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A B S T R A C T   

How new continental crust formed remains a matter of debate. A key to solve this issue is to determine which 
tectonic setting(s) are involved in new crust formation. Modern mantle-derived magmas that formed in intra-
continental extension settings (OIB-like U/Pb = ~0.28–0.37) and in subduction settings (IAB-like U/Pb =
~0.1–0.16) have distinct mean U/Pb ratios, furthermore, the mean U/Pb (~1.8–2.0) of depleted mantle (DM) is 
mainly between the OIB-like and IAB-like U/Pb ratios. Therefore, the Pb isotopic ratios (e.g., 206Pb/204Pb) of 
subduction-related mantle-derived magmas develop below the lead isotopic evolution curve of depleted mantle 
(DM), whereas those ratios of mantle-derived magmas generated in intracontinental extension settings evolve 
above the DM evolution curve. Here we used published Nd-Pb isotope compositions from 75 I-type granitoid 
samples to calculate the time of new crust formation (TDM) and 206Pb/204Pb ratios [(206Pb/204Pb)t] of new crust 
at t (i.e., time of new crust remelting) in the Songliao Block from East Asia to determine tectonic settings in which 
new crust formed have changed with time. Our results show that (206Pb/204Pb)t ratios corresponding to TDM of ~ 
1.55–1.2 Ga plot below the DM evolution curve, indicating a subduction setting of new crust formation, whereas, 
the (206Pb/204Pb)t ratios corresponding to TDM of ~ 1.05–0.70 Ga plot above the DM evolution curve, indicating 
an intracontinental extension setting of new crust formation. Hence, here two distinct tectonic settings of new 
crust formation are recognized in the Songliao Block. In addition, this method is also applied to well determine 
the tectonic settings of new crust formation in the Jibei area of North China and the Qinling area of Central China 
during the Paleoproterozoic (ca. 2.2–1.8 Ga). Therefore, our study demonstrates that the calculation of TDM and 
(206Pb/204Pb)t ratios of new continental crust from the bulk-rock record may constitute a potential approach to 
better constrain how new continental crust formed and the Precambrian tectonic evolution of continents.   

1. Introduction 

Although the timing of crust formation has been constrained by Nd 
and Hf isotopes (e.g., Dhuime et al., 2012; Condie et al., 2018), the 
mechanism of new continental crust formation in different places at 
different stages of Earth’s evolution remains a matter of debate (Moresi 
et al., 2014; Wang et al., 2020). The average andesitic composition of 
the bulk continental crust (BCC), coupled with the magnificent andesite 
volcanism which occurs at subduction zones, and similar incompatible 
element patterns between BCC and arc magmas (Rudnick, 1995; 
Davidson and Arculus, 2006; Niu et al., 2013), lead to the “island arc” 
model widely accepted for the origin of the continental crust. However, 

this model cannot explain some crucial geological characteristics: e.g., 
(i) the bulk arc crust (BAC) is basaltic whereas the BCC is andesitic (Niu 
et al., 2013); (ii) Th/U ratio, Cr, Ni (Taylor and McLennan, 1985) and Sr 
contents (Niu et al., 2013) are distinct between BAC and BCC; (iii) BAC 
contributes no net mass to the BCC growth, at least in the Phanerozoic 
(Niu et al., 2013); (iv) It also difficultly explains continental crust 
growth in early earth (Moresi et al., 2014). For example, ˃65% of the 
present volume of continental crust might be generated before 3 Ga 
(Dhuime et al., 2012; Hawkesworth et al., 2019), when geodynamic 
modes other than plate tectonics may have been operating (Cawood 
et al., 2018). In contrast, an alternate model of crustal growth by vertical 
growth in extension settings has been invoked in response to plume- 
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related and/or intracontinental extensional magmatism (Frost et al., 
2001; Couzinié et al., 2016), but its role in new continental formation is 
not well constrained (Albarède, 1998). Hence, the key to reveal the 
mechanism of new continental crust formation is to determine which 
tectonic setting(s) are involved in the generation of new continental 
crust through time. 

Accretionary mountain belts, such as Central Asian Orogenic Belt 
(CAOB), record major growth of continental crust by the addition of 
juvenile magmas, which can be used to determine how new crust formed 
(Cawood et al., 2009). The Songliao Block, located within the CAOB, 
formed through a long-lived accretionary phase involving episodes of 
subduction, collision, and extension during the Precambrian (Luan et al., 
2019). Therefore, it is an ideal natural laboratory for studying mecha-
nisms of new crust formation. This study applies previous Pb-Nd isotope 
compositions of I-type granitoids from across the microcontinent to 
investigate the role tectonic setting in the generation of new continental 
crust. 

2. Method 

Uranium is much more incompatible than Pb during mantle partial 
melting that produced OIB and MORB (Hofmann, 2003), whereas fluid- 
mobile Pb is more readily transported during mantle partial melting 
enriched in water at subduction zones resulting in the marked decrease 
of U/Pb of magmas (Kogiso et al., 1997). Hence, modern primitive 
mantle–derived magmas generated in intracontinental extension set-
tings and in subduction settings have distinct mean U/Pb ratios (Fig. 1A- 
D). Overall primary magmas formed in intraplate settings (OIB-like) 
have higher mean U/Pb ratios (e.g., Ocean island basalt, ~0.37 ± 0.11 
(1σ), Delavault et al., 2016, or ~ 0.32 Sun and McDonough, 1989; 
Continental rift basalt, ~0.37 ± 0.04 (1σ), Table S1, and Post-collision 
basalt, ~0.28 ± 0.02 (1σ), Aldanmaz et al., 2000; Duggen et al., 2005; 
Aydınçakır and Şen, 2013; Pang et al., 2013; Kheirkhah et al., 2015; 
Erturk et al., 2017. Fig. 1A-C), whereas primary magmas generated in 
subduction settings (IAB-like) have lower mean U/Pb ratios (Island arc 
basalt, ~0.10 ± 0.06 (1σ), Delavault et al., 2016; Continental arc basalt, 
~0.16, Kelemen et al., 2007; Back-arc basalt, ~0.15 ± 0.04 (1σ), Gale 
et al., 2013). In addition, depleted mantle (DM) have mean U/Pb ratios 
of 0.18 (Workman and Hart, 2005), or 0.20 (Salters and Stracke, 2004). 
Delavault et al. (2016) used the Pb isotope record of feldspar inclusions 
in zircon and zircon-Hf model ages to calculate the U/Pb ratios of the 
mafic protoliths of two granite samples [i.e., juvenile mafic crust (U/ 
Pb)jc], to reveal the tectonic settings of new crust formation, demon-
strating the potential of calculating (U/Pb)jc in determining the tectonic 
settings of new crust formation. However, there are relatively big un-
certainties in the calculation of (U/Pb)jc, because of the involvement of 
the parameters with big uncertainties, such as 238U/204Pb (~1.09–9.72, 
Sun and McDonough, 1989; Rehkamper and Hofmann,1997; Salters and 
Stracke, 2004; Workman and Hart, 2005; Gale et al., 2013) and 
206Pb/204Pb (~18.00–18.298, Rehkamper and Hofmann, 1997; Gale 
et al., 2013) of depleted mantle, furthermore, it remains difficult to 
obtain high precision data for a large number of representative samples. 
Hence, here we present an improved method to avoid the calculation of 
(U/Pb)jc. Because OIB-like and IAB-like magmas have distinct U/Pb 
ratios, Pb isotopic ratios (e.g., 206Pb/204Pb) of subduction-related 

(caption on next column) 

Fig. 1. (A–D) Present-day distribution of U/Pb ratios of basalts in intra-
continental extension (OIB-like) and subduction (IAB-like) settings. Data for 
IAB and OIB are from Delavault et al. (2016). Data for BAB and CAB are from 
Gale et al. (2013) and Kelemen et al. (2007), respectively. Data for PCB are 
from Aldanmaz et al. (2000); Duggen et al. (2005); Aydınçakır and Şen (2013); 
Pang et al. (2013); Kheirkhah et al. (2015); Erturk et al. (2017). Data for CRB 
are from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/, 
Table S1). IAB-like = IAB, CAB, BAB. IAB—Island arc basalt, CAB—Continental 
arc basalt, BAB—Back-arc basalt. OIB-like = OIB, CRB, PCB. OIB—Ocean island 
arc basalt, CRB—Continental rift basalt, PCB—Post-collisional basalt. 
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primary mantle-derived magmas (IAB-like) should mainly develop 
below the lead isotopic evolution curve of depleted mantle (DM), 
whereas those ratios of primary mantle-derived magmas (OIB-like) 
generated in intracontinental extension settings should evolve above the 
DM evolution curve (Fig. 2). Here we calculate 206Pb/204Pb ratios 
[(206Pb/204Pb)t] of new continental crust remelting at t (crystallization 
time of felsic magma) and time of new crust formation (TDM) to deter-
mine which tectonic setting(s) are involved in the generation of new 
continental crust through time (Fig. 2). 

The (206Pb/204Pb)t ratio and TDM can be calculated from the U-Pb age 
and the Pb-Nd isotopic compositions of I-type granitoids, using the 
following Equations: 

(206Pb/204Pb)t = (206Pb/204Pb)s − (238U/204Pb)s*(e
λ1t − 1) (1)  

μ = (238U/204Pb)s = (U/Pb)s*MPb*ω238
U /(MU*ω204

pb ) = (U/Pb)s/0.016 (2)  

fSm/Nd =
[( 147Sm/ 144Nd

)

s/
(( 147Sm/ 144Nd

)

CHUR

) ]
− 1 (3)  

TDM1 = 1/λ2 × ln{[(143Nd/144Nd)s − (143Nd/144Nd)DM]/[(
147Sm/144Nd)s

− (147Sm/144Nd)DM] + 1}
(4)  

TDM2 = TDM1 − (TDM1 − t)[(fc − fs)/(fc − fDM)] (5) 

where t is the U-Pb crystallization age of zircon; (206Pb/204Pb)t is the 
Pb isotope compositions of new crust at t; (206Pb/204Pb)s and 
(238U/204Pb)s are the measured 206Pb/204Pb and 238U/204Pb ratios of I- 
type granite samples, respectively; (238U/204Pb)s can be calculated by 
whole-rock U/Pb of I-type granite samples; λ1 is the decay constant of 
238U (1.55125 × 10− 10.yr− 1). MPb and MU represent standard atomic 
weights of Pb and U, respectively. ω204

Pb and ω238
U represent the relative 

abundances of 204Pb as percent of total Pb and 238U as percent of total U, 
respectively. The Pb isotope evolution of the mantle was calculated from 
the composition of the Canyon Diablo troilite at t0 = 4560 Ma and a two- 
stage model similar to that of Stacey and Kramers (1975), in which 
(206Pb/204Pb)4560Ma = 9.307, (206Pb/204Pb)(4560~3700Ma) = 11.152, to 

Fig. 2. Evolution of the 206Pb/204Pb ratios through 
time: Black, red and green lines represent the evolu-
tion paths of depleted mantle (DM), I-type granitoids 
and new continental crust, respectively. A and B 
reflect the remelting of new OIB-like crust and IAB- 
like crust at t, respectively. C and D represent pre-
sent day 206Pb/204Pb ratios of I-type granite samples 
formed through the remelting of new OIB-like crust 
and IAB-like crust, respectively. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Fig. 3. (A) Sketch tectonic map of Asia (modified after Zhou et al., 2009). (B) Simplified tectonic map of NE China (modified from Zhou et al., 2009). MOS: Mongol- 
Okhotsk suture; PAS: Paleo-Asian suture; PTS: Paleo-Tethys suture; F1: Tayuan-Xiguitu Fault; F2: Hegenshan-Heihe Fault; F3: Solonker-Xar Moron-Changchun-Yanji 
Fault; F4: Dunhua-Mishan Fault; F5: Jiayin-Mudanjiang Fault. Red dashed line in Fig. 2B represents secondary faults. Pentangle in Fig. 2B represents sample location. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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match present-day mean (206Pb/204Pb)DM = 18.298 (Gale et al., 2013). 
In addition, (143Nd/144Nd)s and (147Sm/144Nd)s are the measured values 
of I-type granite samples; λ2 is the decay constant of 147Sm (6.54 × 10− 6 

m.y− 1); (143Nd/144Nd)DM = 0.513151; (147Sm/144Nd)DM = 0.2137; 
(143Nd/144Nd)CHUR = 0.512638; (147Sm/144Nd)CHUR = 0.1967; 
(147Sm/144Nd)cc = 0.118. When ƒSm/Nd = − 0.5 ~ − 0.3 and ƒSm/Nd <

− 0.5 or > − 0.3, TDM use the value of TDM1 and TDM2 respectively. So 
that, the Nd model age (TDM) is close to the real model age of one sample 
as far as possible (Yang et al., 2017). 

3. Geological background 

The Songliao Block, NE China, lies in the eastern CAOB and contains 
the Lesser Xing’an-Zhangguangcai Range in the east, the southern Great 
Xing’an Range in the west, and the central Songliao Basin (Fig. 3A-B) 
(Zhou et al., 2009). The tectonic evolution of this microcontinent is 
controlled by the Paleo-Asian Ocean system in the Paleozoic, followed 
by subduction of the Paleo-Pacific Plate since the early Jurassic (Zhou 
et al., 2009). It may have experienced three or four phases of collisional 
orogenesis with the adjacent plates during the Phanerozoic (Xu et al., 
2013), which resulted in the destruction/recycling of large amounts of 
old crustal material. The exposed Precambrian basement is sparsely 
distributed in the east, northwest and south of the microcontinent, and it 
is mainly composed of Neoproterozoic metamorphic units (~0.6–0.9 
Ga) with minor Paleoproterozoic (~1.8 Ga) and the Neoarchean (~2.7 
Ga) metamorphic granitoids (Wu et al., 2018; Zhang et al., 2018; Luan 
et al., 2019). In addition, Paleoproterozoic (~2.1–1.9 Ga) continental 
lithospheric mantle occurs in the northeast of the block (Zhang et al., 
2011). Thus, ancient Precambrian crystalline basement existed in the 
microcontinent, but most of them might be strongly destructed in the 
multiple phases of orogenesis during the Phanerozoic. The micro-
continent contains abundant Paleozoic-Mesozoic granitoids and Phan-
erozoic sedimentary formations (Wu et al., 2011). The granitoids are 
dominated by I- and A-types, with no documented S-type (Wu et al., 
2011). The growth timing of this microcontinent was constrained by Nd- 
Hf isotopes and the Mesoproterozoic and the Neoproterozoic are the two 
main periods of new continental crust formation in the microcontinent 
(Tables S2 and S3, Fig. 4A–C). However, the mechanism of new crust 
formation, as well as its Precambrian tectonic evolution remain unclear, 
because of the absence of ancient igneous rocks related to crustal 
accretion. 

4. Sample selection and calculated result 

4.1. Sample selection 

On the basis of the above five calculation formulas (Eqs. (1)–(5)), the 
fractionation of I-type granitoids does not impact the calculation of TDM 
and (206Pb/204Pb)t ratios of new crust. However, generally, the calcu-
lation of TDM and (206Pb/204Pb)t ratios of new crust can be impacted by 
the significant processes (e.g., contamination, magma mixing and 
alteration). Hence, the I-type granitoid samples with high loss on igni-
tion, marked contamination and magma mixing are not suitable for our 
method. We collect whole-rock major/trace elements and Nd-Pb isotope 
data of I-type granitoids, when there are n ≥ 3 analyses for each I-type 
felsic pluton or volcanic rock. So that we can determine whether the 
granitoid samples have been modified by the potential geologecal pro-
cesses such as contamination, alteration, magma mixing. Hence, the I- 
type granitoid samples with n ≤ 2 analyses for each I-type felsic pluton 
or volcanic rock, marked contamination [e.g., wide ranges of εNd(t)], 
alteration (e.g., LOI ˃ 3 wt%), magma mixing (e.g., samples with en-
claves) are excluded in our study. Here 15 different I-type granitoids 
from the Songliao Block are included in our study (Table S4, Fig. 3). 

4.2. Calculated result 

Here we calculated the time of new crust formation (TDM) and 
(206Pb/204Pb)t ratios using the Nd-Pb isotopic compositions of 75 pub-
lished well-dated samples from 15 different granitoids, namely, 281 Ma 
rhyolite, 279 Ma rhyolite, 253 Ma andesite, 251 Ma andesite, 186 Ma 
monzogranite, 181 Ma rhyolite, 168 Ma granodiorite porphyry, 157 Ma 
rhyolite, 156 Ma rhyolite, 147 Ma monzogranite, 143 Ma syenogranite 
porphyry, 138 Ma monzogranite, and 139 Ma granite, 120 Ma andesite, 
119 Ma granite porphyry and 112 Ma dacite respectively, in the Son-
gliao Block (Table S4). These rock samples are relatively fresh with SiO2 
of 55.25–78.12 wt%, low loss on ignition (LOI) (0.26–2.98 wt%), 

Fig. 4. Relative probability plots of zircon-Hf (A-B) and whole-rock Nd (C) 
model ages of granitoids from the Songliao Block. A. Hf model ages of all zir-
cons data from the granitoids in the Songliao Block; B. median values of Hf 
model ages of the analytical zircons from the granitoids in the Songliao Block. 
Data are from Tables S2 and S3. 
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characterized by I-type granitoids (Table S5, Fig. 5A). In addition, in-
dividual granitoid samples display narrow variation of Nb/U, Ba/Th and 
εNd(t) with the increasing of SiO2 (Table S5, Fig. 5B-D). 

The calculated results show TDM of ~ 0.88–0.90 Ga and 
(206Pb/204Pb)t of 18.235 ~ 18.748 for the 281 Ma rock samples; TDM of 
~ 0.75–0.8 Ga and (206Pb/204Pb)t of 17.807 ~ 18.217 for the 279 Ma 
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rock samples; TDM of ~ 1.45–1.55 Ga and (206Pb/204Pb)t of 17.18 ~ 
17.23 for the 253 Ma rock samples; TDM of ~ 0.75–0.85 Ga and 
(206Pb/204Pb)t of 18.04 ~ 18.20 for the 251 Ma rock samples; TDM of ~ 
1.04–1.07 Ga and (206Pb/204Pb)t of 17.896 ~ 18.946 for the 186 Ma 
monzogranite samples; TDM of ~ 0.77–0.78 Ga and (206Pb/204Pb)t of 
18.049 ~ 19.096 for the 168 Ma rock samples; TDM of ~ 1.3–1.45 Ga and 
(206Pb/204Pb)t of 17.156 ~ 17.817 for the 157 Ma rock samples; TDM of 
~ 1.2–1.35 Ga and (206Pb/204Pb)t of 17.092 ~ 17.683 for the 156 Ma 
rock samples, TDM of ~ 0.8–1.0 Ga and (206Pb/204Pb)t of 18.134 ~ 
18.748 for the 147 Ma monzogranite samples, TDM of ~ 0.8 ~ 0.9 Ga and 
(206Pb/204Pb)t of 18.636 ~ 18.942 for the 143 Ma syenogranite por-
phyry samples, TDM of ~ 0.8–1.05 Ga and (206Pb/204Pb)t of 18.174 ~ 
18.398 for the 139 Ma granite samples, TDM of ~ 0.9–1.05 Ga and 
(206Pb/204Pb)t of 18.253 ~ 18.485 for the 138 Ma monzogranite sam-
ples, TDM of ~ 0.72–0.79 Ga and (206Pb/204Pb)t of 18.202 ~ 18.302 for 
the 120 Ma andesite samples, TDM of ~ 0.70–0.74 Ga and (206Pb/204Pb)t 
of 18.158 ~ 18.194 for the 119 Ma granite porphyry samples, and TDM 
of ~ 0.70–0.90 Ga and (206Pb/204Pb)t of 18.209 ~ 18.325 for the 112 
Ma dacite samples, respectively (Table S4). 

5. Discussion 

Here our compiled I-type granitoid samples display relatively low 
LOI (<3 wt%), narrow variation of Nb/U, Ba/Th and εNd(t) with the 
increasing of SiO2 (Table S5, Fig. 5B-D). Furthermore, we do not find 
other potential evidence of magma mixing [e.g., mafic enclaves, large 
variation of εNd(t)] in these I-type granitoid samples. Hence, the po-
tential processes, such as contamination, magma mixing and alteration, 
might not have a significant impact on the calculation of TDM and 
(206Pb/204Pb)t ratios of new crust in this study. As a result, they can be 
used to evaluate the tectonic settings of new crust formation through Nd- 
Pb isotopic compositions. 

As stated above, the results show (206Pb/204Pb)t ratios corresponding 
to TDM of ~ 1.55–1.2 Ga plot below the DM evolution curve 
[(206Pb/204Pb)t = 17.09 ~ 17.82], whereas, the (206Pb/204Pb)t ratios 
corresponding to TDM of ~ 1.05–0.70 Ga plot above the DM evolution 
curve [(206Pb/204Pb)t = 17.81 ~ 19.10] (Fig. 6). This implies that new 
crust was generated in a subduction setting during ~ 1.55–1.20 Ga, 
however, in an intracontinental extension setting during ~ 1.05–0.70 Ga 
(Fig. 7). Hence, here two distinct tectonic settings of new crust formation 
are recognized in the Songliao Block. This conclusion is consistent with 
reconstruction models of Rodinia assembly and the subsequent 

Intracontinental extensionSubduction
ca.1.55-1.2 Ga ca.1.05-0.70 Ga

Lithospheric

mantle Lithospheric

mantle

Lith
ospheric

 m
antle

continental crust continental crust
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Basaltic magma Basaltic magma

juvenile crustjuvenile crust

A B

Fig. 7. Tectonic settings of new crust formation in the Songliao Block during the Meso-Neoproterozoic.  

Fig. 8. Plots of (A) Nb/U vs. SiO2, (B) Ba/Th vs. SiO2 and (C) εNd(t) vs. SiO2, and (D) (206Pb/204Pb)t vs. TDM of new crust for the Donghouding and Jigongshan 
granitic plutons from the Jibei area of North China and Qinling area of Central China, respectively. TDM represents the time of new crust formation. (206Pb/204Pb)t 
represents the 206Pb/204Pb ratio of new crust at t. Data are shown in Tables S4 and S5. 
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extension of some continents during the late Mesoproterozoic- 
Neoproterozoic (Li et al., 2008). For example, the Cathaysia and South 
Tarim, potentially near or connected to each other, likely joined Rodinia 
northern Australia during 1.3–1.0 Ga (Zhao et al., 2021). Coincidentally, 
detrital zircons from the Songliao and Tarim Blocks have similar age 
spectra in the Precambrian (Chen, 2018), indicating similar evolution 
for them at that time. Hence, the Songliao Block might also be a part of 
the Rodinia. 

In addition, in order to verify the feasibility of this method, we 
calculate TDM values and (206Pb/204Pb)t ratios of new crust from the 
Jibei area of North China during ca. 2.2–2.0 Ga and from the Qinling 
area of Central China during ca. 2.1–1.8 Ga (Table S4). The Dong-
houding granite porphyry (129 Ma) from Jibei area (Liang et al., 2013) 
and the Jigongshan monzogranite (128 Ma) from Qinling area (Zhang 
et al., 2004) are used to carry out further study. Both of them are pre-
dominantly derived from the remelting of prior mafic crust rather than 
sedimentary rocks (Zhang et al., 2004; Liang et al., 2013). They have low 
LOI (<2 wt%), weak variation of Nb/U, Ba/Th and εNd(t) with the rise of 
SiO2 (Fig. 8A-C, Table S5), hence, these granites are probably not 
significantly modified by the processes such as contamination, magma 
mixing and alteration. They can be used to calculate TDM values and 
(206Pb/204Pb)t ratios of new crust. Calculated results show TDM of 2258 
~ 2007 Ma and (206Pb/204Pb)t of 16.91 ~ 17.00 for four Donghouding 
granite samples, and TDM of 2100 ~ 1800 Ma and (206Pb/204Pb)t of 
15.13 ~ 15.29 for six Jigongshan granite samples. Significantly, all 
(206Pb/204Pb)t ratios plot below the DM evolution curve (Fig. 8D), which 
indicates that new crust is generated in subduction settings in the two 
areas during the Paleoproterozoic (~2.2–1.8 Ga), corresponding to the 
convergence of the Columbia/Nuna supercontinent in North China and 
western South China (Yangtze plate) (Zhang et al., 2004; Zhao and 
Cawood, 2012; Wang et al., 2016). Therefore, this method is also 
applied to well determine the tectonic settings of new crust formation in 
the two regions during the Paleoproterozoic (ca. 2.2–1.8 Ga). 

In addition, note that generally, the samples with (206Pb/204Pb)t 
ratios plotted away from Pb isotopic evolution line of the DM can suit 
well for this method. If significant processes such as contamination, 
alteration and magma mixing can be excluded in the samples with 
relatively obvious variation of (206Pb/204Pb)t ratios, the tectonic setting 
of new crust formation should be identified based on the overall distri-
bution of (206Pb/204Pb)t data below or above the DM evolution line 
rather than individual data. So that we can preclude the interference of 
the (206Pb/204Pb)t data plotted near the DM evolution line. If all 
(206Pb/204Pb)t data of individual granitoid samples plot near the DM 
evolution line, the primary magmas of the granitoid samples might be 
Depleted mantle-derived and formed through the fractionation of 
basaltic magmas. Hence, our method might bring a good perspective to 
the studies of I-type granitoids associated with the regimes of crust 
growth and the Precambrian tectonic evolution of continents. 

6. Conclusion 

This study employs the calculation of time of new crust formation 
(TDM) and (206Pb/204Pb)t ratios of new crust to constrain the regimes of 
new continental crust formation. 

(1) Two distinct regimes of new crust formation (i.e., through sub-
duction during ~ 1.55–1.2 Ga and intracontinental extension 
during ~ 1.05–0.70 Ga) are recognized in the Songliao Block of 
East Asia.  

(2) This method is also applied to well determine the tectonic settings 
of new crust formation in the Jibei area of North China and the 
Qinling area of Central China during the Paleoproterozoic 
(~2.2–1.8 Ga). 

(3) This method may provide a potential avenue to explore the re-
gimes of new continental crust formation and the Precambrian 
tectonic evolution of continents. 
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