
For permission to copy, contact editing@geosociety.org  
© 2022 Geological Society of America

GSA Bulletin; January/February 2023; v. 135; no. 1/2; p. 351–366; https://doi.org/10.1130/B36397.1; 8 figures; 1 table; 1 supplemental file. 
published online 12 May 2022

351

Correlation between South China and India and development of double rift 
systems in the South China–India Duo during late Neoproterozoic time

Bingbing Liu1,2,3, Touping Peng1,2,†, Weiming Fan3,4, Guochun Zhao5, Jianfeng Gao6, Xiaohan Dong1,2,3, 
Shili Peng1,2,3, Limin Wu1,2,3, and Bingxia Peng1

1�State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,  
Guangzhou 510640, China

2�Chinese Academy of Sciences Center for Excellence in Deep Earth Science, Guangzhou 510640, China
3�University of Chinese Academy of Sciences, Beijing 100049, China
4�Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
5�Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
6�State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,  
Guiyang 550081, China

ABSTRACT

South China, India, and their derivative 
blocks preserve many similar magmatic and 
sedimentary records related to the tectonic 
transition from Rodinia to Gondwana. They 
provide crucial insights into not only the pa-
leogeographic correlation between them but 
also the geodynamic mechanism for such a 
transition. Our new results, combined with 
published data from these blocks, reveal that 
South China remained linked with India 
at least from ca. 830 Ma to ca. 510 Ma and 
formed the South China–India Duo, which 
is located at the western margin of Rodinia. 
The identical magmatism and sedimenta-
tion reflect that double late Neoproterozoic 
rift systems in the South China–India Duo 
developed owing to the rollback of subduct-
ing oceanic slab beneath them. For example, 
an intracontinental rift developed along the 
Jiangnan–Aravalli–Delhi fold belt, which 
separated the Yangtze-Marwar block from 
the Cathaysia-Bundelkhand block. Another 
intra-arc rift developed contemporaneously 
along the northern and western margins of 
the Yangtze block, through the Marwar ter-
rane of western India, and then into the Sey-
chelles and Madagascar terranes. Such an 
intra-arc rift is the most feasible explanation 
for the common development of coeval arc-
like and extension-related magmatic rocks 
and extensional sedimentary sequences on 
the western margin of the South China–India 

Duo, in Seychelles and Madagascar, and even 
at other subduction zones. South China was 
finally separated from Indian Gondwana at 
ca. 510 Ma due to the opening of the Proto-
Tethys Ocean.

INTRODUCTION

Supercontinents form when nearly all conti-
nental blocks on Earth collide with one another 
and assemble into a large, single landmass (Zhao 
et al., 2018a). Rodinia and Gondwana are the 
most important supercontinents in Earth’s his-
tory (Zhao et al., 2018a). Increasing lines of evi-
dence including reliable geological, paleomag-
netic, and paleontological data have established 
that they formed at ca. 1.10 Ga and ca. 0.53 Ga 
ago, respectively (e.g., Cawood et  al., 2013, 
2018). Although the paleogeographic positions 
of major continental blocks in Rodinia and 
Gondwana have been widely accepted (Cawood 
et al., 2018; Zhao et al., 2018a), the tectonic evo-
lution of some microcontinents in Rodinia and 
Gondwana during the transition from Rodinia 
to Gondwana remain poorly understood. In 
particular, South China and India, two impor-
tant continental blocks in Asia, are documented 
to have been involved in the tectonic evolution 
of both Rodinia and Gondwana based on mag-
matic, sedimentary, and paleontological evi-
dence (e.g., Jiang et al., 2003; Yang et al., 2004; 
Cawood et al., 2013, 2018; Metcalfe, 2013; Zhao 
et al., 2018b). Their paleogeographic positions, 
correlation in Rodinia and Gondwana, and their 
tectonic affinity are still the subject of debate 
(Jiang et al., 2003; Yang et al., 2004; Cawood 
et al., 2013, 2018; Metcalfe, 2013; Yao et al., 
2014; Wang et  al., 2017a, 2021; Zhao et  al., 

2018b; Chen et al., 2021). Additionally, the tec-
tonic framework and geodynamic mechanism 
for the tectonic evolution of supercontinents 
particularly during the transition from Rodinia 
to Gondwana remain unresolved (Li et al., 2002; 
Wang et al., 2017a; Cawood et al., 2018; Zhao 
et al., 2018b). Fortunately, in recent years, sig-
nificant new data about Neoproterozoic–Early 
Paleozoic magmatic rocks and sedimentary 
sequences related to the tectonic evolution of 
these two landmasses in South China and India 
and even their derivative terranes/blocks have 
been published (Yao et al., 2014; Wang et al., 
2017a, 2021; Zhao et  al., 2018b; Chen et  al., 
2021). Combination of these data with other data 
sets and further analysis is crucial for decoding 
the aforementioned issues.

In this contribution, we present new U-Pb 
and Lu-Hf isotopic analyses of detrital zircons 
of the late Neoproterozoic and Ordovician sedi-
mentary sequences from the Eastern Yidun sub-
terrane of South China and combine them with 
other published data from South China and other 
Gondwana- and Rodinia-derived continents to 
re-evaluate the correlation between South China 
and India and decode their tectonic evolution 
during the transition from Rodinia to Gondwana. 
A new reconstruction model is suggested, which 
shows that South China was connected to India 
and formed the South China–India Duo during 
late Neoproterozoic–Early Cambrian time. The 
breakup time of South China from Indian Gond-
wana after the Early Cambrian due to the opening 
of the Proto-Tethys Ocean is further constrained. 
Also, we propose the development of double late 
Neoproterozoic rift systems in the South China–
India Duo, including an intra-arc rift along its 
western margin and an intracontinental rift along 
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the Jiangnan–Aravalli–Delhi fold belt separating 
the Yangtze-Marwar block from the Cathaysia-
Bundelkhand block in the interior.

GEOLOGICAL SETTING AND 
SAMPLES

South China was formed by the amalgama-
tion of the Yangtze block to the northwest and 
the Cathaysia block to the southeast along the 
Neoproterozoic Jiangnan fold belt (Zhao et al., 
2011; Cawood et  al., 2018). To the north of 
South China is the North China craton and to the 
southwest is the Indochina block. They are sepa-
rated by the Qinling–Dabie–Sulu orogen and the 
Ailaoshan–Song Ma suture zone, respectively 
(Fig. 1). South China is bounded by the Yidun 
and Songpan-Ganzê terranes of the Tibetan Pla-
teau to the northwest, which are separated by 
the Longmenshan Fault (Fig. 1). The geological 
characteristics of the Yangtze and Cathaysian 
blocks have been summarized in detail by some 
authors (e.g., Cawood et al., 2013, 2018; Zhao 
et al., 2018b; Chen et al., 2021).

The Yidun terrane, a microcontinent located 
between the Qiangtang and Songpan-Ganzê 
terranes, is considered to have been part of the 
Yangtze block before the Mesozoic (BGMRSP, 
1980, 1984). It is surrounded by two Paleo-
Tethys suture zones, the Jinshajiang suture to 

the west and the Ganzê-Litang suture to the 
east (Figs. 1A–1B; BGMRSP, 1984; Peng et al., 
2014). To the southeast of the Yidun terrane is 
the Yangtze block, which is separated by the 
Longmenshan-Jinhe Fault (BGMRSP, 1984; 
Peng et al., 2014). Based on the tectono-strati-
graphical distinction of the two flanks of the 
north–south-trending Xiangcheng-Geza Fault, 
the Yidun terrane can be divided into the Western 
Yidun subterrane (also known as the Zhongza 
massif; Peng et al., 2014) and the Eastern Yidun 
subterrane (Figs. 1A–1B; Peng et al., 2014).

The western subterrane consists mainly of 
greenschist to lower amphibolite facies Paleo-
zoic meta-sedimentary rocks intercalated with 
minor meta-volcanics (BGMRSP, 1984; Pan 
et al., 2004). The eastern subterrane is dominated 
by Triassic volcano-clastic rocks with minor 
Neoproterozoic–Paleozoic sedimentary succes-
sions in the southeast (BGMRSP, 1984; Tian 
et al., 2018). The oldest strata are greenschist-
amphibolite facies Neoproterozoic Qiasi Group 
exposed in the southeast region of the Eastern 
Yidun subterrane, which comprise a suite of 
metamorphosed Neoproterozoic volcano-sedi-
mentary successions consisting of meta-volcanic 
schist, leptynite, and marble (Fig. 1; BGMRSP, 
1984; Tian et al., 2018). The strata can be divided 
into four segments from bottom to top based on 
their lithological characteristics (Figs. 1C–1D; 
BGMRSP, 1984). Unconformably overlying the 
Qiasi Group are late Neoproterozoic (Ediacaran) 
sequences comprising sandstone, carbonate, and 
dolostone (BGMRSP, 1984). In turn, these strata 
are unconformably overlain by Early Cambrian 
meta-sediments that consist of a sequence of 
schist, phyllite, and carbonate (BGMRSP, 1984; 
Pan et al., 2004). Ordovician succession, includ-
ing sandstone, siltstone, and slate (Figs. 1C–1D; 
BGMRSP, 1984; Pan et al., 2004), unconform-
ably overlies Lower Cambrian strata, and is in 
turn unconformably overlain by Early Silurian 
slate and silicalite (Du, 1986; Pan et al., 2004). 
Above these strata are upper Paleozoic sedi-

mentary rocks comprised of Devonian schist, 
marble, and sandstone, Carboniferous–Upper 
Permian limestone, Upper Permian basalt, and 
slate (BGMRSP, 1984). These Upper Paleozoic 
strata are unconformably overlain by Mesozoic 
and Paleogene sedimentary rocks in some places 
(Fig.  1C; BGMRSP, 1984; Pan et  al., 2004). 
In addition, voluminous Middle–Late Triassic 
(230–206 Ma) and minor amounts of Permian, 
Cretaceous, and Cenozoic igneous rocks are 
exposed in the Eastern Yidun subterrane (e.g., 
BGMRSP, 1984; Hou et al., 2001, 2004; Reid 
et al., 2007; Wang et al., 2013a; Peng et al., 2014).

A total of five samples were collected for 
zircon U-Pb dating and Hf isotope analyses 
(Table  1 and Figs.  1–2). Two schist samples 
(10YD-93 and 10YD-97) were collected from 
the fourth and third segments of the Qiasi Group, 
respectively (Table 1 and Figs. 1–2). One sand-
stone sample (10YD-100) was collected from 
the Ediacaran Dengying Formation; a slate 
sample (10YD-102) and a schist sample (10YD-
99) were collected from the Ordovician strata 
(Table 1 and Figs. 1–2).

ANALYTICAL METHODS

Laser Ablation–Inductively Coupled 
Plasma–Mass Spectrometry (LA-ICP-MS) 
Zircon U-Pb Dating

Ca. 5 kg of each sample was crushed and 
milled, and then zircons were separated using 
heavy-liquid and magnetic methods at the 
Laboratory of the Geological Team of Hebei 
Province, China. Cathodoluminescence (CL) 
images were taken at the Guangzhou Institute 
of Geochemistry, Chinese Academy of Sciences 
(GIG-CAS) to inspect the internal structures of 
individual zircons and select positions for U-Pb 
and Lu-Hf isotope analyses. Detrital zircons of 
varying size and shape were selected randomly, 
and grains with obvious cracks or inclusions 
were excluded.

TABLE 1. SAMPLE LOCATIONS AND STRATIGRAPHIC INFORMATION

Sample Lithology Latitude
(°N)

Longitude
(°E)

Stratigraphic age Mineral composition Petrographical descriptions

10YD-93 Schist 28°21.655 100°13.619 The fourth member 
of Qiasi Group

(Ptq4; Cryogenian)

Quartz (80–85%),
mica (5–10%),

lithic fragment (1–5%) and
minor heavy minerals

Fine-grained, subangular to subrounded, moderately to 
well sorted, grain-supported, moderate textural maturity

10YD-97 Schist 28°22.453 100°14.064 The third member of 
Qiasi Group

(Ptq3; Cryogenian)

Quartz (40–50%),
mica (35–40%), and
minor heavy minerals

Fine-grained, subangular to subrounded, moderately 
sorted, grain-supported, moderate textural maturity

10YD-99 Schist 28°23.193 100°14.410 Wachang Formation
(O1)

Quartz (60–65%),
mica (20–35%), and
minor heavy minerals

Fine-grained, subangular to subrounded, moderately to 
well sorted, grain-supported, moderate textural maturity

10YD-100 Sandstone 28°24.153 100°14.546 Dengying Formation
(Ediacaran)

Quartz (70–80%),
feldspar (10–15%), and
minor heavy minerals

Middle- and fine-grained, angular to subangular, 
moderately to poorly sorted, grain-supported, moderate to 

low textural maturity
10YD-102 Slate 28°24.958 100°14.405 Wachang Formation

(O1)
Quartz (∼70%),

mica (20–25%), and minor 
heavy minerals

Fine-grained, subangular to subrounded, moderately 
sorted, matrix-supported, moderate textural maturity

Figure 1. Simplified geological maps show 
(A) the Tibetan Plateau (after Tian et  al., 
2020), (B) the Yidun terrane (after Peng 
et al., 2014), (C) the Gongling region of the 
Eastern Yidun subterrane (after BGMRSP, 
1980, 1984), and (D) the Cryogenian–Ordo-
vician strata and samples in the Gongling re-
gion (modified from BGMRSP, 1980, 1984). 
ADFB—Aravalli-Delhi fold belt; CITZ—
Central Indian tectonic zone; EGB—East 
Ghats belt; EYD—Eastern Yidun subter-
rane; WYD—Western Yidun subterrane.
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In situ zircon U-Pb dating was carried out 
using an Agilent 7700× ICP-MS coupled to 
a 193 nm ArF excimer laser ablation system 
(GeoLas 2005, Lambda Physik) housed at the 
Jupu Analysis Lab in Nanjing, China. Analyti-
cal procedures were the same as those described 
by Liu et al. (2010). The frequency of the laser 
system was 10 Hz. Gas flow rate, with highly 
purified He as the carrier gas, was 0.7 L/mn; the 
flow rate of auxiliary gas Ar was 1.13 L/mn. The 
spot diameter was 40 μm in size. A total acquisi-
tion time for one spot was 45 s. Zircon 91500 
was used as the external standard for U-Pb dat-
ing and was analyzed twice every five analyses. 
Time-dependent drifts of U-Th-Pb isotopic 
ratios were corrected using a linear interpolation 
(with time) for every five analyses according to 
the variations of 91500 (i.e., 2 zircon 91500 + 5 
samples) (Liu et al., 2010). Zircon 91500 yielded 
an average 206Pb/238U age of 1062 ± 10 Ma (2σ; 
MSWD = 0.01, n = 101), which is within error 
of its recommended age (1064.2 ± 1.7 Ma; Yuan 
et al., 2004). Analysis of the secondary zircon 
standard, GJ-1, gave a weighted mean 206Pb/238U 
age of 599.6 ± 4.3 Ma (2σ; MSWD = 2.4, 
n = 12), which is within error of the accepted 
value (599.8 ± 1.7 Ma). Correction of common 
lead followed the method described by Liu et al. 
(2010). Data were processed with the ICPMS-
DataCal program (Liu et al., 2010). Uncertain-
ties on individual analyses in data tables were 

reported at a 2σ level. Results were analyzed and 
plotted using Isoplot 3.0 (Ludwig, 2003). Zir-
con ages younger than 1000 Ma were based on 
206Pb/238 U ratios, and ages older than 1000 Ma 
were based on 207Pb/206Pb ratios. In this study, 
we excluded zircon age analyses with >10% dis-
cordance (Dickinson and Gehrels, 2009).

In Situ Zircon Hf Isotope Analysis

After the LA-ICP-MS zircon U-Pb dating, 
zircon Lu-Hf isotope compositions were ana-
lyzed by a 193 nm Ar-F excimer laser abla-
tion system (RESOlution M-50-LR) attached 
to a multi-collector ICP-MS (Neptune Plus), 
at GIG-CAS. The Hf isotopes were obtained 
with a beam diameter of 45 μm, pulse rate of 
6 Hz, energy density of 80 J/cm2, and ablation 
time was 29 s. Quality control was ensured 
by measuring zircon standard Penglai for the 
unknown samples during the analyses to eval-
uate the reliability of the analytical data. This 
yielded a weighted mean average 176Hf/177Hf 
ratio of 0.282908 ± 0.000004 (2σ; n = 88), 
which is consistent within errors with the 
reported values of 0.282906 ± 0.000010 (Li 
et al., 2010). In situ Hf isotope measurements 
were subsequently conducted on the same 
spots or the same age domains for age deter-
minations of the concordant grains as guided 

by CL images. The initial Hf isotopic ratios 
and crustal model ages were calculated using 
the dating results of the same spots.

RESULTS

Zircon U-Pb Geochronology

The LA-ICP-MS U-Pb dating results of 
zircons for the studied samples are listed in 
Table  S11. Most analyses were plotted on or 
near the concordia curve (Fig. 3). The late Neo-
proterozoic and Ordovician samples in the East-
ern Yidun subterrane show distinguishable age 
spectra. For example, the late Neoproterozoic 
samples display a unimodal pattern, whereas the 
Ordovician samples show a multimodal pattern 
(Fig. 3).

1Supplemental Material. Table S1: Detrital 
zircon U-Pb ages from the Neoproterozoic to Early 
Paleozoic sequences in Eastern Yidun subterrane. 
Table S2: Lu-Hf isotopes of detrital zircons from 
the Neoproterozoic to Early Paleozoic sequences 
in Eastern Yidun subterrane. Figure S1: CL images 
of representative zircons from the Neoproterozoic 
to Early Paleozoic sequences in Eastern Yidun 
subterrane. The red and yellow circles represent the 
spot location for LA-ICP-MS U-Pb dating and Hf 
isotopic analyses, respectively. Please visit https://
doi​.org​/10​.1130​/GSAB​.S.19404038 to access 
the supplemental material, and contact editing@
geosociety​.org with any questions.

Figure 2. Photographs of the 
representative (meta-)sedimen-
tary samples from the Eastern 
Yidun subterrane are shown. 
(A–B) The schist samples, (C) 
the sandstone sample, and (D) 
the slate sample. Qtz—quartz; 
Pl—plagioclase; Ms—mica.

A

C

B

D
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Figure 3. Detrital zircon U-Pb con-
cordia and age spectra diagrams 
of the Neoproterozoic–Ordovician 
samples from the Eastern Yidun sub-
terrane are shown.
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Zircon grains from all of the Neoprotero-
zoic samples in the Eastern Yidun subterrane 
are primarily euhedral and partly subeuhedral. 
All show magmatic oscillatory zoning in CL 
images (Fig. S1; see footnote 1), and 278 out 
of 280 analyses produced 90–100% concordant 
ages, which are considered in the following 
discussion. They give an age spectrum ranging 
from 960 Ma to 574 Ma, and each sample dis-
plays a similar unimodal pattern with a single 
major age population at 800–760 Ma (Table S1 
and Fig. 3). Only one older age of ca. 960 Ma 
is present in the sample 10YD-97 (Table S1 
and Fig. 3).

Most zircon crystals from the Ordovician 
samples in the Eastern Yidun subterrane are 
subeuhedral to subround, while some grains 
are rounded. All of the zircons analyzed show 
magmatic oscillatory zoning in CL images 
(Fig. S1), and 163 out of 165 analyses have less 
than 10% discordance, which is considered in 
the following discussion. The two Ordovician 
samples yield U-Pb ages varying from 3093 Ma 
to 447 Ma. They share similar multimodal dis-
tribution patterns, with major age populations 
at 600–500 Ma and 860–700 Ma and a subordi-
nate age group at 2500–2400 Ma (Fig. 3). One 
difference is that the schist sample (10YD-99) 
has an alternative Grenvillian age population of 
1100–900 Ma (Fig. 3).

Zircon Hf Isotopic Compositions

A total of 230 analyses of these three Neopro-
terozoic samples from the Eastern Yidun subter-
rane exhibit a wide range of initial 176Hf/177Hf 
ratios ranging from 0.282248 to 0.283031 (Table 
S2; see footnote 1). Among them, 228 spots have 
positive εHf(t) values between +0.1 and +24.0 
with TDM

C ages at 1.57–0.77 Ga (Table S2 and 
Fig. 4), which are compatible with those of the 
Neoproterozoic igneous rocks along the west-
ern and northern margins of the Yangtze block 
(Zhao et al., 2018c, 2021b). Only two Neopro-
terozoic zircons give slightly negative εHf(t) val-
ues of −2.1 and −1.2, respectively (Table S2 
and Fig. 4).

In the case of the Ordovician samples in the 
Eastern Yidun subterrane, a total of 75 analyses 
exhibit a wide range of initial 176Hf/177Hf ratios 
ranging from 0.280824 to 0.282793 and large 
variations of εHf(t) values (−25.9 to +35.0), 
which are different from those Neoproterozoic 
samples from this study that are dominated 
by positive εHf(t)-value zircons (Table S2 and 
Fig. 4). The samples from the main age group of 
650–500 Ma have similar εHf(t) values (−25.0 
to +6.1) as those of the magmatic rocks in the 
Kuunga orogen (Zhu et al., 2011, and references 
therein), while the age cluster at 830–700 Ma 
yields similar εHf(t) values (−13.4 to +16.5) as 

those of the coeval igneous rocks in the Jiang-
nan orogen in South China (Fig. 4; Yao et al., 
2019). The 1100–900 Ma detrital zircons from 
the schist sample (10YD-99) show εHf(t) values 
ranging from −8.5 to +13.2, which are compat-
ible with those in the Eastern Ghats orogen and 
Central Indian tectonic zone (Zhu et al., 2011; 
Bhowmik et al., 2012, and references therein). 
Minor ca. 2400 Ma zircons have variable εHf(t) 
values between −11.4 and +35.0.

DISCUSSION

Sedimentary Provenance

By comparison, a unimodal pattern of the 
Neoproterozoic schists in the Eastern Yidun 
subterrane that is similar to those in the western 
Yangtze block reflects a common provenance 
(Fig. 5). Owing to the absence of the Neopro-
terozoic moderately felsic magmatic rocks 
within the Yidun terrane (Tian et  al., 2020), 
these Neoproterozoic detrital materials cannot 
be sourced from the interior of this terrane. In 
contrast, they likely originated from 0.86 Ga to 
0.70 Ga igneous rocks that are widely exposed 
along the northern and western margins of the 
Yangtze block, such as the Neoproterozoic 
Panxi-Hannan arc (Zhou et  al., 2006; Zhao 
et al., 2018c, 2021b). Moreover, the Hf isotopic 

A B

Figure 4. Zircon εHf(t) versus U-Pb age plots of the (A) Neoproterozoic and (B) Ordovician detrital sediments in the Eastern Yidun subter-
rane are shown. The detrital zircon εHf(t) data from the Yidun terrane are from this study and Tian et al. (2020). The igneous zircon εHf(t) 
values of the Panxi-Hannan arc are from Zhao et al. (2010, 2017); Zhao et al. (2008b); Li et al. (2018); Ao et al. (2019); Zhu et al. (2019a); 
and Qi and Zhao (2020). The igneous zircon εHf(t) values of the Jiangnan orogen are from Yao et al. (2019, and references therein).
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Figure 5. Detrital zircon age 
distributions are plotted for 
late Tonian to Ordovician sedi-
mentary rocks from Yidun, 
South China, India, and Aus-
tralia. Data sources: this study; 
DeCelles et  al., 2000; Gehrels 
et al., 2006, 2011; Wang et al., 
2007b; Malone et  al., 2008; 
Sun et  al., 2008, 2009; Long 
et al., 2011; Wang et al., 2010; 
Wu et  al., 2010; Myrow et  al., 
2010; Xiang and Shu, 2010; 
Yu et al., 2010; Hofmann et al., 
2011, 2016; Hughes et al., 2011, 
2019; McKenzie et  al., 2011, 
2013; Yao et  al., 2011; Wang 
et al., 2012a, 2012b, 2013b; Mc-
Quarrie et al., 2013; Xu et al., 
2013, 2014; Wang et  al., 2014; 
Turner et  al., 2014; Yao et  al., 
2014, 2015; Cui et  al., 2015; 
Chen et  al., 2016, 2018, 2021; 
Wang et  al., 2015; Yan et  al., 
2015; Yang et al., 2015; Haines 
et  al., 2016; Johnson et  al., 
2016; Xia et  al., 2016; Han 
et al., 2017; Wang et al., 2017b; 
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compositions of detrital zircons from these 
Neoproterozoic samples are in good agreement 
with those of magmatic zircons of the Neopro-
terozoic igneous rocks in the Panxi-Hannan arc 
(Fig. 4). In addition, these detrital zircons of our 
Neoproterozoic samples are euhedral with mag-
matic zoning (Fig. S1), which indicates a short-
distance transport from its provenance. Hence, 
we suggest that the Neoproterozoic detritus in 
the Eastern Yidun subterrane was predominantly 
sourced from the coeval igneous rocks in the 
Panxi-Hannan arc along the western and north-
ern margins of the Yangtze block.

In the case of the Ordovician samples, they 
show a multimodal pattern that is distinguish-
able from the unimodal one of the Neopro-
terozoic samples (Fig. 3). Except for sharing a 
main age of ca. 0.83–0.70 Ga with the Neopro-
terozoic samples, they have main age groups 
at ca. 0.65–0.50 Ga and ca. 1.00–0.90 Ga 
and a subordinate age group at ca. 2.40 Ga 
(Fig. 3). Alternatively, the 0.83–0.70 Ga zir-
cons of the Ordovician samples have distin-
guishable εHf(t) values (−16.1 to +15.7) from 
those of the Neoproterozoic samples (Table 
S2), but they are similar to those of the coeval 
igneous rocks in the Jiangnan orogen in South 
China as mentioned before (Fig. 4; Yao et al., 
2019). Taken together, it is obvious that the 
0.83–0.70 Ga zircons of the Ordovician sam-
ples could not originate mainly from the ero-
sion of the Panxi-Hannan arc magmatic rocks 
in the western Yangtze block. In contrast, it is 
possible that most of the 0.83–0.70 Ga zircons 
in the Ordovician sediments in the Eastern 
Yidun subterrane were derived from the Jiang-
nan orogen. Concerning the 1.00–0.90 Ga 
and 0.65–0.50 Ga detrital zircons, they were 
surprisingly sourced from the coeval igne-
ous rocks of the South China interior; this 
is remarkable due to the absence of syn-
chronous moderately felsic magmatic rocks 
within South China. Therefore, they could be 
exotic, having been transported long distance 
or recycled from the old strata in South China 
(Cawood et  al., 2018), which are consistent 
with the subrounded and rounded attributes 
of these detrital zircons (Fig. S1). Indeed, the 
Ordovician sediments in the Eastern Yidun 
subterrane share a similar age spectrum and 
zircon Hf isotopic compositions as the Cam-
brian unit in the western Yangtze block (Chen 
et al., 2021), which indicates that the former 
could be primarily derived from the recycling 
of the latter. But the ultimate sources of the 
1.00–0.90 Ga and 0.65–0.50 Ga detrital zir-
cons are the Eastern Ghats–Rayner Complex 
and the Kuunga orogen located in the eastern 
India region, while the 0.83–0.70 Ga zircons 
are from the Jiangnan orogen in South China.

Tectonic Link Between South China and 
India

Two contrasting reconstruction models have 
been proposed for the paleogeographic posi-
tion of South China in Rodinia: an internal 
location within the Rodinia supercontinent ver-
sus an external setting along the margin of the 
Rodinia supercontinent (e.g., Li et al., 1999, and 
references therein; Zhao and Cawood, 1999; 
Cawood et  al., 2018). For the internal model, 
South China was located between the Lauren-
tian and Australian blocks (e.g., Li et al., 1999; 
Li et al., 2002). In the peripheral model, South 
China was attached to India in the early to mid-
Neoproterozoic (e.g., Cawood et al., 2018; Zhao 
et al., 2018b, 2021a).

In fact, increasing lines of evidence that 
include magmatic, paleomagnetic, and sedimen-
tary data (e.g., Yang et al., 2004; Gregory et al., 
2009; Yao et al., 2014; Wang et al., 2017a, 2021; 
Cawood et al., 2018; Zhao et al., 2018b; Chen 
et al., 2021) demonstrate that South China was 
located to the periphery of Rodinia rather than 
in its interior during Neoproterozoic time. None-
theless, the spatio-temporal evolution of South 
China within these peripheral models previously 
proposed from Rodinia to Gondwana is also dif-
ferent. For example, based on the paleomagnetic 
studies of the Middle Cambrian sediments from 
the western Yangtze block, Yang et al. (2004) 
proposed that South China was connected to 
NW Australia from latest Proterozoic and early 
Paleozoic time until its breakup from Australia 
in the middle Devonian. In contrast, after com-
paring detrital zircon age spectra of the Gond-
wana-derived blocks/terranes, Yao et al. (2014) 
suggested that the Cathaysia side of South China 
was closely linked with the northern margin of 
India (the Himalaya region) by the Ediacaran–
Cambrian collision between South China and 
India and persisted until the opening of the 
Paleo-Tethys Ocean during Devonian time. In 
recent years, after comparing the magmatism, 
sedimentation, bio-stratigraphic affinity, and 
paleomagnetic pole of South China with those of 
India and Australia, some researchers concluded 
that South China was most likely close to north-
ern India during Neoproterozoic and even early 
Cambrian times but was progressively separat-
ing from the latter, and rotating and migrating 
along the Gondwanan margin toward northeast-
ern India and NW Australia during latest Edia-
caran or early Cambrian time (e.g., Jiang et al., 
2003; Chen et al., 2021).

However, the Tonian to Cambrian strata on 
the Cathaysia block and on the western Yangtze 
block show similar age spectra (Fig. 5), indi-
cating that their respective detrital provenance 
did not change with time. In other words, they 

each shared a common source from the Tonian 
to Cambrian although their provenance is differ-
ent because the Cathaysia block has a different 
main age group at ca. 960 Ma from the west-
ern Yangtze block at ca. 800 Ma (Fig. 5). This, 
in turn, hints that the tectonic setting for the 
Tonian to Cambrian sedimentation in these two 
blocks did not change. Accordingly, it is unlikely 
that the Yangtze block commenced to rift from 
northwestern India since the late Tonian, and 
South China was migrating toward NW Aus-
tralia. Moreover, the absence of the diagnostic 
ca. 1170 Ma age group of NW Australia in the 
Tonian to early Paleozoic strata in the Cathaysia 
block (Fig. 5; e.g., Wang et al., 2010; Yao et al., 
2014) also argues against a close proximity to 
NW Australia during late Neoproterozoic to 
early Paleozoic time. By contrast, the presence of 
a predominant age population of detrital zircons 
at ca. 960 Ma from the Tonian to Cambrian strata 
in the Cathaysia block (Fig. 5; e.g., Wang et al., 
2010; Yao et al., 2014) suggests that a common 
northern Indian (the Tethyan sequences) prov-
enance had continuously provided the detritus 
input into the Cathaysia block from the Tonian 
to Cambrian. In fact, the similarities in facies 
assemblages of the late Neoproterozoic–early 
Cambrian sedimentary rocks between South 
China and India also lend strong support to this 
proposition. For example, the Yangtze block of 
South China and NW India share similar late 
Tonian rift-related, siliciclastic-volcanic succes-
sions, Cryogenian glaciogenic diamictite suc-
cessions, Ediacaran carbonate successions, and 
Early Cambrian phosphorite and clastic succes-
sions (Jiang et al., 2003). Correspondingly, the 
Cathaysia block and eastern India region contain 
similar Tonian siliciclastics, Cryogenian sand-
stones and diamictites, and Ediacaran–Cambrian 
siliciclastics (Wang and Li, 2003; Wang et al., 
2021). As a consequence, we propose that South 
China remained closely linked with India and 
formed the South China–India Duo at least dur-
ing late Tonian to early Cambrian time. Such a 
connection model has been proposed by Cawood 
et  al. (2018) and Zhao et  al. (2018b). South 
China finally separated from Indian Gondwana 
likely after the early Cambrian (ca. 510 Ma) due 
to the opening of the Proto-Tethys Ocean rather 
than the Paleo-Tethys Ocean after the Devonian 
(also see discussion in Implication for Breakup 
of South China from Gondwana).

Double Late Neoproterozoic Rift Systems 
Developed in the South China–India Duo

Increasing lines of evidence, such as com-
parable Neoproterozoic rift-related magmatism 
and sedimentation of the Jiangnan fold belt in 
South China and that of the Aravalli-Delhi fold 
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belt in NW India, illustrate the development of a 
Neoproterozoic intracontinental linear rift basin 
in the interior of the South China–India Duo 
(Fig. 6; Wang and Li, 2003; Wang et al., 2017a; 
Zhao et al., 2018b, and references therein). For 
example, from a sedimentation perspective, 
some coeval extension-related basins with simi-
lar lithological assemblages and sedimentary 
sequences had developed in the Sindreth and 
Punagarh basins along the western margin of 
the Aravalli-Delhi fold belt in NW India (Jiang 
et al., 2003; Zhao et al., 2018b, and references 
therein), the unnamed basin in the Lesser Hima-
laya north of the Aravalli-Delhi fold belt (i.e., the 
Jaunsar-Simla and Blaini sequences; Jiang et al., 
2003; Zhao et al., 2018b, and references therein), 
and the Nanhua rift basin in South China (Wang 
and Li, 2003; Zhao et al., 2018b). In addition, the 
late Tonian–Ediacaran sedimentary sequences in 
the Jiangnan and Aravalli-Delhi fold belts share 
similar detrital zircon age patterns and overlap-
ping εHf(t) values (Fig. 5; Wang et al., 2017b; 
Wang et al., 2021), which also favors the idea 
of depositional continuity in the Jiangnan–Ara-
valli–Delhi fold belt at that time. Besides, similar 
Neoproterozoic rift-related magmatism, includ-
ing bimodal magmatic rocks and A-type granites 
that are generally produced in extension-related 
regimes, has been identified in the Malani Igne-
ous Suite located to the western margin of the 
NE-trending Aravalli-Delhi fold belt of NW 
India (e.g., Wang et  al., 2017a; Zhao et  al., 
2018b; and references therein) and the Jiang-
nan fold belt in South China (e.g., Wang and Li, 
2003; Deng et al., 2016; Li et al., 2008). More 
importantly, the recognition of late Neoprotero-
zoic magmatic zircons (<5‰) that have lower 
δ18O than the mantle values (5.3 ± 0.6‰; Valley 
et al., 1998) in these two aforementioned belts 
(Fig. 6; Wang et al., 2017a; Zhao et al., 2018b; 
Zhang et al., 2020a; Li et al., 2021, and refer-
ences therein) indicates the development of syn-
chronous rifting in NW India and the interior of 
South China (Zhao et al., 2018b).

In fact, an alternative Neoproterozoic exten-
sion-related tectonic zone had also developed 
simultaneously along the northern and western 
margins of the Yangtze block of South China. For 
instance, some Neoproterozoic extension-related 
igneous rocks developed along the northern–
western margin of the Yangtze block, including 
the Tiechuanshan (ca. 820 Ma) and Suxiong (ca. 
800 Ma) bimodal volcanic rocks, and the Dax-
iangling (ca. 816 Ma), Tiechuanshan, Huang-
guan and Mianning (780 Ma), and Panzhihua 
(750 Ma) A-type granites, and low-δ18O mag-
matic rocks (Fig.  6; e.g., Li et  al., 2002; Wu 
et al., 2020; and references therein). Although 
a mantle plume setting has been invoked to 
account for such extension-related magmatism 

(Li et al., 2002; Wang et al., 2007a), this scenario 
fails to explain the presence of more voluminous 
820–770 Ma magmatic rocks in the Panxi-Han-
nan region on the northern and western Yangtze 
block that feature typical arc geochemical sig-
natures (Zhao et al., 2011; Zhao et al., 2018b, 
and references therein). In contrast, a prolonged 
subduction-related arc environment as proposed 
by some authors (Zhou et  al., 2006; Cawood 
et al., 2018; Zhao et al., 2018b, 2018c, 2021b) 
could be the most plausible explanation for the 
820–770 Ma magmatism. Moreover, the arc-like 
geochemical characteristics and high proportion 
of Neoproterozoic detrital zircons (crystalliza-
tion and depositional ages [CA–DA] <100 Ma 
in 30% of the zircon population; Fig. 7) of the 
Neoproterozoic sedimentary samples from the 
Yidun terrane also indicate deposition in a con-
vergent setting basin (Cawood et al., 2012; Tian 
et al., 2020). In this respect, a back-arc environ-
ment is likely responsible for the coexistence 
of arc- and extension-type magmatic rocks on 
the western and northern margins of the Yang-
tze block, as was assumed by Luo et al. (2018). 
However, such a model is incompatible with the 
magmatic pattern of a back-arc environment, 
which is dominated by arc-type magmatic rocks 
with some extension-related rocks in this region 
as mentioned before (Cawood et al., 2018; Zhao 
et al., 2018b; Wu et al., 2020). In other words, 
these Neoproterozoic arc-type magmatic rocks 
should represent the important component of 
simultaneous continental arc. Moreover, consid-
ering that a huge thickness of extension-related 
late Neoproterozoic volcaniclastic sediments 
(>5 km) coexists with synchronous magmatic 
rocks on the northern and western margins of 
the Yangtze block and the southeastern margin 
of the Ganzê and Yidun terranes (BGMRSP, 
1984; Zhou et al., 2006), we propose that intra-
arc rifting is the most feasible explanation for 
such a coupling of magmatism and sedimen-
tation. In fact, intra-arc rifting has been estab-
lished in different subduction zones, such as 
northeast Japan in the west Pacific (Nakajima, 
2013) and the Anglona region of northwestern 
Sardinia, Italy (Sowerbutts, 2000). In particular, 
the magmatic association and sedimentary pat-
tern on the northern and western margins of the 
Yangtze block are similar to those in the intra-arc 
rift basin in the Anglona region of northwestern 
Sardinia, Italy (Sowerbutts, 2000).

As with the important parts of the Neoprotero-
zoic subduction system on the western margin of 
Rodinia (e.g., Cawood et al., 2018; Zhao et al., 
2018b; Wang et al., 2021), the coexistence of 
coeval, extension-related magmatic rocks and 
sedimentary basins with a large number of sub-
duction-related, arc-type igneous rocks in Mad-
agascar and Seychelles likewise indicates the 

development of intra-arc rifting at that time. The 
rifting resembles that of the western and north-
ern margins of the Yangtze block as stated above. 
For instance, the recognition of some mafic-
ultramafic plutons with layered Fe–Ti–V oxide 
mineralization, A-type granitoids with a strongly 
alkaline composition and bimodal magmatic 
suite in the Imorona-Itsindro Suite of central 
Madagascar (Nédélec et al., 2016; Zhou et al., 
2018a; and references therein), coupled with the 
same extensional structural signature as the ca. 
790 Ma Imorona-Itsindro rocks and their coun-
try rocks (Nédélec et al., 2016, and references 
therein), were interpreted as due to continental 
rifting by Zhou et al. (2018a). Furthermore, from 
the perspective of a variation in isotopic compo-
sition, especially for zircon Hf and O isotopes 
of the 850–750 Ma magmatic rocks in central 
Madagascar, Zhou et al. (2018a) believed that 
synchronous continental rifting was involved 
in their petrogenesis. On the other hand, based 
on the fact that these central Madagascar rocks 
are dominated by calc-alkaline series and geo-
chemically show an affinity to continental arc 
magmatic rocks, most researchers ascribed their 
generation to the effects of prolonged, Andean-
like arc magmatism (Handke et al., 1999; Tucker 
et al., 1999; Kröener et al., 2000; Archibald et al., 
2017; Armistead et al., 2019). In Seychelles, the 
810–700 Ma magmatic rocks also display the 
coupling of typical Andean-type arc and rift-
type (low-δ18O granites) geochemical signa-
tures (e.g., Ashwal et al., 2002, and references 
therein). Taken together, we propose that a late 
Neoproterozoic intra-arc rift system likely devel-
oped along the northern and western margins of 
the Yangtze block, through the Marwar terrane 
of western India, and then into Seychelles and 
Madagascar, although there are no such lines of 
evidence from western India yet (Fig. 6). Such 
an intra-arc rift system along the western margin 
of the South China–India Duo is different from 
the contemporaneous intracontinental one along 
the Jiangnan–Aravalli–Delhi fold belt within it 
(Fig. 6). Moreover, it can also account for the 
contradiction of the common presence of coeval 
arc-type and extension-related magmatic rocks 
coupled with some extension-related sedimenta-
tion in the same area.

The most plausible mechanism for the 
development of such double synchronous rift 
systems is the rollback of subducting oce-
anic slab beneath the South China–India Duo 
(Fig.  6), which would result in the astheno-
spheric upwelling and subsequent lithospheric 
extension at that time. The old suture belts, the 
Jiangnan fold belt between the Yangtze and 
Cathaysian blocks in South China (Zhao et al., 
2011), and the Aravalli-Delhi fold belt between 
the Marwar and Bundelkhand terranes in NW 
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India (Zhao et al., 2018b) are the most ideal 
areas for producing lithospheric extension. As 
a result, this is the most effective mechanism 
for inducing intracontinental rifting. An alter-
native region that is apt to trigger lithospheric 
extension is the continental arc, especially 
the intra-arc, where arc magmatism develops 
frequently and trans-lithospheric faults occur 
widely. Such a scenario could also be an 
important mechanism for the fragmentation of 

some micro-continents/terranes/blocks from a 
big continent by intra-arc rifting.

Implication for Breakup of South China 
from Gondwana

Various researchers have proposed different 
breakup times for South China from Gondwana. 
For example, earlier studies suggested they 
separated from the Early Cambrian to Silurian 
in light of the variation in biogeography and 
stratigraphy in South China (Jiang et al., 2003, 
and references therein). Subsequently, consid-
ering the opening of the Paleo-Tethys Ocean 
between the South China and Indochina blocks, 
most workers believed that South China had 
broken up from Gondwana in the Devonian 
(e.g., Cawood et  al., 2013; Metcalfe, 2013; 
Chen et al., 2021). Dating results of the remnant 
oceanic components provide critical evidence. 
The oldest plagiogranites at Shuanggou in the 
Jinshajiang-Ailaoshan Paleo-Tethys suture zone 
yielded zircon U-Pb ages of ca. 383–376 Ma 
(Jian et al., 2009). More recently, Wang et al. 
(2021) and Chen et  al. (2021) compared the 
Neoproterozoic to early Paleozoic detrital zircon 
age spectra of South China with that of India and 
Australia and proposed that the initial separation 
of South China from NW India occurred in the 
Cryogenian and Early Cambrian, respectively. 
Moreover, based on the opening of the Paleo-

Tethys Ocean, they both concluded that South 
China should have finally drifted away from the 
northern margin of Australian Gondwana in the 
Devonian (Chen et al., 2021; Wang et al., 2021).

Regardless of how South China broke up 
from Gondwana, all of these views ignore a cru-
cial fact, which is that the Proto-Tethys Ocean 
between South China and other Gondwana-
derived blocks developed in the early Paleozoic. 
The opening of the Proto-Tethys Ocean should 
have led to the separation of South China from 
northern Gondwana. For instance, the early 
Paleozoic oceanic relics, including 477–460 Ma 
mid-oceanic-ridge basalt-type clinopyroxenite, 
gabbro, and amphibolite, and 519–502 Ma pla-
giogranites in the Tam Ky-Phuoc Son suture of 
Vietnam (Gardner et al., 2017; Nguyen et al., 
2019, and references therein), indicate the pres-
ence of an early Paleozoic Ocean between the 
South China and Indochina blocks or South 
China–northern Indochina and the southern 
Indochina blocks (Fig.  1; Faure et  al., 2018; 
Nguyen et al., 2019). On the other hand, another 
Proto-Tethys Ocean (518–438 Ma) between the 
South Qiangtang–Baoshan and North Qiang-
tang–Indochina terranes has been also docu-
mented in recent years (Fig. 1; Wu, 2013; Hu 
et al., 2014). In particular, the identification of 
the Cambrian ophiolites (ca. 517–490 Ma; Wu, 
2013; Hu et al., 2014) implies the development 
of a Tethys Ocean at least in the Middle Cam-
brian. Thus, it is suggested that the Indochina 
block rifted away from the northern margin of 
Gondwana in the Middle Cambrian–Early Silu-
rian interval. In turn, it is most plausible to infer 
that South China had separated from northern 
Gondwana at least by the Middle Cambrian to 
Early Silurian (Fig. 8; Liu et al., 2020a).

Whether South China was assembled with 
northern Gondwana by continent–continent col-
lision similar to the collision between the South 
China and Indochina blocks in the late Silurian 
remains unknown (Faure et al., 2018; Nguyen 
et al., 2019). Although Zhang et al. (2014) pro-
posed a continent–continent collision time of 
427–422 Ma based on the study of high-pressure 
basic granulites in the central Qiangtang of Tibet, 
the identification of coeval (438 ± 11 Ma) oce-
anic cumulate gabbro in the same ophiolitic com-
plex belt of central Qiangtang likely indicates 
that the early Paleozoic Proto-Tethys Ocean was 
not closed (Wu, 2013). In fact, no age-equivalent 
collision-related records have been discovered 
yet in the Changning–Menglian ophiolite belt, 
which represents the southern continuation of 
the central Qiangtang Proto-Tethys Ocean. More 
importantly, the identification of the early and 
late Paleozoic oceanic island basalt-type mafic 
rocks that had commonly experienced a similar 
Late Triassic ultrahigh-pressure metamorphism 

A

B

C

Figure 7. Depositional setting of the Cryogenian Qiasi Group in the Eastern Yidun subter-
rane is shown as inferred from a discrimination plot of cumulative proportions versus crys-
tallization ages and depositional ages (CA–DA) of detrital zircons analyzed (modified from 
Cawood et al., 2012). Data are from this study and Tian et al. (2020).

Figure 6. Diagram shows the proposed tec-
tonic framework and paleogeographic posi-
tions for South China, India, Seychelles, and 
Madagascar in Rodinia during Neoprotero-
zoic time (after Wang et  al., 2017a, 2021; 
Cawood et  al., 2018; Zhao et  al., 2018b). 
YD—Yidun terrane. The zircon U-Pb age, 
εHf(t), and δ18O values of the Neoproterozoic 
igneous rocks in Madagascar, Seychelles, 
NW India, the Panxi-Hannan arc, and the 
Jiangnan–Aravalli–Delhi fold belt are from 
Harris and Ashwal (2002); Wang et  al. 
(2011, 2012c, 2013c); Zhou et  al. (2015a, 
2015b, 2017); Yang et al. (2016); Wang et al. 
(2017a); Huang et  al. (2018); Zhao et  al. 
(2018b); Armistead et al. (2019); Jiang et al. 
(2020); Shellnutt et al. (2020); Qi and Zhao 
(2020); Wu et al. (2020); Zhou et al. (2020); 
Zou et al. (2020); and Yuan et al. (2021b).
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(Fan et al., 2015) indicates that the Proto-Tethys 
Ocean could have developed persistently from 
the early Paleozoic to the end of the Paleozoic 
(Liu et al., 2020a, and references therein). There-
fore, it is most likely that the Central Qiangtang 
high-pressure granulites within Tibet (Zhang 
et al., 2014) could be the products of early Paleo-
zoic arc-continent collision during the tectonic 
evolution of a single Proto- and Paleo-Tethys 
Ocean. Considering all of the data (Chen et al., 
2021, and references therein), we propose that 
the South China and Indochina blocks were 
separated from Indian Gondwana after the early 
Cambrian and were not welded to Gondwana 
again, although they were likely amalgamated 
together during late Silurian time (Faure et al., 
2018; Nguyen et  al., 2019) until the opening 
of the Paleo-Tethys Ocean between them (Jian 
et al., 2009).

CONCLUSIONS

The Neoproterozoic sediments in the East-
ern Yidun subterrane were sourced mainly from 
the Panxi-Hannan magmatic arc on the north-
ern and western margins of the Yangtze block 
while the Ordovician sequences were recycled 
from the Cambrian strata in the western Yang-
tze block.

South China kept a connection with India and 
formed the South China–India Duo located at 
the northwestern margin of Rodinia during late 
Tonian (ca. 830 Ma) to early Cambrian time.

Double late Neoproterozoic rift systems 
had developed in the South China–India Duo 
owing to the rollback of subducting oceanic slab 
beneath it, including an intra-arc rift along the 
northern and western margins of the Yangtze 
block through the Marwar terrane of western 
India, and then into the Seychelles and Madagas-
car terranes, and another coeval intracontinental 
one along the Jiangnan–Aravalli–Delhi fold belt 
within the interior of the South China–India Duo.

South China finally separated from northern 
India during middle Cambrian (ca. 510 Ma) to 
Ordovician time due to the opening of the Proto-
Tethys Ocean but was not welded to Gond-
wana again.
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