
Science of the Total Environment 887 (2023) 163911

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Threat of soil formation rate to health of karst ecosystem
Chen Ran a,b,c, Xiaoyong Bai a,d,e,⁎, Qiu Tan f, Guangjie Luo e, Yue Cao a,c,d, Luhua Wu a,b,c, Fei Chen a,g,
Chaojun Li a,b,c, Xuling Luo a,c,f, Min Liu a,c,f, Sirui Zhang a,c,f
a State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Puding Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Puding 562100, Guizhou Province, China
d CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, Shanxi Province, China
e Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang 550018, China
f School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China
g College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
⁎ Corresponding author at: State Key Laboratory of Enviro
E-mail address: baixiaoyong@vip.skleg.cn (X. Bai).

http://dx.doi.org/10.1016/j.scitotenv.2023.163911
Received 27 November 2022; Received in revised for
Available online 5 May 2023
0048-9697/© 2023 Elsevier B.V. All rights reserved.
• Soil formation rate is the key to restrict the
karst ecosystem health.

• An optimized evaluation index system for
karst ecosystem health was proposed.

• An 8 km × 8 km global karst ecosystem
health index dynamic map is created.

• The proportion of unhealthy areas in the
global karst ecosystem is as high as
75.91 %.
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Karst ecosystems are important to several billion people, so it is necessary to accurately diagnose and evaluate the
health of these ecosystems for socioeconomic development; however, the existing evaluationmethods havemany lim-
itations, so they cannot accurately evaluate the ecosystem health in karst areas. In particular, they ignore the influence
and restriction of the soil formation rate on the ecosystem health. To this end, we established a new index to represent
the actual health status of karst ecosystems. The soil formation rate was found to pose a threat to the health of 28% of
the world's karst ecosystems, covering an area of 594 km2. In addition, a dataset of global karst ecosystem health index
valueswith a spatial resolution of about 8 km×8 km from2000 to 2014was created, and the proportion of unhealthy
areas was found to be as high as 75.91%. This study highlights the contribution of the soil formation rate to karst eco-
system health and provides a newmethod and deeper scientific understanding for further accurate evaluation of karst
ecosystem health, which can improve future ecosystem health research and social management.
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1. Introduction

Healthy ecosystems are vital for global human survival and sustainable
development (Peng et al., 2015; He et al., 2019), however, intensive human
activities have greatly changed the structure and function of ecosystems
owing to scientific and technological progress and the rapid growth of the
global economy (Qiu et al., 2015; Bai et al., 2023). This has caused a variety
of ecological and environmental problems, such as resource depletion, land
desertification, soil erosion, and biodiversity reduction (Seto and
Satterthwaite, 2010; de Groot et al., 2012). In the context of global change,
karst ecosystems are of great importance owing to their fragility (Zhao
et al., 2020), the diagnosis of karst ecosystem health is of great value and
significance to realizing sustainable social development and the formula-
tion of restoration strategies for degraded ecosystems.

The global karst area of 2200 × 104 km2, accounting for 15 % of the
Earth's total area, affects the survival and development of one billion people
(Yuan, 1997). The fragile ecological environment in karst areas is closely
related to the presence of less surface soil and serious vegetation and soil
degradation caused by excessive human disturbance. In karst areas, the
soil layer is thin and discontinuous (Wang, 2002; Sun et al., 2002a,
2002b. Once the soil is lost, rocky desertification will occur, which poses
a serious threat to regional ecological environmental protection and social
and economic development (Jiang et al., 2014; Zhang et al., 2021a; Zhang
et al., 2021b). To promote ecosystem restoration and protection in karst
areas, it is necessary to assess the ecosystem health.

Foreign research on ecosystem health has mostly focused on individual
ecosystems (Bouyer et al., 2007; Rombouts et al., 2013; Ishtiaque et al.,
2016; Madeira et al., 2018), or ecosystem health assessment has been com-
bined with other topics to further explore its influencing factors and to pro-
vide a meaningful reference for social development (Keith et al., 2016;
Fitch and Kim, 2018; Faridah-Hanuma et al., 2019; Marco et al., 2019). In
karst areas, some scholars have used the fuzzy mathematics method, the
ecological footprint model, the Pressure-State-Response (PSR) model, and
various other research methods to study karst ecosystem health (Cao and
Su, 2009; Zhang et al., 2011a, 2011b; Li et al., 2015; Liao et al., 2018),
there are also a few scholars assessed the spatial and temporal changes in
karst ecosystem health used the vigor-organization-resilience model (Lv
et al., 2023; Xiao et al., 2022).

These studies are of great significance to the enrichment and im-
provement of ecosystem health theory. However, karst ecosystems dif-
fer from other ecosystems, that is, the soil is mainly derived from acid-
insoluble substance (Wang, 1999; Sun et al., 2002a, 2002b; Wu and
Qi, 2021), but the acid-insoluble substances in most karst areas account
for <10% of the total material, and pure limestone or dolomite accounts
for <1%, leading to slow soil formation in karst areas. The time required
to form a 1 m thick soil layer from a pure carbonate matrix is
250–7800 ka, which is 10–40 times that in non-karst areas (Cao et al.,
2003; Ma and Zhang, 2018). Therefore, the soil formation rate, as a
key limiting factor in karst ecosystems (Zhang et al., 2021c), is a prob-
lem that we must consider when studying the health of karst ecosys-
tems. Moreover, previous studies have mostly focused on small areas,
single ecosystems, or single watersheds. There is no set of standard sys-
tems suitable for ecosystem health evaluation in karst areas, and the
driving factors affecting karst ecosystem health and the prediction of fu-
ture scenarios remain unclear.

In this study, we investigated the importance of the soil formation rate
for karst ecosystem health assessment, and we combined the soil formation
rate (SFR) and the vigor, organization, resilience, and services model to es-
tablish a suitable ecosystemhealth diagnosis model for karst areas. The spa-
tial and temporal patterns and future trends of global karst ecosystem
health were further clarified, and the key factors influencing ecosystem
health were identified. The results of this study link ecosystem health
with soil environmental characteristics and geochemical processes. These
results provide valuable information for the assessment of ecosystemhealth
in karst areas and also provide a theoretical basis for the formulation of de-
graded ecosystem restoration strategies.
2

2. Materials and methods

2.1. Data sources

The data used in the study included the global karst boundary, Land Use
(2000–2015), Normalized Difference Vegetation Index (NDVI), Rainfall,
Evapotranspiration, Temperature, Soil moisture and Palmer Drought Sever-
ity Index (PDSI). More details about these variables were provided as
Table S1.

2.2. Methods

2.2.1. The thermodynamic dissolution equilibrium model for carbonate zones
Based on the internationally universal thermodynamic dissolution

equilibrium model (White, 1984) given in (1), Gombert (2002) created
a model for estimating the theoretical maximum annual dissolution rate
of carbonate rocks, see Eq. (2), what this model expresses is: Assume
that the carbonate rocks have been exposed to air for a long time,
under the current climate and hydrological characteristics, the carbon-
ate dissolution effect has reached a state of equilibrium. Analyze the
theoretical activity of Ca2+ ions or HCO3

− ions under the current hydro-
logical and climate background in the dissolution equilibrium of CaCO3

to reflect the dissolution of carbonate rocks. Based on the above, the the-
oretical consumption of atmospheric CO2 is inverted (Gaillardet et al.,
1999; Zeng et al., 2016).

CaCO3 þ CO2 þ H2O⇔Ca2þ þ 2HCO−
3 ð1Þ

D max ¼ 106 P � Eð Þ Ca2þ½ �eq
¼ 106 P � Eð Þ KsK1K0=4K2γ Ca2þð Þ

3
� �1=3

pCO2ð Þ1=3
(2)

where, Dmax is the potential maximum dissolution rate of carbonate
rock, P, E is the total rainfall and evapotranspiration respectively. Ks is
the calcite solubility constant, K1 is the equilibrium constant of CO2 hy-
dration and dissociation asHCO3

−,K0 is the equilibrium constant ofCO2

in water, K2 is the equilibrium constant for CO3
2−. γCa2þ and γHCO3

− are

the activity coefficients ofCa2þ andHCO3
− ions in water.ρCO2 is the par-

tial pressure ofCO2 in soil or aquifer, ρCO2 is calculated from Brook's for-
mula (Brook et al., 1983) as follows:

log ρCO2ð Þ ¼ � 3:47þ 2:09� 1 � e � 0:00172E� �
(3)

Ks, K1, K2, and K0 are calculated according to formulas (4), (5), (6) and
(7):

log Ksð Þ ¼ Aþ B� Tk þ C=Tk þ D� log Tkð Þ (4)

log K1ð Þ ¼ Aþ B� Tk þ C=Tk þ D� log Tkð Þ þ E=Tk
2 (5)

log K2ð Þ ¼ Aþ B� Tk þ C=Tk þ D� log Tkð Þ þ E=Tk
2 (6)

log K0ð Þ ¼ Aþ B=Tk þ C � Tk (7)

where, Tk is the Kelvin temperature, and A–E is the calculation coefficient
corresponding to Ki factor (Plummer and Busenberg, 1982; Gombert,
2002), and the parameters are shown in the Table 1.

The ionic activity coefficients of Ca2+ and HCO3
− are calculated by the

Debye-Hückel equation (Plummer and Busenberg, 1982), see in formula
(8).

log γið Þ ¼ � AZ2
i

ffiffi
I

p

1þ Bai
ffiffi
I

p (8)

where, γi represents the ionic activity coefficient of ion i, ai is the ionic ra-
dius (Ca2+ radius is 6A, HCO3

−radius is 4A) (Dreybrodt, 1988), Zi is the



Table 1
Coefficients of the formulas for the Ki factors.

A B C D E

Ks −171.9065 −0.077993 2839.3191 71.595 –
K1 −356.3094 −0.06091964 21,834.37 126.8339 −1,684,915
K2 −107.8871 −0.03252849 5151.79 38.92561 −563,713.9
K0 −14.0184 2385.73 0.015264 – –
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number of ionic charge, I is the ionic strength, A and B depend on the Cel-
sius temperature T (°C), the calculation method is:

A ¼ 0:4883þ 8:074� 10 � 4T (9)

B ¼ 0:3241þ 1:6� 10 � 4T (10)

I ¼ 1
2
∑iZ2

i Ci ð11Þ

where Ci is the ionic concentration (mol L−1).

SFR ¼ DmaxQρPþ R 1 � Pð Þ (12)

where Dmax is the Carbonate rocks dissolution rate (mm/yr, Converted to
m3 km−2 yr−1), Q is the acid insoluble content (%); P is the carbonate con-
tent (%); ρ is the Carbonate bulk density (t/m3); R is the Soil formation rate
of non‑carbonate rocks (t km−2 yr−1).

2.2.2. Assessment of karst ecosystem health
The ecosystemhealth of the ecosystem space entity reflects the ability to

maintain a healthy structure, self-regulation and recovery under pressure,
and can be divided into three categories: Ecosystem Vigor (EV), Ecosystem
Organization (EO) and Ecosystem Resilience (ER) (Costanza, 1992; Pantus
and Dennision, 2005; Ran et al., 2021). The study is based on assessment
indicators of ecosystem health, combined with Ecosystem Services (ES)
(Peng et al., 2015; He et al., 2019) and Soil Formation Rate (SFR), to eval-
uate global karst ecosystem health. The Ecosystem Health Index (EHI) is
expressed as:

EHI VORS_SFRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV � EO� ER� ES� SFR5

p

In this paper, the normalized difference vegetation index is selected as
the vigor index because it is closely related to net primary productivity
(Xie et al., 2021), it is an effective indicator for monitoring regional or
global vegetation and the ecological environment (Li et al., 2017a,
2017b; Li et al., 2020a, 2020b), widely used to refer to an ecosystem
vigor index (Phillips et al., 2008; Costanza, 2012a, 2012b; Peng et al.,
2017; Liao et al., 2018).

Ecosystem organization refers to the stability of the ecosystem structure
(Peterson, 2002; Costanza, 2012a, 2012b), and the landscape pattern index
is used to measure the heterogeneity and connectivity of the landscape
(Turner, 1989; Howell et al., 2018). The weighted aggregation method is
used to calculate the EO index (Ran et al., 2021), the weights of the patch
connectivity index of Landscape Heterogeneity (LH), Landscape Connectiv-
ity (LC) and important ecological functions (IC) are 0.35, 0.35 and 0.30, re-
spectively (Frondoni et al., 2011; Peng et al., 2015; Kang et al., 2018). The
EO is calculated as follows:

EO ¼ 0:35LH þ 0:35LCþ 0:30IC
¼ 0:25SHIDþ 0:10AWMPFDð Þ þ 0:25FNþ 0:10CONTð Þ þ 0:07FN1ð

þ 0:03COHESION1þ 0:07FN2þ 0:03COHESION2þ 0:07FN3
þ 0:03COHESION3Þ

where SHDI represents Shannon diversity index; AWMPFD refers to the
area weighted average patch fractal dimension index; FN refers to Land-
scape fragmentation index; CONT refers to Landscape contagion index;
FN1, FN2, FN3 and COHESION1, COHESION2, COHESION3 represent the
3

Landscape fragmentation index and patch cohesion index of forest, water
and grassland respectively. All indices involved in the EO calculation for-
mula were calculated using landscape pattern software Fragstats 3.3.

Ecosystem resilience refers to the ability of natural ecosystems to restore
their original structure and functions after being disturbed by external
sources (Peng et al., 2015), a healthy ecosystem possesses adequate resil-
ience to survive various small-scale perturbations, the EcosystemResilience
Coefficient (ERC) was obtained by referring to existing research (Peng
et al., 2017; Kang et al., 2018). The ER is calculated as follows:

ER ¼ ∑
n

i¼1
Ai� ERCi

whereAi represents the area ratio of land use types;ERCi represents the ERC
of land use type i; n is the number of land use types.

Ecosystem service function refers to the capacity of ecosystem to pro-
vide goods and services for human society (He et al., 2019). The study iden-
tified forest land as the land use typewith the most ecosystem service value
(Gong et al., 2013; Peng et al., 2015), and calculated the Relative Ecosystem
Service Coefficient (RESC) based on forest land, with a threshold of [0,1]
(Dobbs et al., 2011; Peng et al., 2015), as shown in Table S2. In addition,
referring to the existing literature, the coefficient of the spatial proximity ef-
fect of land use type on ecosystem services is calculated through a coeffi-
cient matrix (Marulli and Mallarach, 2005). The calculation formula of ES
is as follows:

ES ¼ ∑
m

j¼1
RESCj � 1þ CSNEj

100

� �
=m

whereRESC j is the RESC of the land use type related to the pixel j;CSNE j is
the sum of the spatial proximity effect coefficients of the four adjacent
pixels on the ecosystem service of the pixel j; m is the number of evaluation
spatial entities of the pixel.

2.2.3. Theil-Sen median trend analysis and Mann-Kendall test
Theil-Sen median trend analysis is combined with Mann-Kendall test to

determine the trend of long-term series data (Jiang et al., 2015; Chen et al.,
2022; Xiong et al., 2022), Theil-Sen Median trend analysis is a robust non-
parametric statistical trend calculation method that can reduce the impact
of data outliers (Sen, 1968; Yang et al., 2019), the calculation formula is
as follows:

βM ¼ Median
Mj � Mi

j � i

� �
2000 ≤ i ≤ j ≤ 2014ð Þ

where βM is the median of the slope of n(n-1)/2 data combinations, when
βM > 0, itmeans that the change trend of the independent variableMduring
the study period is increasing, and vice versa.

Mann-Kendall is a non-parametric test method used to determine the
significance of a trend and are not affected by abnormal values (Fensholt
et al., 2012; Li et al., 2017a, 2017b). The formulas are as follows:

Set the fMig, i = 2000, 2001, …, 2014, define the Z statistic as:

Z ¼

S � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp , S>0

0, S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þp , S < 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
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S ¼ ∑n � 1
j¼1 ∑n

i¼jþ1 sgn Mj � Mi
� �

sgn Mj � Mi
� � ¼

1,Mj � Mi>0

0,Mj � Mi ¼ 0

� 1,Mj � Mi < 0

8><
>:

9>=
>;

var Sð Þ ¼ n n � 1ð Þ 2nþ 5ð Þ
18

In the formula,Mi andMj are the pixel average values of variable M in
the i-th and j-th years, n is the length of the year, and sgn is the sign func-
tion.

2.2.4. Contribution of soil formation rate to ecosystem health
Decompose changes in EHI into changes in the components of vigor, or-

ganization, resilience, service, and soil formation rate (Roderick et al.,
2007; You et al., 2013), thismethod is widely used to evaluate the influence
of various interference factors on hydrometeorological changes (Liu and
Sun, 2016; Xiao et al., 2023; Li et al., 2022).

dEHI
dt

¼ dEV
dt

⋅
∂EHI
∂EV

þ dEO
dt

⋅
∂EHI
∂EO

þ dER
dt

⋅
∂EHI
∂ER

þ dES
dt

⋅
∂EHI
∂ES

þ dSFR
dt

⋅
∂EHI
∂SFR

¼ Con_EV þ Con_EOþ Con_ERþ Con_ESþ Con_SFR

Here, dEHIdt refers to the Changing trend of EHI, Con EV, Con EO, Con ER,
Con ES, Con SFR refer to the contribution of EV, EO, ER, ES, SFR to EHI, re-
spectively, ∂EHI∂EV ,

∂EHI
∂EO ,

∂EHI
∂ER ,

∂EHI
∂ES ,

∂EHI
∂SFR represent the partial correlation coefficient

between EHI and each variable, respectively. When calculating the partial
correlation coefficient of each variable, it is assumed that other variables re-
main unchanged on their long-term average. According to the formula def-
inition, the influence of the other four variables is eliminated, which is
equivalent to the fourth-order partial correlation corresponding to each
variable coefficient (Sun et al., 2019), the formula is as follows:

RSFR�EHI EV�EO�ER�ES ¼ RSFR�EHI EV�EO�ER−RSFR�ES EV �EO�ER � REHI�ES EV�EO�ERffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2

SFR�ES EV �EO�ER
� �

1−R2
EHI�ES EV �EO�ER

� �q

In the formula,RSFR�EHI EV �EO�ER�ES represents the partial correlation coef-
ficient of SFR to EHI after eliminating the influence of EV, EO, ER and ES;
RSFR�EHI EV�EO�ER, RSFR�ES EV �EO�ER and REHI�ES EV�EO�ER are defined as same as
RSFR�EHI EV�EO�ER�ES. In addition, the t-test is used to judge the significance
of the correlation between two variables, if p is <0.05, the 95 % confidence
significance test is passed, otherwise it is not significant.

2.2.5. CA-Markov prediction model
The CA-Markov model is a prediction method based on the Markov

chain, which predicts the future changes of events based on their current
state (Sang et al., 2011). Each grid in the distribution pattern of ecosystem
health level is simulated as a cell, and the ecosystem health level type of
each cell is the state of the cell. Based on the data of factors that affect eco-
system health, such as ecosystem vigor, organization, resilience, services,
and soil formation rate, and apply the Logistic module in IDRISI software
to obtain a suitability distribution atlas, the simulation operation is com-
pleted under the module in CA-Markov, so as to realize the simulation pre-
diction of the spatial pattern change of the ecosystem health level.

The expression of Markov transition matrix is as follows:

sij ¼

s11 s12 ⋯ s1n
s21 s22 ⋯ s2n
⋮ ⋮ ⋱ ⋮
sn1 sn2 ⋯ snn

2
6664

3
7775
4

pij ¼

p11 p12 ⋯ p1n
p21 p22 ⋯ p2n
⋮ ⋮ ⋱ ⋮

pn1 pn2 ⋯ pnn

2
6664

3
7775

where S means area; P means probability; i; jði; j ¼ 1; 2;⋯; nÞ represents
each factor layer before and after transfer, respectively. Probability of
each factor layer si to s j is pðsi→s jÞ ¼ pðsijs jÞ ¼ pij.

2.2.6. Precision validation
The key to simulation prediction is the correctness of its prediction re-

sults. Kappa coefficient is often used to evaluate the accuracy of remote
sensing data classification and analyze the consistency of two maps
(Foody, 2006; Halmy et al., 2015), the closer the Kappa coefficient is to 1,
the higher the simulation prediction accuracy (Mondal et al., 2016). The
evaluation criteria (Feinstein and Cicchetti, 1990; Cicchetti and Feinstein,
1990) are shown in Table S3.

2.3. Statistical analysis

In this study, the datamanagement tool (resample) was used to unify all
of the data to a resolution of 0.5°. The dimensions of each evaluation index
in the index system of the ecosystem health evaluation model are different,
even when they have the same dimensions, and their actual numbers are
also very different. To eliminate the influence caused by the different di-
mensions and the different quantities, it was necessary to standardize
each index used in the comprehensive evaluation. First, the extreme value
normalization method was used to uniformly normalize each index to the
range of 0–1. Then, based on the isometric classification method, the indi-
cators of the ecosystem health were divided into five levels: degradation
(0–0.2), unhealthy (0.2–0.4), moderately healthy (0.4–0.6), sub-healthy
(0.6–0.8), and most healthy (0.8–1.0).

In addition, combining Theil-Sen median trend analysis and Mann-
Kendall test, reveals the change trend of the soil formation rate and ecosys-
tem health indicators in the global carbonate rock region from 2000 to
2014, refer to existing research and classify them according to the change
characteristics of each index: the area with S ≥ 0.0005 is an increasing
area, the area with −0.0005 < S < 0.0005 is a constant area, and the
areawith S≤−0.0005 is a decreasing area. UsingMann-Kendall test (con-
fidence level of 0.05), the results are divided into significant changes
(Z ≥ 1.96 or Z ≤ −1.96) and insignificant changes (−1.96 < Z < 1.96),
based on the above classification standards, the change trend of each
index is finally divided into five levels: significant decrease, slight decrease,
basically unchanged, slight increase and significant increase (Table S4).

3. Results

3.1. Spatial distribution pattern and change of global carbonate SFR

The SFR is affected by regional climate and hydrogeological conditions
(Bai and Dent, 2009; Zeng et al., 2017; Li et al., 2018; Li et al., 2020a,
2020b), and its spatial distribution pattern exhibits significant regional dif-
ferences (Fig. 1a). We found that the high SFR values were mainly distrib-
uted in the equatorial region. This region is characterized by high
temperatures, abundant rainfall, and high humidity all year round, which
promotes the dissolution of carbonate rocks, that is, it increases the dissolu-
tion rate of carbonate rocks, so the SFR is higher. The low SFR value areas
were mainly distributed in several relatively arid and cold places, such as
on plateaus; in the deserts in Central Asia, East Africa, and South Africa;
and in the cold regions in the Northern Hemisphere. This was easily re-
vealed through statistical analysis of the annual average SFR at different lat-
itudes (Fig. 1b).

In this study, Theil-Sen median trend analysis and the Mann-Kendall
test (Fig. S1) were used to analyze the change trend of the soil formation
rate in carbonate regions around the world. The results show that (Fig. 2)



Fig. 1. Annual average SFR in the global carbonate region from 2000 to 2014.

Fig. 2. Change trend of the SFR in the global carbonate region from 2000 to 2014.
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the area where the soil formation rate remains basically unchanged ac-
counted for the largest proportion (38.62 %), followed by the areas with
a slight increase (28.12 %) and slight decrease (21.78 %). The areas with
significant increases accounted for 8.16 %, and the areas with significant
decreases accounted for 3.32 %. In general, the area in which the soil for-
mation rate increased (36.28 %) was greater than the area in which it de-
creased (25.1 %).

In addition, according to the trend analysis of the SFR (Fig. 2), the areas
with increased SFR values were mainly distributed on the coastal plain of
Hudson Bay (Fig. 2a), in the Carpathian Mountains (Fig. 2b), near the Gan-
ges River, on the Iranian Plateau (Fig. 2e), near the Yunnan-Guizhou Pla-
teau, and in the Hengduan Mountains (Fig. 2f). We also found that the
areas where the SFR decreased were mainly located west of the Dnieper
River (Fig. 2b) and East of the Ural River (Fig. 2d). The areas where the
SFR remained basically unchangedwere mainly concentrated on the north-
eastern part of the Central Siberian Plateau (Fig. 2c), as well as in other
scattered areas.

3.2. Contribution of SFR to ecosystem health

Carbonate rocks weathering is an important soil formation mechanism
for developing soil resources in the karst areas in southern China (Wang,
1999), and it is also a true soil formation mechanism (Xu et al., 2005).
The severity of soil erosion in karst areas largely depends on the rate of
soil formation under the background of a specific geological environment
(Li et al., 2006). The congenital insufficiency of the soil-forming materials
provided by the carbonate rocks in karst areas leads to a slow SFR, and
the bedrock can even be bare and lacking soil flow (Yuan, 1988). this
leads to serious ecological disasters. Therefore, in karst areas, the impact
of the soil formation rate cannot be ignored. In addition, through correla-
tion analysis, it was found that the Pearson correlation coefficient between
the soil formation rate and the ecosystem health index is positive (Fig. S2).
The correlation coefficient between them is larger than the ecosystem orga-
nization with autocorrelation in the formula itself, indicating that the soil
formation rate has a certain impact on the ecosystem health index. To fur-
ther support this argument, we selected 13 regions around the world
where karst is more concentrated and contiguous for analysis (Jiang
et al., 2020). The average value of the ecosystem health obtained via statis-
tical analysis of the rate of the added SFR and the non-added SFR in each
region (Fig. 3) shows that the addition of the soil formation rate reduces
the level of ecosystem health in each region. In each selected karst area,
when the SFR is not considered, the ecosystem health is overestimated by
>90 %, indicating that the SFR has a significant impact on the spatial vari-
ation in the ecosystem health. When the SFR is included in ecosystem
health assessment, more comprehensive results can be obtained, helping
to assess the ecosystem health more systematically, especially in karst
areas that are extremely affected by SFR, and illustrating the importance
of the SFR in karst ecosystem health assessment.

To further explore the impact of the soil formation rate on ecosystem
health, the remaining four factors in the control model were held constant,
and we calculated their partial correlation coefficients to obtain a spatial
distributionmap of the contribution of the soil formation rate to the ecosys-
tem health (Fig. 4). In 42 % of the global karst areas, the SFR contributes
positively to the ecosystem health; and in 28 % of the global karst areas,
it contributes negatively. China is the country with the largest karst area
and the widest distribution. Its karst area exceeds 1/3 of the land area
(Song et al., 2017). The SFRmakes a positive contribution to the ecosystem
health in 57 % of this region, and it makes a negative contribution in about
28 %. It can be seen that the SFR mainly makes a positive contribution to
the karst ecosystem health.

3.3. Karst ecosystem health diagnosis based on SFR

Taking into account the limiting effect of the soil formation rate on the
ecosystem health in the carbonate rock area, we incorporated this factor
into the ecosystem health calculation model to evaluate the ecosystem
6

health status in the global carbonate rock area from 2000 to 2014
(Fig. S3). We found that during the study period, the high global
multi-year average ecosystem health values were mainly distributed in
the equatorial region with some high values in humid climate zones with
good rainfall conditions (Fig. S3a), such as in Southwestern China, the East-
ern European Plain, and the Western Siberian Plain. In addition, through
statistical analysis of the ecosystem health index in the different latitude re-
gions around the world over many years (Fig. S3b), it was found that the
ecosystem health index has a clear advantage in the equatorial region
throughout the year. In addition, in the low latitude regions (15–25°N)
and in another higher value, high latitude region (50–65°N), at a given lat-
itude range, the ecosystem health index in the Southern Hemisphere is
much lower than that in the Northern Hemisphere. There is no peak be-
tween 15°N and 25°S, and the ecosystem health in the Southern Hemi-
sphere above 25°S exhibits low values. Based on the climate and
hydrological characteristics of the distribution areas of the ecosystem
health index, we infer that this may be the main reason for the difference
in the ecosystem health index.

3.4. Threat of soil formation rate to health of karst ecosystems

3.4.1. Simulation and prediction of future karst ecosystem health
Using the conversion rules established using the transition matrix of the

ecosystem health grades from 2000 to 2015 based on the Markov model
simulation (Cao et al., 2019), taking 2000 and 2015 as the starting years,
and based on the cellular automats (CA)-Markov model, the distribution
patterns of the ecosystem health index in 2015 and 2030 were simulated
to obtain prediction maps of the ecosystem health in 2015 and 2030
(Fig. 5). The proportions of the actual calculated and predicted values in
the different ecosystem health levels in the global carbonate rock regions
in 2015 were basically the same, and their spatial distributions were also
very similar, indicating that the predicted results have a certain reliability.
By 2030, except for the areas where the ecosystem health level degraded,
exhibiting a downward trend (1.76 %) compared to 2015, the ecosystem
health levels of the other areas all exhibit an increasing state. In general,
in 2030, the areas with relatively healthy levels (suboptimal health and
highest health) (11.41 %) will increase by 0.87 % compared to 2015
(10.54 %). The areas with below average health levels (degraded and un-
healthy) (73.29 %) will be 1.72 % smaller than in 2015 (75.01 %). There-
fore, we expect the ecosystem health of the global carbonate rock area to
gradually improve in the next 8 years.

To verify the accuracy of the calculation results of the CA-Markov
model, we calculated the kappa coefficient of the calculated and simulated
values of the ecosystem health level in 2015. The overall kappa coefficient
was 0.9029. The kappa coefficient of each ecosystem health level is pre-
sented in Table 2. According to the classification standard of the kappa co-
efficient, the prediction results and calculation results of the ecosystem
health in this study are better in 2030, indicating that the results obtained
using the prediction model are highly reliable.

3.4.2. Threat of soil formation rate to health of karst ecosystems
As was discussed above, we predicted the health status of the global

karst ecosystems in the future without taking into account the soil forma-
tion rate (Fig. S4).When the soil formation ratewas not included in the eco-
system health diagnostic index system, in 2030, the area where the
ecosystem health level will have degraded will be comparable to that in
2015. It will decrease by 11.5 %, and the areas of the remaining health
levels will all increase (Fig. S4). In general, in 2030, the areas with rela-
tively healthy levels (suboptimal health and highest health) (23.79 %)
will have increased by 6.38 % compared to 2015 (17.41 %), and 62.08 %
of the area will be below the average health level (degraded and un-
healthy), which is 6.45 % less than in 2015 (68.53 %) (Fig. S4). Therefore,
regardless of whether the soil formation rate is included in the ecosystem
health diagnostic index system, the prediction results indicate that the eco-
system health of the global carbonate rock area will gradually improve in
the next 8 years.
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Fig. 4. Spatial distribution of the contribution of the soil formation rate to ecosystem health.

Fig. 5. Ecosystem health predictions and statistics of area proportions in 2015 and 2030 (R denotes the actual calculated results, and P denotes the prediction results).
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Although our research results show that the ecosystem health of the
global carbonate rock regions will gradually improve in the future, we
found that when the soil formation rate is included in the ecosystem health
diagnostic index system, the healthier regions will bemore healthy in 2030
than in 2015, increasing by 0.87 %. The increase when the soil formation
rate is not included (6.38 %) is 7.3 times that when it is. The area with a
below average health level will decrease by 1.72 % compared to 2015,
and the reduction when the soil formation rate is not included (6.45 %) is
Table 2
Kappa coefficient test value.

Real calculation results Prediction results Kappa

0–0.2 0–0.2 0.9726
0.2–0.4 0.2–0.4 0.8633
0.4–0.6 0.4–0.6 0.8120
0.6–0.8 0.6–0.8 0.5684
0.8–1 0.8–1 0.6255
Overall – 0.9029

8

3.75 times that when it is (Fig. S4). The ecosystem health index that takes
into account the soil formation rate has a much lower degree of recovery
thanwhen it is not taken into account. Thus, it is concluded that the soil for-
mation rate may limit the health of karst ecosystems.

4. Discussion

4.1. Influence of SFR on the correlation between climatic conditions and ecosys-
tem health

Through analysis of the temporal and spatial distributions of the various
ecosystem health indicators in carbonate regions around theworld, the spa-
tial distributions and change trends of the various indicators were found to
be largely restricted by the regional climate and hydrological conditions. In
view of this, we analyzed the correlations between the regional climate and
hydrological parameters and the ecosystemhealth. Based on the correlation
diagram of the factors affecting the ecosystem health in carbonate rock re-
gions (Fig. 6), we found that regardless of the additive soil rate, the average
annual rainfall (r2 = 0.47, 0.55) and soil moisture (r2 = 0.42, 0.47) were



Fig. 6. Correlation diagram of the factors affecting the ecosystem health in carbonate rock regions.
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the dominant factors affecting the regional heterogeneity of the ecosystem
health within the global carbonate region.

Similar studies have shown that climatic factors have an impact on the
provision of ecosystem services (Lorencová et al., 2016; Zhang et al., 2018;
Bai et al., 2019), and it is the main determinant to regional ecological sen-
sitivity (Zhang and Xu, 2017). Pan et al. (2020) et al. concluded that future
climate change, mainly changes in rainfall and temperature, will have a sig-
nificant impact on ecosystem health. These factors mainly affect the overall
level of ecosystem health by affecting the ecosystem vigor (Cao and
Woodward, 1998; Reeves et al., 2014). He et al. (2019) et al. explored the
regional differences in ecosystem health in China and their driving factors,
and they concluded that the moisture index is the main factor affecting the
regional heterogeneity of the ecosystem health across China. In addition,
we observed that the addition of the soil formation rate enhanced the cor-
relations between the rainfall and temperature and the ecosystem health
index and weakened the correlations between the drought index and soil
moisture and the ecosystem health index.

4.2. Methodological advantages of considering the SFR in ecosystem health as-
sessment

Here, we mainly describe the evolution of ecosystem health diagnostic
model from proposal to improvement, and then explain the reasons and ad-
vantages of taking soil formation rate as the improvement of ecosystem
health diagnostic model in karst area. There are large differences in the
range of indicators involved in the development of an ecosystem health as-
sessment index (Bertollo, 1998; Costanza and Mageau, 1999; Costanza,
2012a, 2012b).

Costanza and Mageau (1999) proposed the VOR model constructed
using three indicators, i.e., vigor (V), organization (O), and resilience (R),
which has been widely recognized by the ecological community (Wang
et al., 2018; Xiao et al., 2019). Many ecosystem health assessment studies
on different scales have been conducted using this model. Later, a large
number of scholars improved the ecosystem health assessment model on
this basis, and they concluded that including ecosystem services can enable
a better and more comprehensive evaluation of ecosystem health (Yan
et al., 2016). Therefore, the VORS model gradually replaced the VOR
model.

The VORSmodel has an excellent universality and also provides a good
method of ecosystem health assessment; however, it is precisely because of
the universality of this model that researchers commonly ignore the re-
gional differences caused by the geological background. The weathering
of carbonate rock is the most basic and common geological and geochemi-
cal process in carbonate rock areas (Zhang et al., 2011a, 2011b). It is also
the main form of rock-soil-water-atmosphere-biological interactions in
9

karst areas and is a key link in the epigenetic geochemical cycles of ele-
ments (Wang et al., 2019). The soil formation rate in the carbonate rock
area is too slow, and soil formation is generally considered to be most sig-
nificant over geological rather than human timescales (Green et al.,
2019). This leads to a series of ecological and environmental problems.
Therefore, themodel established in this study is aimed at carbonate rock re-
gions, and the limiting factor of the soil formation rate is added to the orig-
inal model, which makes the ecosystem health assessment model more
comprehensive and more targeted.

4.3. Uncertainty

There are many uncertainties in this study. The first source of uncer-
tainty is the determination of the weight of each indicator. The weights of
the indicators in this study were mainly obtained from the existing litera-
ture, so they have a certain degree of uncertainty. However, as a widely
used model, the determination of the weights is relatively reliable. Second,
the calculation of the index of the soil formation rate included in this study
was based on the chemical weathering of carbonate rocks and acid-
insoluble matter. The soil sources that were not considered included dust
deposition out of the atmosphere, the influence of microbial action on
rock formation and older alluvial-colluvial profiles covering the carbonate
and forming deep oxisoils and so on. Studies have shown that there are
many microorganisms on the surfaces of carbonate rocks, and the action
of these microorganisms is involved throughout the weathering and evolu-
tion of carbonate rocks (Williams and Steinbergs, 1959).Microbes can even
accelerate the dissolution of and soil formation from carbonate rocks
(Zhang and Yuan, 2005; Ding and Lian, 2008). Alluvial-colluvial deposits
are usually composed of materials such as sand, silt, and clay that have
been transported and deposited by rivers or landslides. Over time,
weathering and erosion processes can transform these deposits into
oxisoils, which are highly weathered and infertile soils.

In addition, the uncertainty of our research is similar to the uncertainty
in the study of Pengjian et al. As is explained by the special attention to
landscape patterns in the assessment model, the results of the ecosystem
health assessment are greatly affected by land use changes, and there is in-
evitable uncertainty in the interpretation of remote sensing images (Peng
et al., 2015). Thus, when evaluating units with large spatial heterogeneity
on the regional scale, there are obvious uncertainties in quantifying the eco-
system services for inclusion in the global average of each land use type.

Despite the unavoidable limitations in the data acquisition andmethod-
ology described above, we believe that this research is still meaningful. The
results of this research can help researchers understand the spatial pattern
of karst ecosystem health changes and their influencing factors and provide
scientific support for the formulation of regional ecological protection and
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restoration policies. Modern data collection conditions are superior, and
the most obvious limitation of the ecosystem health assessment is not the
lack of data but how the data on multiple assessment indicators are used
to develop a suitable framework. Therefore, in this study on ecosystem
health assessment, we considered integrating the indicators related to the
environment, society, economy, and resources to make the ecosystem
health assessment more comprehensive and specific.

5. Conclusions

Assessing the health of regional ecosystems is the basis for exploring the
ecological impact of global environmental changes, and it is also important
for the comprehensive analysis of the coupling mechanism between
humans and nature. In this study, the SFR and the VORS model were com-
bined to establish an ecosystemhealth diagnosismodel suitable for karst re-
gions, a preliminary diagnosis of the ecosystem health of global karst areas
was conducted, future scenario simulation predictions were made, and the
impact of the soil formation rate on the ecosystem health assessment was
investigated. The main conclusions of this study are as follows.

(1) During the study period, the high values of multi-year average karst
ecosystem health were mainly distributed in the equatorial region
with humid climate zones with good rainfall conditions.

(2) The SFR and the VORS model were combined to simulate and predict
the health of the global karst ecosystem in the future, it is expected
that it will gradually improve in the next 8 years.

(3) The average annual rainfall (r2 = 0.47) and soil moisture (r2 = 0.42)
are the main driving factors of the changes in the karst ecosystem
health, and the addition of the SFR enhanced the correlations between
the rainfall (R2 = 0.55) and soil moisture (R2 = 0.47) and the karst
ecosystem health index.

The combination of the SFR and the VORS model provides a new re-
search method for karst ecosystem health assessment research. This
model is aimed at carbonate rock regions. Adding the limiting factor of
the soil formation rate is added to the originalmodel not onlymade the eco-
system health assessment model more comprehensive, but it also made it
more targeted.
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