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Abstract: The fluids in of pegmatite rare metal deposits are generally rich in rare metal elements
and volatiles (B, P, F, H2O, CO2, etc.), and they have a high capacity for dissolving and migrating
rare metals. The Dakalasu No. 1 rare metal pegmatite vein is located in northwest China’s Altay
orogenic belt. Previous studies have indicated that it is a small- to medium-sized beryllium-niobium-
tantalum deposit. It showed significant mineral assemblage zonations from the rim to the core, and
the mineralizing fluids define a volatile-rich NaCl-H2O-CO2 ± CH4 system. In this contribution,
beryl and quartz, which are widely developed in each mineral association and textural zone, were
selected for fluid inclusion research through detailed petrographic investigation, microthermometry,
and LA-ICP-MS analysis. Petrographic results show that at least three types of fluid inclusions are
developed in each mineral textural zone. They are CO2-rich inclusions (type I), gas-liquid two-phase
inclusions (type II), and daughter mineral-bearing inclusions (type III), respectively. Additionally,
minor melt inclusions (type IV) are visible in the beryl from the rim zone. Microthermometric
measurements showed that the homogenization temperature of fluid inclusions in the rim zone was
concentrated between 242 ◦C and 293 ◦C, with an average of 267 ◦C, and the salinity was between
7.2–10.3 wt% NaCleqv, with an average of 8.6 wt% NaCleqv. In comparison, the temperature of the
core zone was in the range of 225–278 ◦C, with an average of 246 ◦C, and the salinity focused between
6.0–7.7 wt% NaCleqv, with an average of 7.1 wt% NaCleqv. The quantitative analysis of individual
inclusions by LA-ICP-MS revealed that Li, B, K, Zn, Rb, Sb, Cs, and As were relatively enriched in the
rim zone. In contrast, the core zone showed a decreasing trend in trace elements such as Li, B, K, Rb,
and Cs. The CO2 content in the fluid exhibited the same decreasing trend from the rim to the core
zone, indicating that volatile components such as CO2 played an essential role in the migration and
enrichment of rare metal elements. The melt-fluid immiscibility is likely to be a necessary mechanism
for significantly enriching rare metals in the Dakalasu No. 1 pegmatite dyke.

Keywords: CO2-rich fluid; LA-ICP-MS; enrichment mechanism; pegmatite-type rare metal deposits;
Dakalasu; Altay

1. Introduction

Rare metals such as Li, Be, Nb, Ta, Rb, and Cs played an irreplaceable role in aerospace
and defense science and technology. Due to their scarcity, they are listed as strategic essen-
tial mineral resources by China, Europe, and the United States [1–4]. Granitic pegmatite is
essential for rare metal deposits. Researchers have highly valued its metallogenic theory
and prospecting work [3,5–13].

The Altay Orogenic Belt (AOB) is located in the northern part of Xinjiang, China. It is
an essential part of the Central Asian Orogenic Belt (CAOB). More than 100,000 pegmatite
veins are distributed in about 20,000 square kilometers [14], of which more than 95%
are concentrated in 38 pegmatite ore fields [15]. Most pegmatite dykes host rare metal
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mineralization and significant mineral textural zonation. Therefore, the AOB is a natural
laboratory for studying the formation mechanism of pegmatite-type rare metal deposits.

Previous studies have shown that there are four stages of rare metal mineralization
in the AOB, namely Devonian-Early Carboniferous (403~333 Ma), Permian (275~250 Ma),
Triassic (248~200 Ma), and Jurassic (199~157 Ma), with Permian and Triassic being the most
active. [16–23]. Pegmatite-type rare metal deposits with different scales have been formed.
The Koktokay No.3 pegmatite dyke is an ultra-large Li-Be-Nb-Ta-Rb-Cs deposit that is famous
across the globe, and Kaluan is a large to ultra-large Li deposit. Since the 1980s, researchers
from China have conducted much research on pegmatites’ mineral composition, mineraliza-
tion characteristics, genesis and evolution, and rare metal resource evaluation [24–34]. Fruitful
results have been obtained, laying a solid foundation for the research on the genesis of granitic
pegmatites and the mechanism of rare metal mineralization.

Be, Nb, and Ta mineralization characterize the Dakalasu No. 1 granitic pegmatite
in the AOB. It is located about 36 km southeast of Altay City, Xinjiang, with medium-
sized niobium-tantalum and small-sized beryllium reserves [35]. The chronological results
show that it formed in a Permian post-orogenic extensional environment [36,37]. Recent
studies on beryl mineralogy and fluid inclusions suggest that the ore-forming fluids are
characterized by high CO2 enrichment. Still, the characteristics of the mineralized fluids
and the enrichment mechanism of rare metal elements remain debatable [38].

LA-ICP-MS analysis of the composition of individual inclusions has the characteristics
of high precision, low detection limit, and multi-element micro-area detection. It has
incomparable advantages over traditional methods in exploring the geochemical properties
of ore-forming fluids and revealing the metallogenic mechanism [39–45]. Through detailed
field research and petrographic studies, combined with microthermometry, Laser Raman
spectroscopy, and LA-ICP-MS, this contribution investigates the fluid inclusions captured
by beryl and quartz in various mineral textural zone of the Dakalasu No. 1 pegmatite dyke.
The fluid nature of this deposit and the role of volatile components such as CO2 on rare
metal enrichment mineralization are further examined.

2. Geological Background

The AOB is located between the Siberian and the Kazakhstan-Zhungeer plate. The
overall length of the orogenic belt is about 500 km and the width is about 40–80 km. It
is a Phanerozoic accretionary orogenic belt with the characteristics of multi-continental
blocks, island arcs, and accretionary complex belts [46–50]. It has undergone a complex and
extensive tectonic evolution process, from the formation of ancient continental blocks, the
proliferation of continental crust, and the separation of plates to the final aggregation into a
unified and stable continent [51–53]. According to the characteristics of metamorphism and
faults, the Altay area was divided into four terranes by the Hongshanzui-Nort, Kurt-Abba
Palace, and Ertix faults [54,55]. From north to south, these are North Altay, Central Altay,
Qiongkuer, and South Altay terranes (Figure 1).

The Dakalasu mining area is part of the Dakalasu-Kekexier pegmatite field in the
Dakalasu-Jiamanbaha rare metal metallogenic subbelt, located about 36 km southeast of
Altay City, Xinjiang. The exposed strata in the area are Middle-Upper Devonian schist,
gneiss, and metamorphic siltstone, Late Hercynian porphyritic biotite granite, and mica-
ceous granite (Figure 2) [56]. More than ten pegmatite veins with rare metal mineralization,
represented by the Dakalasu No. 1 pegmatite vein, are densely intruded into the southern
part of the Dakalasu granite body.

From the rim to the core, the Dakalasu No. 1 pegmatite vein is mainly divided into four
mineral textural zones, namely graphic pegmatite, blocky microcline, quartz-muscovite,
and quartz core (Figure 3). Tourmaline is widely developed in the pegmatite/granite
contact zone. The mineral assemblage in the graphic texture zone mainly comprises
quartz, albite, beryl, and tourmaline. The blocky microcline zone is mainly composed
of megacryst blocky microcline. The mineral composition of the quartz-muscovite zone
consists of quartz, muscovite, and beryl, and the core zone is primarily composed of quartz
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(Figure 4A,B,D,E). The main beryllium-bearing minerals are yellow-green and golden-yellow
beryl. The beryl content within the central blocky pegmatite zone is as high as 0.49 vol%
and contains considerable amounts of coarse crystalline beryl. The content of beryl in the
whole vein is of about 0.56 vol%, the vein also containing 0.022 vol% tantalum- and niobium-
bearing minerals [35]. Tantalum- and niobium-bearing minerals include columbite, strueverite,
tapiolite, and apatite. The medium-coarse-grained pegmatite at the rim zone mainly contains
columbite and strueverite, while tapiolite and microlite are primarily the core blocky pegmatite
zone. Among the 38 pegmatite fields in Altay, this zoning feature of niobium-tantalum
minerals can be observed only in the Dakalsu-Kekexier and the nearby Abagong pegmatite
field. The Daikalasu No. 1 pegmatite vein is the most representative [35].
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Figure 4. Photographs of ores from the Dakalasu No. 1 pegmatite vein. (A) Graphic texture zone;
(B) Block microcline feldspar; (C) Contact zone between biotite granite and graphic texture pegmatite;
(D) Rose quartz from the transitional zone; (E) Quartz—muscovite zone; (F) Quartz from the quartz
core. Quartz = Qz; Albite = Ab; Microcline = Mc; Schorl = Srl; Beryl = Brl; Muscovite = Ms.
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3. Sampling and Methodology

The samples used in this study were all taken from the open pit of the Dakalasu No.
1 pegmatite vein. Among them, seven samples are from the graphic texture zone (rim),
one piece is from the quartz-muscovite zone (transition), and four are from the quartz core
(Figure 4D–F). The samples were cut into thin sections (~0.2 mm), polished on both sides,
and petrographically examined under an optical microscope (Figures 5 and 6).
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Figure 5. Microscopic characteristics of samples from different mineral textural zones. (A) Quartz-
muscovite combination (crossed polarized light); (B) Quartz-albitite combination (crossed polarized
light); (C) Quartz-albite-garnet combination (crossed polarized light); (D) Albite-schorl-garnet combi-
nation (crossed polarized light); (E) Quartz-beryl combination (crossed polarized light); (F) Albite-
schorl combination (crossed polarized light). Quartz = Qz; Albite = Ab; Microcline = Mc; Schorl = Srl;
Beryl = Brl; Muscovite = Ms; Garnet = Grt.
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Figure 6. Microscopic photos of fluid and melt inclusions of the Dakalasu No. 1 pegmatite vein.
(A,B) Three-phase CO2 inclusions and two-phase gas-liquid inclusions in quartz and beryl; (C) CO2-
bearing two-phase aqueous inclusions in beryl; (D) Gas-liquid two-phase inclusions in quartz and
CO2-bearing two-phase aqueous inclusions; (E–G) Daughter mineral-bearing inclusions and gas-
liquid two-phase inclusions in quartz and beryl; (H) Fluid-melt inclusions coexist with CO2-bearing
two-phase aqueous inclusions in beryl; (I) Crystalline silicate melt inclusions coexist with gas-liquid
two-phase inclusions in beryl.

3.1. Microthermometry

Microthermetric measurement of fluid inclusions was completed at the Fluid Inclusion
Laboratory of the School of Land and Resource Engineering, Kunming University of Science
and Technology. The instrument used was the British Linkam THMSG-600 heating-cooling
stage with a temperature range of −196 ◦C to 600 ◦C. The stage was calibrated to an
uncertainty of ± 0.2 ◦C in the field of −56.6 to 0.0 ◦C. At temperatures above 100 ◦C, the
precision is ± 2 ◦C. The salinities of NaCl-H2O inclusions were calculated using the final
melting temperatures of ice or dissolution temperature of halite using the equations of
Bodnar (1993) [59]. The salinities of CO2-bearing fluid inclusions were calculated using the
melting temperatures of clathrate [60,61].

3.2. Raman Spectroscopy

Gas compositions of fluid inclusions were identified with a Renishaw InVia Reflex
Raman microprobe in the same laboratory. An Ar-ion laser with a surface power of 5 mW
was used for exciting the radiation (514.5 nm), the area of the charge-coupled device (CCD)
detector is 20 µm2, and the scanning range for spectra was set between 100 and 4000 cm−1,
with an accumulation time of 30 s for each scan.

3.3. LA-ICP-MS Microanalysis

Laser-ablation ICP-MS (Agilent Technologies: Santa Clara, CA, USA) was used to
quantify the compositions of single fluid inclusions at the State Key Laboratory for Mineral
Deposit Research, Nanjing University. The measurement was carried out using a Coherent
GeolasHD system equipped with a 193 nm ArF laser coupled to a NexION 350 ICP mass
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spectrometer. NIST 610 was used as an external standard for all elements and instrumental
drift correction. The NaCl equivalent salinities obtained from microthermometry were
used as internal standards [62,63]. Major cations such as Na and K were included in the
salt correction. Data reduction was performed using the SILLS software [64]. Average
elemental concentrations with ±1σ uncertainty were calculated for each fluid inclusion
assemblage. For detailed measurement procedures, see [65].

4. Results
4.1. Fluid Inclusion Petrography

Numerous fluid inclusions, including primary, secondary, and pseudo-secondary, are
developed in beryl and quartz in each textural zone of the Dakalasu No. 1 pegmatite vein.
Primary inclusions were selected for the focused study. According to the composition
of fluid inclusions and their phase properties at room temperature [66], fluid inclusions
are classified into four types, namely, CO2-bearing inclusions (type I), gas-liquid phase
two-phase inclusions (type II), daughter mineral-bearing inclusions (type III), and melt
inclusions (type IV).

The type Ia CO2-bearing fluid inclusion is widely distributed in a variety of minerals
in both the graphic pegmatite zone and the quartz core and can be further divided into two
subclasses, Ia and Ib. Type Ia inclusions are about 12–40 µm in size, primarily distributed in
clusters, a few isolated, with irregular, ellipsoidal, and negative crystal shape morphology.
Three phases are visible at room temperature (20 ◦C), i.e., liquid H2O, liquid CO2, and
gas phase CO2 (Figure 6A). Most inclusions decrepitated during the microthermometric
measurement, indicating a high internal pressure. The size and shape of type Ib inclusions
are similar to those of Ia, but only two phases are visible at room temperature, i.e., liquid
water and gas-phase CO2. In the Raman spectroscopy analysis, 1285 cm−1 and 1388 cm−1

CO2 characteristic peaks were visible in the liquid phase.
Type II is gas-liquid two-phase inclusions, mainly distributed in quartz in the graphic

texture zone and quartz core (Figure 6D,E). This type of inclusion is less in number and
usually smaller in size (~10 µm). Most are isolated and irregular in shape. The vapor phase
accounts for about 10%–30% of the volume of the inclusions.

Type III, daughter mineral-bearing inclusions, is mainly developed in beryl and
quartz in the graphic textural zone. The number of this type of inclusion is small, and
the morphology is generally irregular. It typically comprises three phases: liquid water,
gaseous phase, and daughter minerals. The shape of the daughter minerals is generally
cubic or spherical, these minerals being most probable Na or K chlorides.

Type IV, melt inclusions, is mainly developed in beryl of the graphic textural zone.
The number of inclusions of this type is small. It can be subdivided into two categories,
water-rich melt inclusions and water-poor melt inclusions, according to the content of the
fluid. The water-rich melt inclusions are only isolated in beryl, with a size of about 25 µm
and mostly negative crystal with columnar shape morphology. It is mainly composed of
liquid water, vapor bubble, and crystalline silicates, and the liquid phase accounts for about
40%–50% of the volume of the inclusions (Figure 6H). The water-poor melt inclusions also
occur only in beryl, with a size of about 20 µm and a negative crystal shape or elongated
morphology. It consists of glassy melt and vapor bubbles. They usually coexist with
gas-liquid two-phase inclusions (Figure 6I).

4.2. Microthermometry

The microthermometric measurement was mainly focused on type I and type II inclu-
sions, with the host minerals, including beryl, rose quartz, and quartz, widely distributed
in the rim, transition, and core. The results are shown in Table 1 and Figures 7 and 8.
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Table 1. Micorothermometry results of the fluid inclusions from Dakalasu No. 1 pegmatite vein.

Stage
Division

Inclusion
Type

Total
Number

Size
(µm)

Tm, CO2
(°C)

Tm, ice
(°C)

Tm, clath
(°C)

Th, CO2
(°C)

Th, tot
(°C)

Salinity
(wt%

NaCleqv)

CO2 Phase
Density
(g/cm3)

rim zone
(beryl)

Ia 26 5~30 −58.1~−58.6 4.1~5.7 13.5~25.6 242.5~293.4 8.0~10.3 0.71~0.84
Ib 18 5~22 −58.2~−58.5 4.7~6.1 229.7~280.8 7.2~9.4
II 6 8~19 −6.2~−3.9 231.3~242.7 6.3~9.47

transition
zone (rose

quartz)

Ia 16 6~23 −58.2~−58.4 5.0~7.0 24.1~26.5 253.4~287.5 5.7~9 0.69~0.73
Ib 12 7~20 −58.1~−58.4 5.2~6.5 240.8~299.4 6.5~8.6
II 9 8~17 −6.9~−4.2 240.8~283.8 6.7~10.4

quartz core
(quartz)

Ia 29 7~29 −58.2~−58.4 5.1~6.8 19.5~28.7 228.7~278.3 6.0~7.7 0.65~0.78
Ib 12 8~18 −58.1~−58.4 5.2~6.8 225.5~262.5 6.0~7.7
II 7 6~15 −7~−4.4 232.2~267.5 7.02~10.5
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In the beryl of the rim zone, the CO2 triple-phase point temperature (Tm, CO2 ) of type I
inclusions was between −58.1 and −58.6 ◦C, indicating that its gas phase is not pure CO2.
This is consistent with the results of Raman spectroscopy, where the gas phase composition
contains moderate amounts of CH4 and N2. During slow heating, the melting temperature
of CO2 clathrate (Tm, clath) was observed between 4.1 and 5.7 ◦C. Salinities of 8.0%~10.3%
NaCleqv were calculated according to [60]. The partially homogeneous temperature of the
CO2 phase (Th, CO2 ) ranges from 19.5 to 25.6 ◦C. During continuous heating, the inclusions
gradually homogenize to the liquid phase, and the completely homogeneous temperature
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ranges from 243 to 294 ◦C. According to [67] and [68], the CO2 phase density was calculated
to be 0.71–0.84 g/cm3. For type II inclusions in beryl, the freezing point was measured
in the range of −6.2 to −3.9 ◦C during reheating after complete freezing. According
to [59], the calculated salinity ranged from 6.3 to 9.5% NaCleqv. The inclusions were finally
homogenized to the liquid phase with a temperature between 232 and 243 ◦C.

In the rose quartz of the transition zone, the CO2 triple-phase point temperature of
type I inclusions ranges from −58.2 to −58.4 ◦C, similar to that in beryl. The melting
temperature of CO2 clathrate varies from 5.0 to 7.0 ◦C, corresponding to a salinity of 5.7
to 9% NaCleqv. The CO2 partial homogeneity temperature is between 24.1 and 26.5 ◦C,
and the complete homogeneity temperature ranges from 253 to 288 ◦C. The CO2 phase
density is 0.69 to 0.73 g/cm3, slightly lower than that in beryl. The type II inclusions in the
rose quartz exhibit a freezing point of −6.9 to −4.2 ◦C, corresponding to a salinity of 6.7 to
10.4% NaCleqv. The homogeneous temperature lies between 241 and 284 ◦C.

In the quartz of the core zone, the CO2 triple-phase point temperature of type I in-
clusions also falls between −58.2 and −58.4 ◦C. The CO2 clathrate disappears at about
5.1–6.8 ◦C, corresponding to a salinity of 6.0%–7.7% NaCleqv. The CO2 phase is partially ho-
mogeneous at 18.8~28.7 ◦C and completely homogeneous to the liquid phase at 229~278 ◦C.
The calculated CO2 phase density is from 0.65 to 0.78 g/cm3, similar to or slightly lower than
rose quartz. The freezing point of type II inclusions in quartz ranges from −7 to −4.4 ◦C,
corresponding to a salinity of 7.0 to 10.5% NaCleqv. The inclusions finally homogenize to
the liquid phase at 232 to 267 ◦C.

4.3. Raman Spectroscopy

The results of Raman spectroscopy showed that the gas phase of type Ia inclusions
contained significant CO2 characteristic peaks and modest levels of N2 and CH4; CO2 was
detected in both the liquid and gas phases (Figure 9A,B). Two characteristic peaks of CO2
(1285 cm−1, 1387 cm−1) were clearly seen in the type Ib inclusions’ vapor and liquid phase,
but N2 and CH4 were not recognized in the gas phase (Figure 9C,D). At 3607 cm−1, the
characteristic peak of water in beryl crystal structure can be seen [69].
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the Dakalasu No. 1 pegmatite vein. (A,B) Three-phase CO2 inclusions (type Ia); (C,D) CO2-bearing
aqueous inclusions (type Ib).
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4.4. LA-ICP-MS

In this contribution, 22 CO2-bearing fluid inclusions in beryl, quartz, and rose quartz
of Dakalasu No. 1 pegmatite dyke were selected for LA-ICP-MS analysis. The results are
shown in Tables 2–4 and Figure 10.

Table 2. LA-ICP-MS in situ analysis of fluid inclusions in beryl of Dakalasu No. 1 pegmatite
vein (ppm).

Sample A32 A33 A34 A35 A36 A41 A43

Li 737.7 614.8 527.1 2172 316.5 390.3 1659
B 2889 5702 976.7 1924 3525 34,407 10,648

Na 35,917 33,478 39,497 33,478 33,478 35,917 33,478
K 2813 3281 2932 641.2 4052 8880 3737

Zn 37.16 474.4 151.3 - 314.1 891.1 -
As 684.3 1143 120.8 194.2 171.7 - 2735
Rb 98.46 118.9 116.7 54.74 88.15 265.2 322.9
Sr 1.40 11.59 32.28 - - - -
Sb 211.4 139.7 120.2 - 233.4 1717 855.6
Cs 1005 1646 669.6 1505 1412 1420 3842
Ta 1.23 - 1.21 - - - -
W - - 178.8 - 43.67 - 277.4

Rb/Na 0.002741 0.003552 0.002955 0.001635 0.002633 0.007384 0.009646
Cs/Na 0.02799 0.04917 0.01695 0.04497 0.04216 0.03954 0.1148
Cs/Rb 10.21 13.84 5.737 27.50 16.01 5.355 11.90

Notes: “-” means below detection limit.

Table 3. LA-ICP-MS in situ analysis of fluid inclusions in rose quartz of Dakalasu No. 1 pegmatite
vein (ppm).

Sample A05 A06 A06-2 A07 A08 A09 A11 A12

Li 1259 1827 1186 3973 - 820.0 1353 4009
Be - - - - 217.5 - -
B 11,981 13,446 12,314 2994 2326 11,767 10,988 11,130

Na 27,066 30,291 30,291 22,345 25,728 27,734 28,364 22,345
K - 679.4 1424 2701 2580 241.8 734.9 -
Ti - - - 1496 692.6 3468 334.9 4655
As 2939 840.9 1593 3281 1134 4468 2710 -
Rb 15.19 16.85 - 27.74 34.32 8.06 10.30 -
Sb - - - 137.04 - - 18.76 -
Cs 551.9 646.2 602.9 931.9 461.2 202.4 234.2 332.2

Rb/Na 0.000561 0.000556 - 0.001241 0.001334 0.000291 0.000363 -
Cs/Na 0.02133 0.01991 0.03368 - 0.01793 0.007297 0.008259 0.001487
Cs/Rb 36.29 38.35 - 33.60 13.44 25.11 22.74 -

Notes: “-” means below detection limit.

Table 4. LA-ICP-MS in situ analysis of fluid inclusions in quartz of Dakalasu No. 1 pegmatite
vein (ppm).

Sample A18 A19 A20 A21 A22 A23 A24 A25

Li 866.7 - 362.3 - 371.5 110.7 322.6 279.1
B 2813 3028 1004 3153 1434 5119 3161 4191

Na 27,734 27,066 29,662 27,734 3096 28,364 27,066 263,967
K 1136 520.7 - 698.8 959.7 1575 692.1 710.7
As 518.5 845.1 963.2 1052 925.5 1133 726.3 1097
Rb 8.83 8.71 15.12 5.40 - 18.20 27.89 26.73
Cs 166.6 101.2 - 149.2 - 224.2 233.9 245.2

Rb/Na 0.000318 0.000322 0.00051 0.000195 0.000642 0.00103 0.001013
Cs/Na 0.006007 0.00374 0.005378 0.007905 0.008641 0.009288
Cs/Rb 18.87 11.62 27.62 12.32 8.386 9.172

Notes: “-” means below detection limit.



Minerals 2023, 13, 365 12 of 18

Minerals 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

Rb 8.83 8.71 15.12 5.40 - 18.20 27.89 26.73 
Cs 166.6 101.2 - 149.2 - 224.2 233.9 245.2 

Rb/Na 0.000318 0.000322 0.00051 0.000195  0.000642 0.00103 0.001013 
Cs/Na 0.006007 0.00374 0.005378   0.007905 0.008641 0.009288 
Cs/Rb 18.87 11.62  27.62  12.32 8.386 9.172 

Notes: ”-” means below detection limit. 

 
Figure 10. LA-ICP-MS time resolution profiles of single fluid inclusions in various minerals of Da-
kalasu No. 1 pegmatite vein. 

The CO2-bearing inclusions in the beryl of the rim zone show a certain amount of Li, 
B, K, Rb, etc. Among them, the highest contents of Li and B reached 2172 ppm and 34,407 
ppm (absolute concentration with ±1σ uncertainty), respectively. The contents of Cs 
ranged from 669.6–3842 ppm. In contrast, the contents of Rb and Ta are lower, ranging 
from 54.74–322.9 ppm to 1.21–1.23 ppm, respectively. 

Compared with the rim zone, Li, B, K, Rb, and Cs in the fluids of the core zone 
showed a decreasing trend, and their contents in some inclusions were below the detec-
tion limits. The highest content of Li was only 866.7 ppm. The concentrations of Rb and 
Cs were much lower at 8.83–27.89 ppm and 101.2–245.2 ppm, respectively. 

Figure 10. LA-ICP-MS time resolution profiles of single fluid inclusions in various minerals of
Dakalasu No. 1 pegmatite vein.

The CO2-bearing inclusions in the beryl of the rim zone show a certain amount of
Li, B, K, Rb, etc. Among them, the highest contents of Li and B reached 2172 ppm and
34,407 ppm (absolute concentration with ±1σ uncertainty), respectively. The contents of
Cs ranged from 669.6–3842 ppm. In contrast, the contents of Rb and Ta are lower, ranging
from 54.74–322.9 ppm to 1.21–1.23 ppm, respectively.

Compared with the rim zone, Li, B, K, Rb, and Cs in the fluids of the core zone showed
a decreasing trend, and their contents in some inclusions were below the detection limits.
The highest content of Li was only 866.7 ppm. The concentrations of Rb and Cs were much
lower at 8.83–27.89 ppm and 101.2–245.2 ppm, respectively.

In the fluid inclusions of rose quartz from transition zone, Li, B, Rb, and Cs contents
are usually between those of beryl and quartz. The high Ti content detected in the rose
quartz is the reason for the pink color of its crystals.
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5. Discussion
5.1. Nature and Evolution of the Ore-Forming Fluids

The formation of pegmatite is an evolutionary process from magmatic to hydrothermal
fluids. In terms of inclusions, a melt inclusion is captured in the magmatic stage, a fluid
inclusion is recorded in the hydrothermal stage, and a fluid-melt inclusion is caught in
the magmatic-hydrothermal transition stage [70]. Abundant CO2-rich fluid inclusions and
a few fluid-melt inclusions are developed in beryl and quartz in the rim and core zones
of the Dakalasu No. 1 pegmatite vein. This suggests that the deposit has experienced a
magmatic to hydrothermal growth evolution [71,72]. Microthermometry results show that
the fluid in the rim have medium to high temperature (240~300 ◦C) and medium-high
salinity (7.2%–10.3% NaCleqv) and is rich in volatile components such as CO2 and CH4.
The homogeneous temperature (220–270 ◦C) and salinity (7.0%–8.8% NaCleqv) of CO2-rich
inclusions in the quartz of the core are slightly lower than those in the rim.

The LA-ICP-MS analysis of the individual inclusions shows that the fluids in the
rim are enriched in Li, B, K, Zn, Rb, Sb, Cs, and As. In contrast, Li, B, K, Rb, and Cs
concentrations are significantly lower in the core.

The detectable mineralized rare metal elements such as Nb and Ta in fluid inclusions
are low, and only a trace amount of Ta (1.21–1.23 ppm) was detected in beryl. This indicates
that Nb and Ta tend to concentrate in the residual silicate melt during the magmatic-
hydrothermal evolution, which is consistent with the results of previous experimental
geochemical studies [73,74].

The fluid temperature and salinity of the Dakalasu No. 1 pegmatite vein gradually
decrease from the rim to the core, and the fluid composition changes accordingly. The
mineral textural zonation can also indicate this feature. Earlier crystallized tantalum-
niobium minerals, columbite and strueverite, are mainly distributed in the rim, while later,
crystallized tapiolite and apatite are produced primarily in the core [35].

5.2. The Role of CO2-Rich Fluids in Rare Metal Enrichment and Mineralization

As important mineralizing agents, volatile components, such as CO2, B, and F, played
a critical role in rare metal enrichment mineralization [75,76]. CO2 significantly affects the
depth of magma degassing and the properties of fluids (vapor and brine), which can lead
to phase separation of the NaCl-H2O system under higher P-T conditions [77–79]. Further-
more, because of the strong depolymerization properties and affinity of CO2, the diffusion
rate and activity of rare element cations and volatiles in the melt are increased. This leads
to the rapid separation of volatile-rich melts from the parent magma and enhances the
occurrence of immiscibility [80]. As the pressure decreases, CO2 escapes earlier than other
volatile components, which causes a change in the pH of the mineralizing fluid and leads
to rare metal precipitation [81,82].

The fluid inclusions in various textural zones of the Dakarlasu No. 1 pegmatite vein
are characterized by the richness of volatile components such as CO2, CH4, and N2. The
calculated results show (Table 1) that the CO2 density from rim to core decreased from
0.71~0.84 g/cm3 to 0.65~0.78 g/cm3. The LA-ICP-MS analysis results also showed that the
content of Li, B, K, Rb, Sr, and Cs decreased from the rim to the core zone. This synergistic
variation relationship (Figure 11) partially reflects the possible contribution of CO2 to the
migration and enrichment of these rare elements.

Suo et al. (2022) [38] performed LA-ICP-MS, and EPMA analysis on beryl from the
Dakalasu No. 1 pegmatite vein, and the results showed high FeO contents and Na/Cs
ratios of beryl. This indicates that the differentiation evolution of the pegmatite veins is low.
The enrichment of Be is related to the crystallization of the melt at a highly undercooled
state. The melt-fluid immiscibility promoted by volatile components such as CO2 is likely
to be the effective mechanism leading to the enrichment of rare metal elements such as
Be-Nb-Ta into mineralization.
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6. Conclusions

(1) Numerous CO2-rich fluid inclusions are developed in various mineral textual zones
of the Dakalasu No. 1 pegmatite vein. The fluid composition is mainly a NaCl-H2O-CO2
system. The fluid temperature and salinity show a decreasing trend from the rim to the core.

(2) The LA-ICP-MS analysis of individual fluid inclusions reveals that the rim zone
fluids are enriched in Li, B, K, Zn, Rb, Sb, Cs, and As, while the contents of these elements
are significantly lower in the core.

(3) CO2 may play a vital role in migrating and enriching rare metals such as Be, Nb,
and Ta in the Dakalasu No. 1 pegmatite vein. The melt-fluid immiscibility that occurs in the
system during the magmatic-hydrothermal transition stage may be an effective mechanism
for rare metal elements’ mineralization.
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