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A B S T R A C T   

Health risks caused by heavy metal (HM) exposure in road dust has attracted extensive attention, but few studies 
have focused on the health risks of residents living in small- and medium-sized cities with rapid industrialization 
and urbanization. Thus, 140 road dust samples were collected across Anyang, a typical fourth-tier industrial city 
in central China, which were analysed for 10 different HMs (Mn, Zn, Pb, V, Cr, As, Cd, Ni, Cu and Co). Monte 
Carlo simulation and bioaccessibility were used to quantify the health risks of heavy metals comprehensively in 
road dust. Results revealed a remarkable accumulation of Mn, Zn, Pb, Cd and Cu. According to the Geo- 
accumulation index and potential ecological risk index, Cd was priority control pollutant. Moreover, 55.0% of 
the road dust samples reached heavily polluted level, and 52.86% of the samples were at high ecological risk 
levels. These results illustrated that HM contamination was serious and universal in the road dust of Anyang. The 
occurrences of HMs were allocated to traffic emissions, natural sources, industrial activities and agricultural 
activities with contribution rates of 35.4%, 6.0%, 41.6% and 17.0%, respectively. Except for Zn in the gastric 
phase, all other HMs had relatively low bioaccessibilities in the gastrointestinal system, usually less than 20%. 
The bioaccessibilities of most HMs were higher in the gastric phase, except for Cr, Ni and Cu, which remained 
higher in the intestinal phase. The non-carcinogenic risk and carcinogenic risk were remarkably reduced when 
considering the HM bioaccessibilities in the gastrointestinal system, especially for adults. The outcomes of this 
paper are valuable for understanding HM contamination in road dust and highlight the importance of risk 
assessment for populations living in the fourth- and fifth-tier cities.   

1. Introduction 

With the high-intensity development of industrialization and ur-
banization, heavy metal (HM) contamination in urban environments has 
been dramatically aggravated worldwide (Jan et al., 2010; Fujiwara 
et al., 2011; Liu et al., 2016; Pan et al., 2017; Masto et al., 2017; Yadav 
et al., 2019; Zhao et al., 2022). Owing to the composition and charac-
teristics of road dust, it is regarded as one of the most important carriers 
of HM contaminants in urban areas (Jayarathne et al., 2018; Chang 
et al., 2021). In particular, road dust is characterized by a smaller size 

and a larger specific surface area compared with soils (Gunawardana 
et al., 2014; Zhao et al., 2016), so HMs in road dust can easily be 
re-suspended and enter the human body through ingestion, inhalation 
and dermal contact, potentially threatening the health of urban dwellers 
(Zhang et al., 2019a; Zgobicki et al., 2019). Thus, conducting detailed 
investigations on the health risks of HM contamination in road dust is 
necessary. 

In the last few decades, investigations concerning the contamination 
and health risks of HMs in road dust were numerous and mainly per-
formed in large cities (Shabbaj et al., 2018; Men et al., 2020) and 
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contaminated areas close to mining areas, industrial parks and thermal 
power plants (Tian et al., 2019; Khademi et al., 2019; Ahamad et al., 
2021). However, these studies ignored the health risks of residents living 
in rapidly industrializing and urbanization urban areas of small and 
medium size. In these cities, economic growth was mainly driven by 
increasing energy consumption and industrial activity, and this is 
especially true for the fourth- and fifth-tier cities in central China (Zhang 
et al., 2019b). Fourth- and fifth-tier cities are those with permanent 
urban residents of less than one million (SCPRC, 2014), and China now 
has 593 such cities. These small- and medium-sized cities have a higher 
burden of environmental pollution than large cities because of the 
extensive production system and underfunded environmental protection 
(Wang et al., 2022). Only 10% of cities in China have achieved a 
win–win situation, defined as a relative balance between environmental 
conservation and economic growth (Wang et al., 2015; Liu et al., 2022). 
Data concerning the conditions of road dust contaminated by HMs in 
fourth- and fifth-tier cities are limited. Hence, monitoring the contam-
ination levels of road dust in fourth- and fifth-tier cities, and quantifying 
the health exposure risk posed by HMs are an urgently needed. 

Remarkably, HMs originating from different pollution sources pre-
sent substantial differences in concentration, toxicity coefficient, bio-
accessibility and health risk (Bell et al., 2014; Hou et al., 2017). 
Identifying the sources of HMs is a prerequisite for preventing new HM 
inputs and reducing their health risk to humans (Han et al., 2022; Zhao 
et al., 2022). Many previous studies have proven that compared with 
principal component analysis, correlation analysis and cluster analysis, 
the positive matrix factorization (PMF) model can effectively identify 
and quantify the sources of HMs without constructing the component 
spectrum of pollution sources (Huang et al., 2021; Sun et al., 2022; 
Wang et al., 2022). In this paper, geostatistical analysis, correlation 
analysis and the PMF model were integrated to improve the accuracy of 
the source apportionment. 

Most of the existing studies on health risk assessment largely rely on 
the total concentrations of HMs by using the Human health risk 
assessment model with deterministic exposure parameters recom-
mended by the United States Environmental Protection Agency (Gu and 
Gao, 2018; Zhang et al., 2019a; Jin et al., 2019). However, the uncer-
tainty of HM concentrations and the variability of exposure parameters 
across different populations and individuals, such as exposure frequency 
and body weight, may provide inaccurate identification of the high-risk 
elements and underestimate or overestimate the level of risk (Huang 
et al., 2022; Zhao et al., 2022). By contrast, Monte Carlo simulation 
(MCS) produces a more reliable risk assessment by measuring the 

probability of exceeding and not exceeding risk thresholds. It has been 
widely applied to assess the health risks of HMs (Chen et al., 2019a and 
2019b; Huang et al., 2021). The total concentrations-based assessment 
has generally ignored the fact that only a fraction of HMs entering the 
human body can be absorbed (Wang et al., 2016; Han et al., 2020). The 
actual health risk for humans by road dust ingestion ultimately depends 
on the fraction of HMs that is available to be dissolved and adsorbed in 
the human gastrointestinal system (Ning et al., 2021). In recent years, 
several in vitro bioaccessibility models have been developed and often 
used to predict the bioaccessibilities of HMs, especially the 
physiologically-based extraction test (PBET) (Sialelli et al., 2010; Hong 
et al., 2016; Li et al., 2017). Previous studies have shown a good cor-
relation between the results of PBET digestion experiments and those of 
in vivo animal experiments (Juhasz et al., 2009; Li et al., 2014; Zheng 
et al., 2022). Nevertheless, most previous studies solely targeted either 
the bioaccessibility or MCS in the health risk assessment of HMs while 
only minute research has expanded on integrating these two approaches 
in road dust. Therefore, bioaccessibility-based, probabilistic health risks 
are essential to understand accurately the hazards of HMs contamination 
in road dust to human health. 

The present paper investigated the region of Anyang, which is a 
typical fourth-tier city in central China’s Henan Province. This city 
experienced rapid industrialization and urbanization in recent decades, 
and steel smelting activities, energy consumption and transportation 
have led to serious HM contamination in the atmosphere and soil (Yan 
et al., 2019; Han et al., 2021; Xu et al., 2021). In 2020, more than 10.4 
million tons of standard coal was consumed (AMBS, 2020), and crude 
steel production was approximately 11.2 million tons, ranking 41st 
worldwide (WSA, 2021). Additionally, as one of the eight ancient cap-
itals of China, Anyang attracts about 50 million tourists every year, 
which means that traffic emissions further contribute to HM pollution in 
the study areas. On this basis, the main objectives of this paper were to 
investigate the concentrations and in vitro bioaccessibilities of 10 
different HMs (Mn, Zn, Pb, V, Cr, As, Cd, Ni, Cu and Co) in road dust 
from the Anyang urban area, evaluate the contamination levels and 
probabilistic health risks of HMs in road dust for the study region, and 
quantitatively discriminate each source of HMs. The findings of this 
paper will provide helpful guidance for risk managers and policy makers 
to mitigate HM contamination in fourth- and fifth-tier cities worldwide. 

Fig. 1. Study region and sampling locations in Anyang, China.  
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2. Materials and methods 

2.1. Study area and sampling 

Anyang (N 35◦12′ − 36◦22′, E 113◦37′− 114◦58′) is situated in the 
north of Henan Province and the southeast of Taihang Mountain in 
central China. The research region has a temperate continental monsoon 
climate. The average annual temperature, precipitation, relative hu-
midity and wind speed of Anyang are 14.2 ◦C, 558.4 mm, 65% and 2.2 
m/s, respectively (Han et al., 2021). This city has a permanent popu-
lation of 6.3 million people and covers an area of 7343.9 km2, including 
the districts of Wengfeng, Longan, Yindu and Beiguan. The industry is 
the cornerstone of Anyang’s economy, and since 1993, it has been 
involved in heavy industries, including iron and steel smelting, coking 
and machinery manufacture. 

One hundred and forty road dust samples were collected on local 
general and national roads across the study area from May 7–13, 2020. 
Before and during the sampling period, rainfall and gale activity did not 
occur for 10 days. Road dust samples were collected using a handheld 
portable vacuum cleaner (Dyson V8 Fluffy) from sidewalks of non- 
motorized lanes and intersections (Fig. S1). Each sample consisted of 
four subsamples of approximately 100.0 g. During sampling, the sam-
pling point was away from contaminants such as wet roads, oil stains 
and large pieces of soil to ensure the quality of samples. After each 
sampling, sampling tools, such as vacuum cleaner nozzle, suck rod, filter 
basket, dust collector and brush, were cleaned with deionized water and 
alcohol to avoid cross-contamination. All samples were then air-dried, 
homogenized at ambient temperature until constant weight and sieved 
using a 200 mesh nylon sieve (< 75 µm) for further chemical analysis. 
(Fig. 1). 

2.2. In vitro digestion test 

The PBET analytical method was performed according to the previ-
ously described studies (Ruby et al., 1996; Gu and Gao, 2018) with 
minute modification to quantify the bioaccessibilities of HMs in road 
dust. Briefly, in the gastric phase (PBETG), 1.25 g of pepsin, 0.5 g of 
citric acid, 0.5 g of malic acid, 0.42 mL of lactic acid, 0.5 mL of glacial 
acetic acid and 8.775 g of NaCl were dissolved in 1.0 L of deionized 
water, and the pH was adjusted to 1.5 ± 0.2 with HCl. Next, 2.0 g of 
each sample was added into a 500 mL cone bottle containing 200.0 
± 5.0 mL simulated gastric solution. The bottle was sealed and then 
shaken at 100 r⋅min− 1 for 1 h in the constant-temperature shaking bath 
maintained at 37 ◦C (Guning HZQ-A, China). Then, 30 mL of gastric 
suspension in each bottle was filtered with 0.45 µm of nitrocellulose 
membrane for subsequent analysis. In the intestinal phase (PBETI), the 
remaining mixture pH was adjusted to 8.0 ± 0.2 with NaHCO3 solution. 
Then, 0.4 g of bile salts and 1.2 g of trypsin were added and sealed, and 
shaken for 4 h in the same condition. Finally, 30 mL of intestinal sus-
pension was filtered with 0.45 µm of nitrocellulose membrane for 
further analysis. The bioaccessibilities of HMs (BAF, %) in PBETG and 
PBETI could be calculated as the percentage of the extracted HM con-
centrations to the total HM concentrations (Ning et al., 2021; Han et al., 
2020). The corresponding equation of BAF is shown in the Supple-
mentary Materials. 

2.3. Chemical analysis and quality control 

For HM analysis, 0.10 g of sample was poured into a Teflon micro-
wave digestion tube and digested with a mixture of HNO3 (4.0 mL), 
H2O2 (1.5 mL) and HF (1.5 mL). The total concentration and bio-
accessibility of HMs were determined using ICP-OES (PE Optima 8000, 
USA) and ICP-MS (PE NEXION 300, USA), respectively. During the 
experiment, glassware and other experiment tools were washed with 
10% HNO3 and deionized water (Ulupure UPD-II-40 L, China), and all 
the chemical reagents were of high purity. Moreover, 20% of reagent 

blanks, 10% of parallel samples and national standard reference mate-
rials (GBW07401) were analysed simultaneously for quality control. 
Relative standard deviations based on the mean values obtained for each 
sample were less than 15%. 

2.4. Evaluation methods of HMs pollution 

Geo-accumulation index (Igeo), improved Nemerow index (INI) 
developed by Liu et al. (2020), and potential ecological risk index (E and 
RI) were calculated to estimate overall pollution and individual pollu-
tion of HMs considered. Igeo, INI, E and RI are calculated by Eqs. (1–3) as 
follows: 

Igeo = log[Cs/(1.5 × Cb)], (1)  

INI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(I2
geomax

+ I2
geoavg

)
/

2
√

, (2)  

RI =
∑

Ei
r =

∑
Ti

r (3)  

where Cs is the concentration of HMs in the road dust sample; Cb is the 
regional background value of these elements; Igeo max and Igeo avg are the 
max and average values of Igeo, respectively. E is the ecological risk for 
single elements; Ti

r is the toxic response coefficient. The values of Ti
r for 

Mn, Zn, Pb, V, Cr, As, Cd, Ni, Cu and Co are 1, 1, 5, 2, 2, 10, 30, 5, 5 and 
5, respectively (Hakanson, 1980; Teng et al., 2014). The Igeo, INI, E and 
RI are unitless. The pollution degrees of Igeo, INI, E and RI are detailed in 
Table S1. 

2.5. Probabilistic health risk calculation 

HM exposure to the human body can occur via paths of oral inges-
tion, inhalation and dermal contact (Tian et al., 2019). According to the 
United States Environmental Protection Agency (USEPA, 1989, 2009, 
2011), the average daily intake dose (ADD, mg/kg⋅day) can be calcu-
lated by Eqs. (4–6): 

ADDingest = (c × Ringest × EF × ED × 10− 6)
/
(BW × AT) (4)  

ADDinhal = (c × Rinhal × EF × ED)/(BW × AT × PEF) (5)  

ADDdermal = (c × SA × SL × ABS × EF × ED × 10− 6)
/
(BW × AT) (6) 

Additionally, this method has been revised and supplemented by 
Environmental Planning Specialists given that HMs entering the human 
body are not completely soluble and absorbed (EPS, 2011). Thus, the 
risk assessment model needs to be modified based on the gastrointestinal 
bioaccessibilities of HMs, as shown in Eqs. (7–8): 

ADDinhal − PBETG = (c × Rinhal × EF × ED × BAFG)/(BW × AT × PEF),
(7)  

ADDinhal − PBETI = (c × Rinhal × EF × ED × BAFI)/(BW × AT × PEF),
(8)  

where BAFG and BAFI are the bioaccessibilities of HMs in PBETG and 
PBETI, respectively. The carcinogenic risk (CRs) and non-carcinogenic 
risks (NCRs) can be calculated by Eqs. (9–10): 

HI =
∑

HQ =
∑

ADD/RfD, (9)  

TCR =
∑

CR =
∑

ADD × SF, (10)  

where hazard index (HI) and total carcinogenic risk (TCR) are the 
summation of the potential risk of all individual hazard quotient (HQ) 
and carcinogenic (CR), respectively (Han et al., 2020). For CNRs, an HQ 
or HI > 1 indicates a potential adverse health risk, conversely NCRs 
(USEPA, 2011). For CRs, if the CR or TCR exceeds 1.0E-04, humans 
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suffer from substantial risks of cancer; if the CR or TCR ranges from 
1.0E-6–1.0E-4, the CR is acceptable; if the CR or TCR is below 1E-06, the 
CR is negligible (USEPA, 1989). Other parameters, including their 
meaning and values in the exposure risk models, are described in 
Tables S2 and S3. At the same time, MCS was used to reduce the devi-
ation of results generated by using HM concentration outliers and fixed 
parameters, and the random simulation times were 100,000 times (Chen 
et al., 2019b). 

2.6. PMF model 

PMF model has been widely applied to discriminate quantitatively 
the contribution of sources to samples (Huang et al., 2021; Zhao et al., 
2022). This model first decomposed the concentration matrix into factor 
contribution matrix and factor profile matrix, and then based on the 
characteristics of each pollution source, determined the contribution 
rate of each factor (Paatero and Tapper, 1994; Lian et al., 2019). PMF 
model can be calculated by Eq. (11): 

Xij =
∑p

k=1
gikfkj + eij, (11)  

where xij is the concentration of HMs (the ith sample of jth chemical 
species); p is the number of sources; gik denotes the contribution of the 
source to the sample; fkj indicates the amount of HMs from source; eij 
represents the residual matrix. According to Eqs. (12–14), the optimal 
solution of PMF model is obtained by minimizing the sum of the 
‘objective function’ Q (Guan et al., 2019; Salim et al., 2019). 

Q =
∑n

i=1

∑m

j=1

(
eij

uij

)2

, (12)  

Forxij ≤ MDL, uij =
5
6
× MDL, (13)  

Forxij > MDL, uij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ × xij)
2
+ (0.5 × MDL)2

√

, (14)  

where uij refers to the uncertainty of HMs, MDL is the method detection 
limit of HMs and σ is the error fraction of HMs. 

2.7. Data analysis 

Statistical analysis involved Microsoft Office 2019, SPSS 23.0 (IBM, 

USA) and Origin 2021 (©Origin Lab Corporation, USA) software. Spatial 
distributions of INI, RI, HM concentrations and bioaccessibilities were 
performed through Inverse Distance Weighted interpolation using Arc-
GIS 10.2 (ESRI, CA, USA). MCS was adopted for uncertainty analyses 
using Crystal Ball (©Oracle, CA, USA) software. 

3. Results and discussion 

3.1. HM concentrations in road dust 

Descriptive characteristics of HMs in road dust of Anyang are pre-
sented in Table 1. The mean concentrations of Mn, Zn, Pb, V, Cr, As, Cd, 
Ni, Cu and Co were 1244.1, 332.0, 88.7, 86.8, 97.6, 18.4, 2.4, 19.0, 53.2 
and 7.4 mg/kg, respectively. Except for V, Co and Ni, all other HM 
concentrations were greater than the regional background values of 
Henan Province, China (CNEMC, 1990). Especially, the concentrations 
of Zn, Pb and Cd were 5.69, 3.49 and 34.29 times higher than their 
relevant arithmetic average background values, respectively (Fig. S2a). 
Additionally, Mn, Zn, Pb, As, Cd and Cu in more than 90% of the samples 
were higher than the background values, indicating that these HMs have 
been widely enriched. Compared with the national guide values, the 
maximum concentrations of Pb, V, Cr and As exceeded the corre-
sponding soil environmental quality standard (MEE, 2018). According 
to the coefficients of variation (CVs) (Han et al., 2020), Mn, Zn, Pb, V, 
Cr, Cd, Ni and Cu exhibited substantial spatial variation (CV > 35%), 
notably Mn, Zn, Pb and Cu with CVs of 72.9%, 70.3%, 70.4% and 77.4%, 
respectively. This finding indicated that HMs in road dust of Anyang had 
considerable spatial variability, implying the substantial influence from 
nearby anthropogenic activities (Hou et al., 2019). Moreover, the 
skewness values of Mn, Zn, Pb, V, Cd and Cu were remarkably higher 
than those of other elements, and their maximum concentrations were 
6022.8, 1599.4, 400.2, 312.4, 8.9 and 267.2 mg/kg, respectively, which 
were considerably higher than the soil background values (Table 1). This 
result reflected that some points might be highly affected by human 
emissions (Jin et al., 2019; Huang et al., 2021). 

Table 1 lists the comparison of the average concentrations of HMs in 
road dust from Anyang with those of other investigated cities around the 
world. Compared with other cities, the average concentrations of Zn, Pb, 
As, and Cu in Anyang’s road dust samples were intermediate level. The 
average concentration of Mn from Anyang was higher than that in the 
other cities, but the average concentration of Co and Ni was lower. The 
mean concentration of Cd from Anyang was only lower than that in the 
commercial capital of Saudi Arabia (Jeddah) (Shabbaj et al., 2018) and 

Table 1 
Concentrations (mg/kg) of HMs in road dust of Anyang and other cities around the world.  

Elements Mn Zn Pb V Cr As Cd Co Ni Cu 

Minimum 274.8 43.0  17.3 25.7 23.1 7.7 0.3 2.2 6.7  6.4 
Maximum 6022.8 1599.4  400.2 312.4 253.7 37.7 8.9 15.8 47.4  267.2 
Mean 1244.1 332.0  88.7 86.8 97.6 18.4 2.4 7.4 19.0  53.2 
Median 938.9 264.8  72.4 73.6 88.9 17.6 2.1 7.0 17.8  41.3 
Standard deviation 907.5 233.5  62.4 44.0 37.8 4.7 1.3 2.1 7.1  41.2 
Kurtosis 2.9 2.6  2.5 2.2 1.1 1.2 1.8 1.3 1.6  2.3 
Skewness 11.0 9.0  8.9 5.8 1.9 2.4 5.3 3.0 3.5  7.0 
Coefficient of variance/% 72.9 70.3  70.4 50.6 38.8 25.3 55.6 28.6 37.4  77.4 
Background valuea 554.0 58.4  25.4 90.1 62.5 10.9 0.1 9.7 30.0  19.2 
Guide valuesb n/a n/a  400.0 165.0 30.0 20.0 20.0 20.0 150.0  2000.0 
Shijiazhuang, Chinac 540.0 238.8  42.1 n/a 59.8 15.5 n/a 36.5 24.5  44.0 
Xi’an, Chinad 510.5 268.6  124.5 69.6 145 n/a n/a 30.9 30.8  54.7 
Zhengzhou, Chinae 117.3 192.2  27.0 n/a 45.3 22.5 2.7 n/a n/a  39.8 
Tianjing, Chinaf 670.6 983.2  120.7 100.2 n/a 29.5 2.1 10.5 77.9  527.5 
Jinan, Chinag 517.0 492.8  80.3 51.8 114.1 n/a 1.1 8.2 30.3  87.7 
Moscow,Russiah 641.0 1026.0  91.0 81.0 68.0 2.0 0.8 15.0 46.0  184.0 
Tehran, Irani 864.0 666.0  213.0 n/a 76.5 5.4 0.8 n/a 57.7  275.0 
Uttar Pradesh, Indiaj 417.0 98.2  23.6 n/a 39.64 6.9 0.2 n/a 22.2  34.0 
Jeddah, Saudi Arabiak 550.6 487.5  140.7 80.9 65.4 21.6 7.5 11.7 51.3  139.1 

a CNEMC (1990); b MEE (2018); c Zuo et al. (2022); d Pan et al. (2017); e Zhu et al. (2021); f Zhang et al. (2019a); g Dong et al. (2020); h Vlasov et al. (2021); i Dehghani 
et al. (2017); j Ahamad et al. (2021); k Shabbaj et al. (2018). 
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central China (Zhengzhou), an important transportation hub between 
north and south China (Zhu et al., 2021), and the mean concentrations of 
V and Cr were all lower than that in the metropolis in central China 
(Xi’an) (Pan et al., 2017). All these suggested that besides traffic-related 
emissions, industrial production, commerce or certain other factors 
substantially influence HMs in road dust such as Cd and Mn (Hou et al., 
2019). 

3.2. Contamination assessment of HMs in road dust 

The contamination levels and values for Igeo, INI, E and RI of HMs in 
road dust of Anyang are shown in Fig. 2 and Tables S4 and S5. The basic 
trend of mean Igeo values of HMs was Cd > Zn > Pb > Cu > Mn > As 
> Cr > V> Co > Ni. Generally, Cd with the highest mean Igeo value of 

4.32 showed moderately to heavily polluted (MP-HP), followed by Zn 
(1.67) classified as moderately polluted (MP). Lead (0.95), Cu (0.54), 
Mn (0.34) and As (0.13) had the mean Igeo values at the level of unpol-
luted to moderately polluted (UP-MP). The mean Igeo values of Cr, Co 
and Ni were < 1, indicating unpolluted (UP). In all samples, 5.7%, 2.9%, 
21.4% and 0.7%, the Igeo values of Zn, Pb, Cd and Cu, respectively, were 
more than 3.0 (Table S6), signifying heavily polluted (HP). The basic 
trend of mean E values of HMs was in the range of Cd > Pb > As > Cu 
> Zn > Co > Ni > Cr > Mn > V, demonstrating that except for Cd 
(extremely high ecological risk, EHER), all the other elements were 
classified as low ecological risk (LER), as shown in Fig. 3b and Table S4. 
Additionally, Mn, Zn, Cr, Ni and Co in all samples and 97.1% of Pb and 
Cu samples with E values < 40 showed LER. For Cd, 95.7% of the E value 
were > 320, representing EHER. 

Fig. 2. Contamination assessment of HMs in road dust of Anyang.  

Fig. 3. (a) Source apportionment of HMs in road dust from Anyang. (b) (a): Percentage contributions of factors for total HMs, (b): Source profiles of factors for each 
HMs, (c): Correlation coefficients of HMs concentrations and four factors. 
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The mean INI values of HMs followed the order Cd > Zn > Pb > Cu 
> Mn > Cr > V > Ni > As > Co, and the INI value for all samples varied 
from 1.01 to 4.66 with a mean of 3.09, demonstrating the stratified 

spatial heterogeneity of HM pollution degree in the survey area 
(Fig. S2b). Amongst all samples, 34.3% of INI values were categorized 
into MP-HP, whereas 55.0% of them were at HP level with the remaining 

Fig. 4. Spatial distributions of gastrointestinal bioaccessibilities of HMs in road dust of Anyang, China.  
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7.1% of the total samples at heavy to extremely polluted (HP-EP) level 
(Table S5). The RI values of HMs determined in road dust ranged from 
172.6 to 3988.2 with a mean of 1094.8 (Table S4), and Cd accounted for 
a substantial portion of RI due to the high mean E of Cd. The combined 

ecological risk of the HMs presented a moderate risk (MER) level in 2.1% 
samples, considerable potential risk (CER) level in 15.0% samples, high 
potential risk (HER) level in 52.9% samples and EHER level in 30.0% 
samples. The overall pollution degree of HMs in road dust from Anyang 

Fig. 4. (continued). 
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was universal and severe. Furthermore, the INI and RI with high values 
were mostly found in the northwest and southwest of the study area, and 
low values were mainly distributed in the central, northeast and 
southeast of the study area (Figs. 2c and 2d). These high-value areas of 
INI and RI were mainly found around industrial areas (e.g. smelters, 
machinery processing plants and thermal power plants) and in-
tersections, suggesting that anthropogenic activities may be the domi-
nant sources of HM contamination in road dust. 

3.3. Source apportionment of HMs in road dust 

To discriminate quantitatively the contribution rate of pollution 
sources to HMs, this paper correlated the Pearson correlation analysis 
with the factor contributions from PMF model (Fig. 3a–c). Collinearity 
analysis was performed firstly on the original data, and all HMs with 
variance inflation factor > 10 and tolerance > 0.1 were revealed to be 
suitable for further analysis (Peng et al., 2021). In PMF model, a mini-
mum and stable objective function Q value was obtained when the 
number of factors was four (Chen et al., 2019b). Almost all of the re-
siduals were within − 3–3, and the minimum fitting coefficients (r2) of 
HMs between the observed and predicted concentrations were greater 
than 0.50 (Table S6), indicating an accurate, rational result. Conse-
quently, four factors were extracted, and their contribution percentages 
for total HMs in Anyang road dust were 35.4%, 6.0%, 41.6% and 17.0%, 
respectively (Fig. 3a). Moreover, geographical statistical analysis was 
applied to identify accurately the source apportionment (Zhao et al., 
2022). The spatial distributions of HM concentrations were showed in 
Fig. S3. 

Factor 1, with a contribution rate of 35.4% (Fig. 3a), can be inter-
preted as traffic emissions. This factor was mainly characterized by Zn 
(56.7%), Pb (72.7%) and Cd (72.3%) (Table S6). Relatively high cor-
relations (r > 0.70) were found between these HMs, suggesting common 
sources (Jin et al., 2019). Moreover, the GIS map showed that these 
elements with high concentrations were mainly distributed along na-
tional roads in the study area (Fig. S3). Generally, vehicular exhaust, 
braking and tire wear are responsible for Cd, Pb and Zn contamination 
(Mielke et al., 2011). Although the nationwide prohibition of leaded 
petrol was taken on July 1, 2000, in China, a considerable concentration 
of Pb still exists in the urban environment because of its half-life of 
hundreds of years (Wang et al., 2020). Moreover, Pb has been used 
historically in lead-based paint production because Pb can improve the 
adhesion of paint to substrate/surfaces (Gilbert and Weiss, 2006), 
enhance colours (O’Connor et al., 2018) or strengthen crack resistance 
(Crow, 2007). PbCO3 and PbCrO4 are widely applied in the white and 
yellow traffic line markings, respectively. Therefore, this factor was 
considered the consequence of traffic emissions. 

Factor 2, accounting for 6.0% of the total variance (Fig. 3a), may 
have been associated with natural sources. This factor mainly loaded on 
Cr (40.1%), As (48.5%), Ni (45.4%) and Co (43.1%) (Table S6). Cobalt 
and Ni could be attributed to the natural background because their mean 
concentrations in the road dust of Anyang were below the regional 

background values (Table 1). Moreover, Cr, As and Ni and Co had 
relatively lower CV values than the other HMs (Table 1). 53.6%, 37.9%, 
98.6% and 99.3% the Igeo value of Cr, As, Co and Ni were lower than 0, 
indicating unpolluted (Table S5). Arsenic and Cr have also been 
confirmed to originate feasibly from soil parent materials/geogenic 
sources (Facchinelli et al., 2001; Egodawatta et al., 2013). Hence, Factor 
2 was allocated to natural sources, with minute influence from anthro-
pogenic sources. 

Factor 3, which accounted for 41.6% of the total variance (Fig. 3a), 
might be assigned to industrial activities. This factor had high loading 
values for Mn (53.6%) and V (40.3%), and low loadings for Co (19.4%), 
Cr (19.0%), Zn (18.6%), As (18.3%) and Cd (16.7%), as shown in 
Table S6. Vanadium, a strategically important metal, is widely used in 
the steel industry. Estimates showed that ferrovanadium in the steel 
industry accounts for approximately 85% of the produced global vana-
dium (Yang et al., 2017; Li et al., 2020). By 2020, more than 200 small- 
and medium-scale ferroalloy enterprises, and a large-scale steel smelter 
(Anyang Steel Plant) existed in Anyang (AMBS, 2020). Although China’s 
environmental regulators have adopted strict emission limits, abundant 
quantities of V have been released into the environment as a result of 
metal smelting, machine manufacturing and coal consumption (Jin 
et al., 2019). A remarkable association (0.93) was found between V and 
Mn (Fig. 3c), and the GIS map confirmed that the hotspots of Mn and V 
were concentrated in the western part of the research region (Fig. S3), 
indicating a potential common source. Moreover, previous studies found 
that Mn enrichment was pronounced in surface soil and atmosphere 
surrounding iron and steel smelters (Kelepertzis et al., 2020; Soltani 
et al., 2021). Thus, Factor 3 was identified as industrial activities. 

Factor 4, accounting for 17.0% of the total variance (Fig. 3a), may 
have been associated with agricultural activities. This factor was 
weighted heavily on Cu (71.8%) and less than 25% of other HMs 
(Table S6). Many flower plants were planted along and in the middle of 
the urban road. To protect them from noxious bacteria and pests, bac-
tericides and pesticides containing Cu or As are widely used, which 
would be deposited directly or indirectly into road dust (Zhang et al., 
2018). Moreover, the GIS map showed that the concentration of Cu 
showed a relatively uniform spatial distribution (Fig. S3). Therefore, 
Factor 4 was principally derived from agricultural activities, such as 
bactericides and pesticide dissemination. 

3.4. Bioaccessibilities of HMs in road dust 

Percent gastrointestinal bioaccessibilities of HMs in road dust of 
Anyang based on PBET are plotted in Fig. 4 and Table 2. The average 
PBETG bioaccessibilities of HMs followed the order Zn > Mn > Pb > Cd 
> V > Ni > Co > Cu > Cr > As, and PBETI bioaccessibilities followed 
the order Mn > Zn > V > Ni > Cu > Co > Cr > Cd > Pb > As. Amongst 
all HMs, Zn, Mn and V had relatively high bioaccessibilities in the 
gastrointestinal system, which was consistent with previous research 
(Gu and Gao, 2018; Han et al., 2020). In PBETG and PBETI, Zn, Mn and 
V were mostly present in the acid-soluble and extractable forms, and 

Table 2 
Bioaccessiblities of HMs in the gastric and intestinal phase of road dust in Anyang, China.  

HMs Concentration (mg/kg) Gastric (%) Intestinal (%) Residual (%) 

Range Mean Range Mean Range Mean Range Mean 

Mn 274.81–6022.80  1244.14 2.51–58.48  13.94 2.10–28.59  11.58 24.98–95.40  74.48 
Zn 43.00–1599.40  332.04 4.74–62.62  23.63 1.75–32.07  9.05 14.22–91.98  67.32 
Pb 17.28–400.22  88.66 2.09–64.71  11.46 0.00–3.89  0.69 34.12–97.26  87.85 
V 25.7–312.4  86.8 2.79–64.68  10.17 2.56–20.01  8.82 15.73–94.14  81.01 
Cr 23.06–253.73  97.64 0.51–7.98  2.21 0.52–6.13  2.40 89.41–98.96  95.40 
As 7.65–37.67  18.44 0.01–6.90  0.79 0.00–2.27  0.27 92.16–99.96  98.94 
Cd 0.28–8.94  2.40 0.37–34.49  10.62 0.00–5.21  0.91 62.98–99.31  88.47 
Ni 6.72–47.42  19.00 1.60–25.66  5.74 2.34–13.37  6.82 64.51–94.89  87.44 
Cu 6.35–267.15  53.23 0.30–33.11  4.86 0.26–19.67  5.92 58.54–98.88  89.22 
Co 2.22–15.80  7.36 1.12–23.43  5.47 1.71–8.90  4.70 70.30– 96.94  89.84  
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easily digested and dissolved by human gastrointestinal fluid (Wragg 
et al., 2011; Zheng et al., 2020). Arsenic demonstrated the lowest bio-
accessibility in the two phases, which might be related to their large 
residual phase and the chemical composition of iron in the samples (He 
et al., 2020). The iron-rich matter with a large specific surface area was 
conducive to the adsorption or precipitation of As (V) and As (III), which 
led to the low bioaccessibility (Pan et al., 2014; Khanam et al., 2019). 

The bioaccessibilities of Mn, Zn, Pb, V, As, Cd and Co in PBETG were 
higher than that in PBETI, and their bioaccessibilities in PBETI 
decreased by 17.0%, 61.7%, 94.0%, 13.2%, 65.8%, 91.5% and 14.1%, 
respectively. In PBETG, the pH value was 1.5, which was substantially 
lower than that in PBETI. In this case, the activity of digestive enzymes 

increased, and HMs were easily dissolved (Mingot et al., 2011; Zhang 
et al., 2019a). However, after entering PBETI, the pH value changed 
from acidic (1.5) to alkaline (8.0). HMs were prone to adsorption and 
precipitation reactions, so these elements in the intestinal solution 
would be passivated and fixed again (Pelfrene et al., 2011). The bio-
accessibilities of Cr, Ni and Cu in PBETG were more than those in the 
corresponding PBETI. Amongst them, Cu was prone to chemical 
complexation reaction with bile salts and trypsin in the intestinal fluid 
under neutral conditions, and exhibited high water solubility (Zheng 
et al., 2013; Ai et al., 2018). In addition, the GIS map showed that 
samples with the higher bioaccessibilities of Mn, Zn, Pb, Cr, Cd, Ni, Cu 
and Co in PBETG and PBETI were mainly distributed in the centre of the 

Fig. 5. Health risk (HI and TCR) of HMs in road dust based on total concentrations and bioaccessibilities of HMs in PBETG and PEBTI.  
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study area, whereas V and As with higher PBETG and PBETI bio-
accessibilities were observed in the west and northwest of the study area 
(Fig. 4). Relatively substantial differences in the spatial distributing 
characteristics of HMs between gastric and intestinal bioaccessibilities 
and concentrations were found (Table 1 and 2), which indicated that 
HM concentrations were not the dominant factors to influence their 
bioaccessibilities. Previous studies indicated that bioaccessibility might 
be associated with the condition of the study region (industrial struc-
ture, traffic intensity and functional areas), sample characteristics 
(particle size, conductivity, pH and organic matter content) and metal 
speciation (Patinha et al., 2015; Wu et al., 2015). Therefore, health risk 
assessment based on HM bioaccessibilities would be closer to the actual 
risk for humans than that based on HMs concentrations. 

3.5. Probabilistic health risk assessment 

The HM bioaccessibilities and MCS were adopted to evaluate the 
probabilistic NCRs and CRs of residents’ exposure to HMs in road dust 
from Anyang. For adult females and males, the average values of HI 
based on total concentrations of HMs were 1.08E-1 and 9.63E-2, 
respectively, indicating negligible NCRs (Fig. 5). However, the mean 
value of HI for children was 2.20E+ 0 (range: 4.20E-1 – 2.23E+1), 
which was more than two times greater than the USEPA’s recommended 
value of 1.0 (Table S7). Nearly 95% of HI value with a 95% confidential 
range of 1.01E+ 0–4.33E+ 0 was greater than 1 for children, indicating 
high NCRs (Table S7). Manganese and As were proven to be the domi-
nant factors in NCRs for children and adults, respectively, by comparing 
the HQ value of HMs (Table S7). Especially, the HQ value of Mn for 
children was greater than 1.0 even in the 70th percentile. Although Cd 
had high Igeo and E, its NCRs was below 1.0 due to the low ratio of intake 
dose to body weight (Tables S5 and S7). However, because the total 
HMs in road dust cannot be absorbed completely in the gastrointestinal 
system, the above probabilistic NCRs would be overestimated (Denys 
et al., 2012; Zheng et al., 2020). After incorporating the bio-
accessibilities of HMs by PBETG and PBETI, the mean values of HQ and 
HI were substantially reduced (Fig. 5). Especially, the mean value of HI 
for adult females and males sharply decreased (PBETG: 6.19E-3, 
5.89E-3; PBETI: 3.52E-3, 3.51E-3), implying that the probability of 
NCRs could not occur. 

Based on the total concentrations of HMs studied, the average values 
of TCR for children, adult females and males were 1.26E-5, 1.01E-5 and 
8.73E-6, respectively, which indicated that the CRs were cautionary in 
the study region (Fig. 5). Meanwhile, 100.0% of TCR value for all pop-
ulations surpassed 1E-06, which indicated that residents might be 
exposed to considerable potential CRs (Fig. 5). According to Table S7, 
the basic order of average CR value of HMs for all groups was as As > Cd 
> Cr > Pb > Co > Ni. The average CR values of these elements for all 
populations varied from 1.0E-10–1.0E-4, indicating that CRs were under 
the acceptable level. Similarly, after incorporating the bioaccessibilities 
of HMs by PBETG and PBETI, the average values of CR and TCR 
decreased dramatically (Fig. 5). Only the TCR value for children in the 
range between 1.0E-06 and 1.0E-04 were approximately 10% (PBETG) 
and 5% (PBETI), respectively (Table S7), indicating the probabilistic 
CRs. According to the above results, the NCRs and CRs based on bio-
accessibilities of HMs can lower health risks to residents, which was 
consistent with previous research (Zheng et al., 2020; Ning et al., 2021). 
However, the probability that NCRs and CRs may occur in this study 
area, especially for children, remains high. 

4. Conclusion 

The present paper revealed the contamination characteristics, source 
apportionments, bioaccessibilities and probabilistic health risks of HMs 
in road dust from a typical fourth-tier cities in central China. The results 
revealed that Mn, Zn, Pb, As, Cd and Cu in Anyang road dust were 
elevated owing to the influence of different anthropogenic activities. 

Especially, Zn, Pb, and Cd were 5.69, 3.49 and 34.29 times greater than 
the background values of Henan Province, China, respectively. Cad-
mium with the highest average Igeo and E exhibited MP-HP and EHER. 
PMF model combined with the geostatistical analysis identified four 
sources dominating HM contamination in road dust (traffic emissions, 
natural sources, industrial activities and agricultural activities), ac-
counting for 35.4%, 6.0%, 41.6% and 17.0% of the total HM contents, 
respectively. The percent gastrointestinal bioaccessibilities of HMs 
(except Zn in PBETG) was lower than 20%, and exhibited marked 
variance between PBETG and PBETI. Amongst them, Mn, Zn, Pb, V, As, 
Cd and Co had relatively greater bioaccessibilities in PBETG than in 
PBEGI, but the opposite was observed for Cr, Ni and Cu. The HI value for 
local children was higher than the USEPA’s recommended value of 1.0 
even at the 5th percentile, implying high potential NCRs. Therefore, 
greater focus should be placed on the children. Overall, these findings 
provided comprehensive knowledge for understanding the contamina-
tion and corresponding health risk of HMs from the fourth or fifth-tier 
cities. 
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