O²⁻替换关系构 成等结构的固溶体端元,结构中存在共角顶的FeO₄(OH)₂八面体链和硅氧四面体单链组成的平行b轴 的复合链,其硅氧四面体单链为4个硅氧四面体重复周期的平行链条(²T_{4p})。

致谢:谨以此文致敬谢先德院士九十华诞,感谢专辑组织者朱建喜研究员和审稿人细致审稿和有益建议。

参考文献:

- Beukes N J. Chapter 4 palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal supergroup, South Africa[M]// Developments in Precambrian Geology. Amsterdam: Elsevier, 1983: 131–198.
- [2] de VILLIERS P R & HERBSTEIN F H. Distinction between two members of the braunite group [J]. American Mineralogist, 1967, 52: 20-30.
- [3] PEACOR D R, DUNN P J, and DUGGAN M. Sturmanite, a ferric iron, boron analogue of ettringite [J]. Canadian. Mineralogist, 1983, 21: 705-709.
- [4] PEACOR D R, DUNN P J, and NELEN J A. Orlymanite, Ca₄Mn₃Si₈O₂₀(OH)₆·2H₂O; a new mineral from South Africa: a link between gyrolitefamily and conventional phyllosilicate minerals [J]. American Mineralogist, 1990, 75: 923–927.
- [5] DAI Y, HARLOW G E. Description and crystal structure of vonbezingite, a new Ca-Cu-SO₄-H₂O mineral from the Kalahari manganese field, South Africa [J]. American Mineralogist, 1992, 77: 1292–1300.
- [6] ARMBRUSTER T, OBERHÄNSLI R, BERMANEC V, and DIXON R. Hennomartinite and kornite, two new Mn³⁺ rich silicates from the Wessels mine, Kalahari, South Africa [J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 1993, 73, 349–355.
- [7] DAI Y, HARLOW G E, and MCGHIE A R. Poldervaartite, Ca(Ca_{0.5}Mn_{0.5})(SiO₃OH)(OH); a new acid nesosilicate from the Kalahari manganese field, South Africa: crystal structure and description [J]. American Mineralogist, 1993, 78: 1082–1087.
- [8] Giester G, Rieck B. Effenbergerite, BaCu[Si₄O₁₀], a new mineral from the kalahari manganese field, South Africa: Description and crystal structure[J]. Mineralogical Magazine, 1994, 58(393): 663–670.
- [9] Nyfeler D, Armbruster T, Dixon R, et al. Nchwaningite, Mn2+ 2SiO₃(OH)₂·H₂O, a new pyroxene-related chain silicate from the N'chwaning Mine, Kalahari manganese field, South Africa[J]. American Mineralogist, 1995, 80(3/4): 377–386.
- [10] Giester G, Rieck B. Wesselsite, SrCu[Si₄O₁₀], a further new gillespite-group mineral from the Kalahari Manganese Field, South Africa[J]. Mineralogical Magazine, 1996, 60(402): 795–798.
- [11] Armbruster T, Gnos E, Dixon R, et al. Manganvesuvianite and tweddillite, two new Mn³⁺-silicate minerals from the Kalahari manganese fields, South Africa[J]. Mineralogical Magazine, 2002, 66(1): 137–150.
- [12] Bonazzi P, Bindi L, Medenbach O, et al. Olmiite, CaMn[SiO₃(OH)](OH), the Mn-dominant analogue of poldervaartite, a new mineral species from Kalahari manganese fields (Republic of South Africa)[J]. Mineralogical Magazine, 2007, 71(2): 193–201.
- [13] Wahle M W, Bujnowski T J, Guggenheim S, et al. Guidottiite, the Mn-analogue of cronstedtite: A new serpentine-group mineral from South Africa[J]. Clays and Clay Minerals, 2010, 58(3): 364–376.

- [14] Yang H, Downs R T, Evans S H, et al. Scottyite, the natural analog of synthetic BaCu₂Si₂O₇, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa[J]. American Mineralogist, 2013, 98(2/3): 478–484.
- [15] Yang H, Downs R T, Evans S H, et al. Lavinskyite, K(LiCu)Cu₆(Si₄O₁₁)₂(OH)₄, isotypic with plancheite, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa[J]. American Mineralogist, 2014, 99(2/3): 525–530.
- [16] Rieck B, Pristacz H, Giester G. Colinowensite, BaCuSi₂O₆, a new mineral from the Kalahari Manganese Field, South Africa and new data on wesselsite, SrCuSi₄O₁₀[J]. Mineralogical Magazine, 2015, 79(7): 1769–1778.
- [17] Rumsey M S, Welch M D, Kampf A R, et al. Diegogattaite, Na₂CaCu₂Si₈O₂₀·H₂O: A new nanoporous copper sheet silicate from Wessels Mine, Kalahari Manganese Fields, Republic of South Africa[J]. Mineralogical Magazine, 2013, 77(8): 3155–3162.
- [18] Hawthorne F C, Oberti R, Harlow G E, et al. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 2012, 97(11/12): 2031–2048.
- [19] Giester G, Lengauer C L, Pristacz H, et al. Cairncrossite, a new Ca-Sr (-Na) phyllosilicate from the Wessels Mine, Kalahari Manganese Field, South Africa[J]. European Journal of Mineralogy, 2016, 28(2): 495–505.
- [20] Gu X P, Yang H X, Xie X D, et al. Lipuite, a new manganese phyllosilicate mineral from the N'Chwaning III mine, Kalahari Manganese Fields, South Africa[J]. Mineralogical Magazine, 2019, 83(5): 645–654.
- [21] Yang H X, Gu X P, Cairneross B, et al. Taniajacoite and strontioruizite, two new minerals isostructural with ruizite from the N'Chwaning III mine, kalahari manganese field, South Africa[J]. The Canadian Mineralogist, 2021, 59(2): 431–444.
- [22] Yang H X, Gu X P, Downs R T, et al. Meieranite, Na₂Sr₃MgSi₆O₁₇, a new mineral from the wessels mine, kalahari manganese fields, South Africa[J]. The Canadian Mineralogist, 2019, 57(4): 457–466.
- [23] Panikorovskii T L, Shilovskikh V V, Avdontseva E Y, et al. Cyprine, Ca₁₉Cu²⁺(Al, Mg, Mn)₁₂Si₁₈O₆₉(OH)₉, a new vesuvianite-group mineral from the Wessels mine, South Africa[J]. European Journal of Mineralogy, 2017, 29(2): 295–306.
- [24] Giester G, Lengauer C L, Chanmuang N C, et al. Saccoite, Ca₂Mn+3 2F(OH)₈·0.5(SO₄), a new, microporous mineral from the Kalahari Manganese Field, South Africa[J]. Mineralogical Magazine, 2022, 86(5): 814–820.
- [25] Yang H X, Gu X P, Scott M M. Hydroxymcglassonite-(K), KSr₄Si₈O₂₀(OH)·8H₂O, the first Sr-bearing member of the apophyllite group, from the Wessels mine, Kalahari Manganese Field, South Africa[J]. American Mineralogist, 2022, 107(9): 1818–1822.
- [26] Gutzmer J, Beukes N J. Mineral paragenesis of the Kalahari managanese field, South Africa[J]. Ore Geology Reviews, 1996, 11(6): 405-428.
- [27] DIXON R D. Sugilite and associated metamorphic silicate minerals from Wessels mine, Kalahari manganese field [J]. Geological Survey of South Africa Pretoria Bulletin, 1989, 93: 47 pp.
- [28] KLEYENSTUBER A S E. The mineralogy of the manganese bearing Hotazel formation of the Proterozoic Transvaal sequence of Griqualand West, South Africa [J]. Transaction of the Geological Society of South Africa, 1984, 87: 267–275.
- [29] Sheldrick G M. SHELXT-Integrated space-group and crystal-structure determination[J]. Acta Crystallographica Section A Foundations and Advances, 2015, 71(1): 3–8.
- [30] Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica. Section C, Structural Chemistry, 2015, 71(Pt 1): 3-8.
- [31] Dolomanov O V, Bourhis L J, Gildea R J, et al. OLEX2: A complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339–341.
- [32] Holland T J B. Unit cell refinement from powder diffraction data: The use of regression diagnostics[J]. Mineralogical Magazine, 1997, 61(404): 65–77.
- [33] Komatsu M, Chihara K, Mizota T. A new strontium-titanium hydrous silicate mineral from ohmi, Niigata prefecture, central Japan[J]. Mineralogical Journal, 1973, 7(3): 298–301.
- [34] MIZOTA T, KOMATSU M and CHIHARA K. A refinement of the crystal structure of ohmilite, Sr₃(Ti, Fe³⁺)(O, OH)(Si₂O₆)₂ ·2-3H₂O [J]. American Mineralogist, 1983, 68: 811–817.
- [35] Brese N E, O'Keeffe M. Bond-valence parameters for solids[J]. Acta Crystallographica Section B Structural Science, 1991, 47(2): 192–197.
- [36] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44: 1272–1276.
- [37] NIKITIN AV and BELOV NV. Crystal structure of batisite Na₂BaTi₂Si₄O₁₄ = Na₂BaTi₂O₂[Si₄O₁₂] [J]. Doklady Acad. Nauk SSSR, 1962, 146: 1401– 1403 (in Russian).
- [38] 张文兰, 谷湘平, 汤志敏, 等. 科洛荡子山硅钡钛石的发现、 晶体结构及成因机制[J]. 科学通报, 2023, 68(33):4585-4596.
- [39] ES'KOVA E M and KAZAKOVA M E. Shcherbakovite a new mineral [J]. Doklady Acad. Nauk SSSR, 1954, 99: 837-841 (in Russian).
- [40] Day M C, Hawthorne F C. A structure hierarchy for silicate minerals: Chain, ribbon, and tube silicates[J]. Mineralogical Magazine, 2020, 84(2): 165– 244.
- [41] Morimoto N, Fabries J, Ferguson A K, et al. Nomenclature of pyroxenes[J]. Mineralogical Magazine, 1988, 52(367): 535-550.
- [42] Hesse K F. Refinement of the crystal structure of wollastonite-2M (parawollastonite)[J]. Zeitschrift Für Kristallographie, 1984, 168(1/2/3/4): 93–98.
- [43] Narita H, Koto K, Morimoto N. The crystal structures of MnSiO₃ polymorphs (rhodonite- and pyroxmangite-type)[J]. Mineralogical Journal, 1977, 8(6): 329–342.
- [44] Wu B, Gu X P, Gui X, et al. Plumbogaidonnayite, PbZrSi₃O₉·2H₂O, a new Pb-member of the gaidonnayite group from the Saima alkaline complex, Liaoning Province, China[J]. Mineralogical Magazine, 2024, 88(2): 185–194.